- DSP - Home
- DSP - Signals-Definition
- DSP - Basic CT Signals
- DSP - Basic DT Signals
- DSP - Classification of CT Signals
- DSP - Classification of DT Signals
- DSP - Miscellaneous Signals
- Operations Signals - Shifting
- Operations Signals - Scaling
- Operations Signals - Reversal
- Operations Signals - Differentiation
- Operations Signals - Integration
- Operations Signals - Convolution
- Basic System Properties
- DSP - Static Systems
- DSP - Dynamic Systems
- DSP - Causal Systems
- DSP - Non-Causal Systems
- DSP - Anti-Causal Systems
- DSP - Linear Systems
- DSP - Non-Linear Systems
- DSP - Time-Invariant Systems
- DSP - Time-Variant Systems
- DSP - Stable Systems
- DSP - Unstable Systems
- DSP - Solved Examples
- Z-Transform
- Z-Transform - Introduction
- Z-Transform - Properties
- Z-Transform - Existence
- Z-Transform - Inverse
- Z-Transform - Solved Examples
- Discrete Fourier Transform
- DFT - Introduction
- DFT - Time Frequency Transform
- DTF - Circular Convolution
- DFT - Linear Filtering
- DFT - Sectional Convolution
- DFT - Discrete Cosine Transform
- DFT - Solved Examples
- Fast Fourier Transform
- DSP - Fast Fourier Transform
- DSP - In-Place Computation
- DSP - Computer Aided Design
- Digital Signal Processing Resources
- DSP - Quick Guide
- DSP - Useful Resources
- DSP - Discussion
DSP - DFT Solved Examples
Example 1
Verify Parsevals theorem of the sequence x(n)=1n4u(n)
Solution − ∞∑−∞|x1(n)|2=12π∫π−π|X1(ejω)|2dω
L.H.S ∞∑−∞|x1(n)|2
=∞∑−∞x(n)x∗(n)
=∞∑−∞(14)2nu(n)=11−116=1615
R.H.S. X(ejω)=11−14e−jω=11−0.25cosω+j0.25sinω
⟺X∗(ejω)=11−0.25cosω−j0.25sinω
Calculating, X(ejω).X∗(ejω)
=1(1−0.25cosω)2+(0.25sinω)2=11.0625−0.5cosω
12π∫π−π11.0625−0.5cosωdω
12π∫π−π11.0625−0.5cosωdω=16/15
We can see that, LHS = RHS.(Hence Proved)
Example 2
Compute the N-point DFT of x(n)=3δ(n)
Solution − We know that,
X(K)=N−1∑n=0x(n)ej2ΠknN
=N−1∑n=03δ(n)ej2ΠknN
=3δ(0)×e0=1
So,x(k)=3,0≤k≤N−1 Ans.
Example 3
Compute the N-point DFT of x(n)=7(n−n0)
Solution − We know that,
X(K)=N−1∑n=0x(n)ej2ΠknN
Substituting the value of x(n),
N−1∑n=07δ(n−n0)e−j2ΠknN
=e−kj14Πkn0/N Ans
Advertisements