
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy expand_dims() Function
The Numpy expand_dims() Function is used to add a new axis or dimension to an array. This function takes an input array and an axis parameter specifying where to insert the new dimension.
This function results in a new array with the specified axis added, which can be useful for adjusting array shapes to meet the requirements of certain operations or functions.
For instance, expanding dimensions is often used to convert a 1D array into a 2D array by making it compatible for broadcasting or matrix operations.
Syntax
The syntax for the Numpy expand_dims() function is as follows −
numpy.expand_dims(a, axis)
Parameters
Below are the parameters of Numpy expand_dims() Function −
- a :Input array.
- axis(int): This is the position in the expanded axes where the new axis is placed. If we provide a negative integer, it counts from the last to the first axis.
Return Value
This function retuns a view of array with the number of dimensions increased by one.
Example 1
Following is the basic example of Numpy expand_dims() function which adds a new axis at the beginning of the 1D array by converting it into a 2D array with shape (1, 3) −
import numpy as np # Original 1D array arr = np.array([1, 2, 3]) # Expand dimensions expanded_arr = np.expand_dims(arr, axis=0) print("Original array:") print(arr) print("Shape:", arr.shape) print("\nExpanded array:") print(expanded_arr) print("Shape:") print(expanded_arr.shape)
Output
Original array: [1 2 3] Shape: (3,) Expanded array: [[1 2 3]] Shape: (1, 3)
Example 2
Here this example adds a new axis at the end of the 3D array by changing its shape from (2, 2, 2) to (2, 2, 2, 1) −
import numpy as np # Original 3D array arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # Expand dimensions expanded_arr = np.expand_dims(arr, axis=-1) print("Original array:") print(arr) print("Shape:", arr.shape) print("\nExpanded array:") print(expanded_arr) print("Shape:") print(expanded_arr.shape)
After execution of above code, we get the following result
Original array: [[[1 2] [3 4]] [[5 6] [7 8]]] Shape: (2, 2, 2) Expanded array: [[[[1] [2]] [[3] [4]]] [[[5] [6]] [[7] [8]]]] Shape: (2, 2, 2, 1)
Example 3
The below example shows how expand_dims() function is used to add new dimensions to arrays by adjusting their shapes and dimensions as needed −
import numpy as np # Create a 2D array x = np.array([[1, 2], [3, 4]]) print('Array x:') print(x) print('\n') # Add a new axis at position 0 y = np.expand_dims(x, axis=0) print('Array y with a new axis added at position 0:') print(y) print('\n') # Print the shapes of x and y print('The shape of x and y arrays:') print(x.shape, y.shape) print('\n') # Add a new axis at position 1 y = np.expand_dims(x, axis=1) print('Array y after inserting axis at position 1:') print(y) print('\n') # Print the number of dimensions (ndim) for x and y print('x.ndim and y.ndim:') print(x.ndim, y.ndim) print('\n') # Print the shapes of x and y print('x.shape and y.shape:') print(x.shape, y.shape)
After execution of above code, we get the following result
Array x: [[1 2] [3 4]] Array y with a new axis added at position 0: [[[1 2] [3 4]]] The shape of x and y arrays: (2, 2) (1, 2, 2) Array y after inserting axis at position 1: [[[1 2]] [[3 4]]] x.ndim and y.ndim: 2 3 x.shape and y.shape: (2, 2) (2, 1, 2)