DSP - DFT Solved Examples



Example 1

Verify Parsevals theorem of the sequence x(n)=1n4u(n)

Solution|x1(n)|2=12πππ|X1(ejω)|2dω

L.H.S |x1(n)|2

=x(n)x(n)

=(14)2nu(n)=11116=1615

R.H.S. X(ejω)=1114ejω=110.25cosω+j0.25sinω

X(ejω)=110.25cosωj0.25sinω

Calculating, X(ejω).X(ejω)

=1(10.25cosω)2+(0.25sinω)2=11.06250.5cosω

12πππ11.06250.5cosωdω

12πππ11.06250.5cosωdω=16/15

We can see that, LHS = RHS.(Hence Proved)

Example 2

Compute the N-point DFT of x(n)=3δ(n)

Solution − We know that,

X(K)=N1n=0x(n)ej2ΠknN

=N1n=03δ(n)ej2ΠknN

=3δ(0)×e0=1

So,x(k)=3,0kN1 Ans.

Example 3

Compute the N-point DFT of x(n)=7(nn0)

Solution − We know that,

X(K)=N1n=0x(n)ej2ΠknN

Substituting the value of x(n),

N1n=07δ(nn0)ej2ΠknN

=ekj14Πkn0/N Ans

Advertisements