- Home
- Introduction
- Linear Programming
- Norm
- Inner Product
- Minima and Maxima
- Convex Set
- Affine Set
- Convex Hull
- Caratheodory Theorem
- Weierstrass Theorem
- Closest Point Theorem
- Fundamental Separation Theorem
- Convex Cones
- Polar Cone
- Conic Combination
- Polyhedral Set
- Extreme point of a convex set
- Direction
- Convex & Concave Function
- Jensen's Inequality
- Differentiable Convex Function
- Sufficient & Necessary Conditions for Global Optima
- Quasiconvex & Quasiconcave functions
- Differentiable Quasiconvex Function
- Strictly Quasiconvex Function
- Strongly Quasiconvex Function
- Pseudoconvex Function
- Convex Programming Problem
- Fritz-John Conditions
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Algorithms for Convex Problems
Convex Optimization - Inner Product
Inner product is a function which gives a scalar to a pair of vectors.
Inner Product − f:Rn×Rn→κ where κ is a scalar.
The basic characteristics of inner product are as follows −
Let X∈Rn
⟨x,x⟩≥0,∀x∈X
⟨x,x⟩=0⇔x=0,∀x∈X
⟨αx,y⟩=α⟨x,y⟩,∀α∈κand∀x,y∈X
⟨x+y,z⟩=⟨x,z⟩+⟨y,z⟩,∀x,y,z∈X
⟨¯y,x⟩=(x,y),∀x,y∈X
Note −
Relationship between norm and inner product: ‖x‖=√(x,x)
∀x,y∈Rn,⟨x,y⟩=x1y1+x2y2+...+xnyn
Examples
1. find the inner product of x=(1,2,1)andy=(3,−1,3)
Solution
⟨x,y⟩=x1y1+x2y2+x3y3
⟨x,y⟩=(1×3)+(2×−1)+(1×3)
⟨x,y⟩=3+(−2)+3
⟨x,y⟩=4
2. If x=(4,9,1),y=(−3,5,1) and z=(2,4,1), find (x+y,z)
Solution
As we know, ⟨x+y,z⟩=⟨x,z⟩+⟨y,z⟩
⟨x+y,z⟩=(x1z1+x2z2+x3z3)+(y1z1+y2z2+y3z3)
⟨x+y,z⟩={(4×2)+(9×4)+(1×1)}+
{(−3×2)+(5×4)+(1×1)}
⟨x+y,z⟩=(8+36+1)+(−6+20+1)
⟨x+y,z⟩=45+15
⟨x+y,z⟩=60
Advertisements