

[DOCUMENT TITLE]

[Document subtitle]

Unit Testing

1

About the Tutorial

Unit Testing is a testing methodology by which individual units of source code, such as

functions, methods, and class are tested to determine whether they are fit for use. This is

a brief tutorial that explains the functionality of Unit Testing.

Audience

This tutorial has been prepared for beginners to help them understand the basic

functionality of Unit Testing framework. After completing this tutorial, you will find yourself

at a moderate level of expertise in using Unit Testing framework from where you can take

yourself to the next levels.

Prerequisites

To draw benefits from this tutorial, it is recommended to have prior knowledge of Python

and also a basic understanding of testing techniques.

Copyright & Disclaimer

Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Unit Testing

2

Table of Contents

About the Tutorial ... 1

Audience ... 1

Prerequisites ... 1

Copyright & Disclaimer .. 1

Table of Contents .. 2

1. UNIT TESTING — OVERVIEW ... 4

Environment Setup ... 5

2. UNIT TESTING – TEST FRAMEWORK .. 6

Creating a Unit Test ... 6

Command Line Interface ... 8

3. UNIT TESTING — API ... 9

TestCase Class ... 9

Fixtures ... 9

Class Fixture .. 11

TestSuite Class .. 12

TestLoader Class .. 14

TestResult Class ... 15

4. UNIT TESTING — USING ASSERTION .. 18

Assert for Collections .. 22

5. UNIT TESTING — TEST DISCOVERY .. 25

6. UNIT TESTING — SKIP TEST ... 26

7. UNIT TESTING — EXCEPTIONS TEST... 29

Unit Testing

3

8. UNIT TESTING — TIME TEST .. 32

9. UNIT TESTING — UNITTEST2 ... 33

10. UNIT TESTING — SIGNAL HANDLING ... 34

GUI Test Runner .. 34

11. UNIT TESTING — DOCTEST .. 37

Doctest: Checking Examples in a Text File ... 40

12. UNIT TESTING — DOCTEST API ... 42

DocTestFinder Class .. 42

DocTestParser Class .. 42

DocTestRunner Class ... 43

OutputChecker Class ... 44

DocTest Integration with Unittest ... 44

13. UNIT TESTING — PY.TEST MODULE ... 46

Installation .. 46

Usage .. 46

Grouping Multiple Tests in a Class ... 47

14. UNIT TESTING — NOSE TESTING FRAMEWORK ... 49

Basic Usage ... 49

15. UNIT TESTING — TOOLS FOR NOSE TESTING ... 51

Parameterized Testing .. 51

Unit Testing

4

Unit testing is a software testing method by which individual units of source code, such as

functions, methods, and class are tested to determine whether they are fit for

use. Intuitively, one can view a unit as the smallest testable part of an application. Unit

tests are short code fragments created by programmers during the development process.

It forms the basis for component testing.

Unit testing can be done in the following two ways:

Manual Testing Automated Testing

Executing the test cases manually without

any tool support is known as manual

testing.

 Since test cases are executed by

human resources so it is very time

consuming and tedious.

 As test cases need to be executed

manually so more testers are

required in manual testing.

 It is less reliable as tests may not

be performed with precision each

time because of human errors.

 No programming can be done to

write sophisticated tests which

fetch hidden information.

Taking tool support and executing the test

cases by using automation tool is known as

automation testing.

 Fast Automation runs test cases

significantly faster than human

resources.

 The investment over human

resources is less as test cases

are executed by using automation

tool.

 Automation tests perform precisely

same operation each time they are

run and are more reliable.

 Testers can program

sophisticated tests to bring out

hidden information.

JUnit is a unit testing framework for the Java programming language. JUnit has been

important in the development of test-driven development, and is one of a family of unit

testing frameworks collectively known as xUnit that originated with JUnit. You can find out

JUnit Tutorial here.

The Python unit testing framework, sometimes referred to as “PyUnit,” is a Python

language version of JUnit developed by Kent Beck and Erich Gamma. PyUnit forms part of

the Python Standard Library as of Python version 2.1.

Python unit testing framework supports test automation, sharing of setup and shutdown

code for tests, aggregation of tests into collections, and independence of the tests from

1. Unit Testing — Overview

http://www.tutorialspoint.com/junit/index.htm

Unit Testing

5

the reporting framework. The unittest module provides classes that make it easy to

support these qualities for a set of tests.

This tutorial has been prepared for the beginners to help them understand the basic

functionality of Python testing framework. After completing this tutorial you will find

yourself at a moderate level of expertise in using Python testing framework from where

you can take yourself to the next levels.

You should have reasonable expertise in software development using Python language.

Our Python tutorial is a good place to start learning Python. Knowledge of basics of

software testing is also desirable.

Environment Setup

The classes needed to write tests are to be found in the 'unittest' module. If you are using

older versions of Python (prior to Python 2.1), the module can be downloaded from

http://pyunit.sourceforge.net/. However, unittest module is now a part of the

standard Python distribution; hence it requires no separate installation.

http://www.tutorialspoint.com/python/index.htm
http://pyunit.sourceforge.net/

Unit Testing

6

'unittest' supports test automation, sharing of setup and shutdown code for tests,

aggregation of tests into collections, and independence of the tests from the reporting

framework.

The unittest module provides classes that make it easy to support these qualities for a set

of tests.

To achieve this, unittest supports the following important concepts:

 test fixture: This represents the preparation needed to perform one or more

tests, and any associate cleanup actions. This may involve, for example,

creating temporary or proxy databases, directories, or starting a server

process.

 test case: This is the smallest unit of testing. This checks for a specific

response to a particular set of inputs. unittest provides a base class, TestCase,

which may be used to create new test cases.

 test suite: This is a collection of test cases, test suites, or both. This is used

to aggregate tests that should be executed together. Test suites are

implemented by the TestSuite class.

 test runner: This is a component which orchestrates the execution of tests

and provides the outcome to the user. The runner may use a graphical

interface, a textual interface, or return a special value to indicate the results of

executing the tests.

Creating a Unit Test

The following steps are involved in writing a simple unit test:

Step 1: Import the unittest module in your program.

Step 2: Define a function to be tested. In the following example, add() function is to be

subjected to test.

Step 3: Create a testcase by subclassing unittest.TestCase.

Step 4: Define a test as a method inside the class. Name of method must start with 'test'.

Step 5: Each test calls assert function of TestCase class. There are many types of asserts.

Following example calls assertEquals() function.

Step 6: assertEquals() function compares result of add() function with arg2 argument and

throws assertionError if comparison fails.

2. Unit Testing – Test Framework

Unit Testing

7

Step 7: Finally, call main() method from the unittest module.

import unittest

def add(x,y):

 return x+y

class SimpleTest(unittest.TestCase):

 def testadd1(self):

 self.assertEquals(add(4,5),9)

if __name__ == '__main__':

 unittest.main()

Step 8: Run the above script from the command line.

C:\Python27>python SimpleTest.py

.

--

Ran 1 test in 0.000s

OK

Step 9: The following three could be the possible outcomes of a test:

OK The test passes. ‘A’ is displayed on console

FAIL
The test does not pass, and raises an AssertionError exception. ‘F’ is

displayed on console.

ERROR
The test raises an exception other than AssertionError. ‘E’ is displayed on

console.

These outcomes are displayed on the console by '.', 'F' and 'E' respectively.

Unit Testing

8

Command Line Interface

The unittest module can be used from the command line to run single or multiple tests.

python -m unittest test1

python -m unittest test_module.TestClass

python -m unittest test_module.TestClass.test_method

unittest supports the following command line options. For a list of all the command-line

options, use the following command:

Python –m unittest -h

-h, --help Show this message

v, --verbose Verbose output

-q, --quiet Minimal output

-f, --failfast Stop on first failure

-c, --catch Catch control-C and display results

-b, --buffer Buffer stdout and stderr during test runs

Unit Testing

9

This chapter discusses the classes and methods defined in the unittest module. There are

five major classes in this module.

TestCase Class

Object of this class represents the smallest testable unit. It holds the test routines and

provides hooks for preparing each routine and for cleaning up thereafter.

The following methods are defined in the TestCase class:

setUp() Method called to prepare the test fixture. This is called

immediately before calling the test method

tearDown() Method called immediately after the test method has been

called and the result recorded. This is called even if the test

method raised an exception,

setUpClass() A class method called before tests in an individual class run.

tearDownClass() A class method called after tests in an individual class have

run.

run(result=None) Run the test, collecting the result into the test result object

passed as result.

skipTest(reason) Calling this during a test method or setUp() skips the

current test.

debug() Run the test without collecting the result.

shortDescription() Returns a one-line description of the test.

Fixtures

There can be numerous tests written inside a TestCase class. These test methods may

need database connection, temporary files or other resources to be initialized. These are

called fixtures. TestCase includes a special hook to configure and clean up any fixtures

needed by your tests. To configure the fixtures, override setUp(). To clean up,

override tearDown().

In the following example, two tests are written inside the TestCase class. They test result

of addition and subtraction of two values. The setup() method initializes the arguments

based on shortDescription() of each test. teardown() method will be executed at the end

of each test.

3. Unit Testing — API

Unit Testing

10

import unittest

class simpleTest2(unittest.TestCase):

 def setUp(self):

 self.a=10

 self.b=20

 name=self.shortDescription()

 if name=="Add":

 self.a=10

 self.b=20

 print name, self.a, self.b

 if name=="sub":

 self.a=50

 self.b=60

 print name, self.a, self.b

 def tearDown(self):

 print '\nend of test',self.shortDescription()

 def testadd(self):

 """Add"""

 result=self.a+self.b

 self.assertTrue(result==100)

 def testsub(self):

 """sub"""

 result=self.a-self.b

 self.assertTrue(result==-10)

if __name__ == '__main__':

 unittest.main()

Run the above code from the command line. It gives the following output:

C:\Python27>python test2.py

Add 10 20

F

end of test Add

sub 50 60

end of test sub

Unit Testing

11

.

==

FAIL: testadd (__main__.simpleTest2)

Add

--

Traceback (most recent call last):

 File "test2.py", line 21, in testadd

 self.assertTrue(result==100)

AssertionError: False is not true

--

Ran 2 tests in 0.015s

FAILED (failures=1)

Class Fixture

TestCase class has a setUpClass() method which can be overridden to execute before the

execution of individual tests inside a TestCase class. Similarly, tearDownClass() method

will be executed after all test in the class. Both the methods are class methods. Hence,

they must be decorated with @classmethod directive.

The following example demonstrates the use of these class methods:

import unittest

class TestFixtures(unittest.TestCase):

 @classmethod

 def setUpClass(cls):

 print 'called once before any tests in class'

 @classmethod

 def tearDownClass(cls):

 print '\ncalled once after all tests in class'

 def setUp(self):

 self.a=10

Unit Testing

12

 self.b=20

 name=self.shortDescription()

 print '\n',name

 def tearDown(self):

 print '\nend of test',self.shortDescription()

 def test1(self):

 """One"""

 result=self.a+self.b

 self.assertTrue(True)

 def test2(self):

 """Two"""

 result=self.a-self.b

 self.assertTrue(False)

if __name__ == '__main__':

 unittest.main()

TestSuite Class

Python's testing framework provides a useful mechanism by which test case instances can

be grouped together according to the features they test. This mechanism is made available

by TestSuite class in unittest module.

The following steps are involved in creating and running a test suite.

Step 1: Create an instance of TestSuite class.

suite=unittest.TestSuite()

Step 2: Add tests inside a TestCase class in the suite.

suite.addTest(testcase class)

Step 3: You can also use makeSuite() method to add tests from a class

suite=unittest.makeSuite(test case class)

Step 4: Individual tests can also be added in the suite.

Unit Testing

13

suite.addTest(testcaseclass(""testmethod")

Step 5: Create an object of the TestTestRunner class.

runner = unittest.TextTestRunner()

Step 6: Call the run() method to run all the tests in the suite

runner.run (suite)

The following methods are defined in TestSuite class:

addTest() Adds a test method in the test suite.

addTests() Adds tests from multiple TestCase classes.

run() Runs the tests associated with this suite, collecting the

result into the test result object

debug() Runs the tests associated with this suite without

collecting the result.

countTestCases() Returns the number of tests represented by this test

object

The following example shows how to use TestSuite class:

import unittest

class suiteTest(unittest.TestCase):

 def setUp(self):

 self.a=10

 self.b=20

 def testadd(self):

 """Add"""

 result=self.a+self.b

 self.assertTrue(result==100)

 def testsub(self):

Unit Testing

14

 """sub"""

 result=self.a-self.b

 self.assertTrue(result==-10)

def suite():

 suite = unittest.TestSuite()

suite.addTest (simpleTest3("testadd"))

suite.addTest (simpleTest3("testsub"))

 suite.addTest(unittest.makeSuite(simpleTest3))

 return suite

if __name__ == '__main__':

 runner = unittest.TextTestRunner()

 test_suite = suite()

 runner.run (test_suite)

You can experiment with the addTest() method by uncommenting the lines and comment

statement having makeSuite() method.

TestLoader Class

The unittest package has the TestLoader class which is used to create test suites from

classes and modules. By default, the unittest.defaultTestLoader instance is automatically

created when the unittest.main(0 method is called. An explicit instance, however enables

the customization of certain properties.

In the following code, tests from two classes are collected in a List by using the TestLoader

object.

import unittest

testList = [Test1, Test2]

testLoad = unittest.TestLoader()

TestList = []

for testCase in testList:

 testSuite = testLoad.loadTestsFromTestCase(testCase)

 TestList.append(testSuite)

newSuite = unittest.TestSuite(TestList)

Unit Testing

15

runner = unittest.TextTestRunner()

runner.run(newSuite)

The following table shows a list of methods in the TestLoader class:

loadTestsFromTestCase() Return a suite of all tests cases contained in a TestCase class

loadTestsFromModule()
Return a suite of all tests cases contained in the given

module.

loadTestsFromName() Return a suite of all tests cases given a string specifier.

discover()

Find all the test modules by recursing into subdirectories

from the specified start directory, and return a TestSuite

object

TestResult Class

This class is used to compile information about the tests that have been successful and

the tests that have met failure. A TestResult object stores the results of a set of tests.

A TestResult instance is returned by the TestRunner.run() method.

TestResult instances have the following attributes:

Errors

A list containing 2-tuples of TestCase instances and strings holding

formatted tracebacks. Each tuple represents a test which raised an

unexpected exception.

Failures

A list containing 2-tuples of TestCase instances and strings holding

formatted tracebacks. Each tuple represents a test where a failure

was explicitly signalled using the TestCase.assert*() methods.

Skipped
A list containing 2-tuples of TestCase instances and strings holding

the reason for skipping the test.

wasSuccessful()
Return True if all tests run so far have passed, otherwise

returns False.

stop()
This method can be called to signal that the set of tests being run

should be aborted.

startTestRun() Called once before any tests are executed.

stopTestRun() Called once after all tests are executed.

testsRun The total number of tests run so far.

Buffer
If set to true, sys.stdout and sys.stderr will be buffered in

between startTest() and stopTest() being called.

https://docs.python.org/2/library/unittest.html#unittest.TestResult.startTest
https://docs.python.org/2/library/unittest.html#unittest.TestResult.stopTest

Unit Testing

16

The following code executes a test suite:

if __name__ == '__main__':

 runner = unittest.TextTestRunner()

 test_suite = suite()

 result=runner.run (test_suite)

 print "---- START OF TEST RESULTS"

 print result

 print "result::errors"

 print result.errors

 print "result::failures"

 print result.failures

 print "result::skipped"

 print result.skipped

 print "result::successful"

 print result.wasSuccessful()

 print "result::test-run"

 print result.testsRun

 print "---- END OF TEST RESULTS"

The code when executed displays the following output:

---- START OF TEST RESULTS

<unittest.runner.TextTestResult run=2 errors=0 failures=1>

result::errors

[]

result::failures

[(<__main__.suiteTest testMethod=testadd>, 'Traceback (most recent call

last):\n

 File "test3.py", line 10, in testadd\n

self.assertTrue(result==100)\nAssert

Unit Testing

17

ionError: False is not true\n')]

result::skipped

[]

result::successful

False

result::test-run

2

---- END OF TEST RESULTS

Unit Testing

18

Python testing framework uses Python's built-in assert() function which tests a particular

condition. If the assertion fails, an AssertionError will be raised. The testing framework

will then identify the test as Failure. Other exceptions are treated as Error.

The following three sets of assertion functions are defined in unittest module:

 Basic Boolean Asserts

 Comparative Asserts

 Asserts for Collections

Basic assert functions evaluate whether the result of an operation is True or False. All the

assert methods accept a msg argument that, if specified, is used as the error message on

failure.

assertEqual(arg1, arg2, msg=None) Test that arg1 and arg2 are equal. If the

values do not compare equal, the test will

fail.

assertNotEqual(arg1, arg2, msg=None) Test that arg1 and arg2 are not equal. If

the values do compare equal, the test will

fail.

assertTrue(expr, msg=None) Test that expr is true. If false, test fails

assertFalse(expr, msg=None) Test that expr is false. If true, test fails

assertIs(arg1, arg2, msg=None) Test that arg1 and arg2 evaluate to the

same object.

assertIsNot(arg1, arg2, msg=None) Test that arg1 and arg2 don’t evaluate to

the same object.

assertIsNone(expr, msg=None) Test that expr is None. If not None, test

fails

assertIsNotNone(expr, msg=None) Test that expr is not None. If None, test

fails

assertIn(arg1, arg2, msg=None) Test that arg1 is in arg2.

assertNotIn(arg1, arg2, msg=None) Test that arg1 is not in arg2.

assertIsInstance(obj, cls, msg=None) Test that obj is an instance of cls

assertNotIsInstance(obj, cls, msg=None) Test that obj is not an instance of cls

4. Unit Testing — Using Assertion

Unit Testing

19

Some of the above assertion functions are implemented in the following code:

import unittest

class SimpleTest(unittest.TestCase):

 def test1(self):

 self.assertEqual(4+5,9)

 def test2(self):

 self.assertNotEqual(5*2,10)

 def test3(self):

 self.assertTrue(4+5==9,"The result is False")

 def test4(self):

 self.assertTrue(4+5==10,"assertion fails")

 def test5(self):

 self.assertIn(3,[1,2,3])

 def test6(self):

 self.assertNotIn(3, range(5))

if __name__ == '__main__':

 unittest.main()

When the above script is run, test2, test4 and test6 will show failure and others run

successfully.

FAIL: test2 (__main__.SimpleTest)

--

Traceback (most recent call last):

 File "C:\Python27\SimpleTest.py", line 9, in test2

 self.assertNotEqual(5*2,10)

AssertionError: 10 == 10

FAIL: test4 (__main__.SimpleTest)

--

Traceback (most recent call last):

 File "C:\Python27\SimpleTest.py", line 13, in test4

 self.assertTrue(4+5==10,"assertion fails")

AssertionError: assertion fails

Unit Testing

20

FAIL: test6 (__main__.SimpleTest)

--

Traceback (most recent call last):

 File "C:\Python27\SimpleTest.py", line 17, in test6

 self.assertNotIn(3, range(5))

AssertionError: 3 unexpectedly found in [0, 1, 2, 3, 4]

The second set of assertion functions are comparative asserts:

 assertAlmostEqual (first, second, places=7, msg=None, delta=None)

Test that first and second are approximately (or not approximately) equal by computing

the difference, rounding to the given number of decimal places (default 7),

 assertNotAlmostEqual (first, second, places, msg, delta)

Test that first and second are not approximately equal by computing the difference,

rounding to the given number of decimal places (default 7), and comparing to zero.

In both the above functions, if delta is supplied instead of places then the difference

between first and second must be less or equal to (or greater than) delta.

Supplying both delta and places raises a TypeError.

 assertGreater (first, second, msg=None)

Test that first is greater than second depending on the method name. If not, the test will

fail.

 assertGreaterEqual (first, second, msg=None)

Test that first is greater than or equal to second depending on the method name. If not,

the test will fail

 assertLess (first, second, msg=None)

Test that first is less than second depending on the method name. If not, the test will fail

 assertLessEqual (first, second, msg=None)

Test that first is less than or equal to second depending upon the method name. If not,

the test will fail.

 assertRegexpMatches (text, regexp, msg=None)

Unit Testing

21

Test that a regexp search matches the text. In case of failure, the error message will

include the pattern and the text. regexp may be a regular expression object or a string

containing a regular expression suitable for use by re.search().

 assertNotRegexpMatches (text, regexp, msg=None)

Verifies that a regexp search does not match text. Fails with an error message including

the pattern and the part of text that matches. regexp may be a regular expression object

or a string containing a regular expression suitable for use by re.search().

The assertion functions are implemented in the following example:

import unittest

import math

import re

class SimpleTest(unittest.TestCase):

 def test1(self):

 self.assertAlmostEqual(22.0/7,3.14)

 def test2(self):

 self.assertNotAlmostEqual(10.0/3,3)

 def test3(self):

 self.assertGreater(math.pi,3)

 def test4(self):

 self.assertNotRegexpMatches("Tutorials Point (I) Private

Limited","Point")

if __name__ == '__main__':

 unittest.main()

The above script reports test1 and test4 as Failure. In test1, the division of 22/7 is not

within 7 decimal places of 3.14. Similarly, since the second argument matches with the

text in first argument, test4 results in AssertionError.

==FAIL: test1

(__main__.SimpleTest)

--

Traceback (most recent call last):

 File "asserttest.py", line 7, in test1

 self.assertAlmostEqual(22.0/7,3.14)

AssertionError: 3.142857142857143 != 3.14 within 7 places

==

https://docs.python.org/2/library/re.html#re.search

Unit Testing

22

FAIL: test4 (__main__.SimpleTest)

--

Traceback (most recent call last):

 File "asserttest.py", line 13, in test4

 self.assertNotRegexpMatches("Tutorials Point (I) Private Limited","Point")

AssertionError: Regexp matched: 'Point' matches 'Point' in 'Tutorials Point (I)

Private Limited'

--

Assert for Collections

This set of assert functions are meant to be used with collection data types in Python, such

as List, Tuple, Dictionary and Set.

assertListEqual (list1, list2, msg=None)

Tests that two lists are equal. If not, an

error message is constructed that shows

only the differences between the two.

assertTupleEqual

(tuple1, tuple2, msg=None)

Tests that two tuples are equal. If not, an

error message is constructed that shows

only the differences between the two.

assertSetEqual (set1, set2, msg=None)
Tests that two sets are equal. If not, an

error message is constructed that lists the

differences between the sets.

assertDictEqual

(expected, actual, msg=None)¶

Test that two dictionaries are equal. If

not, an error message is constructed that

shows the differences in the dictionaries.

The following example implements the above methods:

import unittest

https://docs.python.org/2/library/unittest.html#unittest.TestCase.assertDictEqual

Unit Testing

23

class SimpleTest(unittest.TestCase):

 def test1(self):

 self.assertListEqual([2,3,4], [1,2,3,4,5])

 def test2(self):

 self.assertTupleEqual((1*2,2*2,3*2), (2,4,6))

 def test3(self):

 self.assertDictEqual({1:11,2:22},{3:33,2:22,1:11})

if __name__ == '__main__':

 unittest.main()

In the above example, test1 and test3 show AssertionError. Error message displays the

differences in List and Dictionary objects.

FAIL: test1 (__main__.SimpleTest)

--

Traceback (most recent call last):

 File "asserttest.py", line 5, in test1

 self.assertListEqual([2,3,4], [1,2,3,4,5])

AssertionError: Lists differ: [2, 3, 4] != [1, 2, 3, 4, 5]

First differing element 0:

2

1

Second list contains 2 additional elements.

First extra element 3:

4

- [2, 3, 4]

+ [1, 2, 3, 4, 5]

? +++ +++

FAIL: test3 (__main__.SimpleTest)

--

Unit Testing

24

Traceback (most recent call last):

 File "asserttest.py", line 9, in test3

 self.assertDictEqual({1:11,2:22},{3:33,2:22,1:11})

AssertionError: {1: 11, 2: 22} != {1: 11, 2: 22, 3: 33}

- {1: 11, 2: 22}

+ {1: 11, 2: 22, 3: 33}

? +++++++

Unit Testing

25

The TestLoader class has a discover() function. Python testing framework uses this for

simple test discovery. In order to be compatible, modules and packages containing tests

must be importable from top level directory.

The following is the basic command line usage of test discovery:

Python –m unittest discover

Interpreter tries to load all modules containing test from current directory and inner

directories recursively. Other command line options are:

-v, --verbose Verbose output

-s, --start-directory directory Directory to start discovery (. default)

-p, --pattern pattern Pattern to match test files (test*.py default)

-t, --top-level-directory
directory Top level directory of project (defaults to start

directory)

For example, in order to discover the tests in modules whose names start with 'assert' in

'tests' directory, the following command line is used:

C:\python27>python –m unittest –v –s "c:\test" –p "assert*.py"

Test discovery loads tests by importing them. Once test discovery has found all the test

files from the start directory you specify, it turns the paths into package names to import.

If you supply the start directory as a package name rather than a path to a directory then

discover assumes that whichever location it imports from is the location you intended, so

you will not get the warning.

5. Unit Testing — Test Discovery

Unit Testing

26

Support for skipping tests has been added since Python 2.7. It is possible to skip individual

test method or TestCase class, conditionally as well as unconditionally. The framework

allows a certain test to be marked as an 'expected failure'. This test will 'fail' but will not

be counted as failed in TestResult.

To skip a method unconditionally, the following unittest.skip() class method can be used:

import unittest

def add(x,y):

 return x+y

class SimpleTest(unittest.TestCase):

 @unittest.skip("demonstrating skipping")

 def testadd1(self):

 self.assertEquals(add(4,5),9)

if __name__ == '__main__':

 unittest.main()

Since skip() is a class method, it is prefixed by @ token. The method takes one argument:

a log message describing the reason for the skip.

When the above script is executed, the following result is displayed on console:

C:\Python27>python skiptest.py

s

--

Ran 1 test in 0.000s

OK (skipped=1)

The character 's' indicates that a test has been skipped.

6. Unit Testing — Skip Test

Unit Testing

27

Alternate syntax for skipping test is using instance method skipTest() inside the test

function.

 def testadd2(self):

 self.skipTest("another method for skipping")

 self.assertTrue(add(4+5)==10)

The following decorators implement test skipping and expected failures:

unittest.skip(reason)

Unconditionally skip the decorated

test. reason should describe why the test is

being skipped.

unittest.skipIf(condition, reason) Skip the decorated test if condition is true.

unittest.skipUnless(condition, reason)
Skip the decorated test unless condition is

true.

unittest.expectedFailure()

Mark the test as an expected failure. If the test

fails when run, the test is not counted as a

failure.

The following example demonstrates the use of conditional skipping and expected failure.

import unittest

class suiteTest(unittest.TestCase):

 a=50

 b=40

 def testadd(self):

 """Add"""

 result=self.a+self.b

 self.assertEqual(result,100)

 @unittest.skipIf(a>b, "Skip over this routine")

 def testsub(self):

 """sub"""

 result=self.a-self.b

 self.assertTrue(result==-10)

 @unittest.skipUnless(b==0, "Skip over this routine")

 def testdiv(self):

Unit Testing

28

 """div"""

 result=self.a/self.b

 self.assertTrue(result==1)

 @unittest.expectedFailure

 def testmul(self):

 """mul"""

 result=self.a*self.b

 self.assertEqual(result==0)

 if __name__ == '__main__':

 unittest.main()

In the above example, testsub() and testdiv() will be skipped. In the first case a>b is true,

while in the second case b==0 is not true. On the other hand, testmul() has been marked

as expected failure.

When the above script is run, two skipped tests show 's' and the expected failure is shown

as 'x'.

C:\Python27>python skiptest.py

Fsxs

==

FAIL: testadd (__main__.suiteTest)

Add

--

Traceback (most recent call last):

 File "skiptest.py", line 9, in testadd

 self.assertEqual(result,100)

AssertionError: 90 != 100

--

Ran 4 tests in 0.000s

FAILED (failures=1, skipped=2, expected failures=1)

Unit Testing

29

Python testing framework provides the following assertion methods to check that

exceptions are raised.

assertRaises(exception, callable, *args, **kwds)

Test that an exception (first argument) is raised when a function is called with any

positional or keyword arguments. The test passes if the expected exception is raised, is

an error if another exception is raised, or fails if no exception is raised. To catch any of a

group of exceptions, a tuple containing the exception classes may be passed as exception.

In the example below, a test function is defined to check whether ZeroDivisionError is

raised.

import unittest

def div(a,b):

 return a/b

class raiseTest(unittest.TestCase):

 def testraise(self):

 self.assertRaises(ZeroDivisionError, div, 1,0)

if __name__ == '__main__':

 unittest.main()

The testraise() function uses assertRaises() function to see if division by zero occurs when

div() function is called. The above code will raise an exception. But changes arguments to

div() function as follows:

self.assertRaises(ZeroDivisionError, div, 1,1)

When a code is run with these changes, the test fails as ZeroDivisionError doesn't occur.

F

==

FAIL: testraise (__main__.raiseTest)

--

Traceback (most recent call last):

 File "raisetest.py", line 7, in testraise

 self.assertRaises(ZeroDivisionError, div, 1,1)

7. Unit Testing — Exceptions Test

Unit Testing

30

AssertionError: ZeroDivisionError not raised

--

Ran 1 test in 0.000s

FAILED (failures=1)

assertRaisesRegexp(exception, regexp, callable, *args, **kwds)

Tests that regexp matches on the string representation of the raised

exception. regexp may be a regular expression object or a string containing a regular

expression suitable for use by re.search().

The following example shows how assertRaisesRegexp() is used:

import unittest

import re

class raiseTest(unittest.TestCase):

 def testraiseRegex(self):

 self.assertRaisesRegexp(TypeError, "invalid",

reg,"Point","TutorialsPoint")

if __name__ == '__main__':

 unittest.main()

Here, testraseRegex() test doesn't fail as first argument. "Point" is found in the second

argument string.

==

FAIL: testraiseRegex (__main__.raiseTest)

--

Traceback (most recent call last):

 File "C:/Python27/raiseTest.py", line 11, in testraiseRegex

 self.assertRaisesRegexp(TypeError, "invalid", reg,"Point","TutorialsPoint")

AssertionError: TypeError not raised

--

Unit Testing

31

However, the change is as shown below:

self.assertRaisesRegexp(TypeError, "invalid", reg,123,"TutorialsPoint")

TypeError exception will be thrown. Hence, the following result will be displayed:

==

FAIL: testraiseRegex (__main__.raiseTest)

--

Traceback (most recent call last):

 File "raisetest.py", line 11, in testraiseRegex

 self.assertRaisesRegexp(TypeError, "invalid", reg,123,"TutorialsPoint")

AssertionError: "invalid" does not match "first argument must be string or

compi

led pattern"

--

Unit Testing

32

Junit, the Java unit testing framework (Pyunit is implementation of JUnit) has a handy

option of timeout. If a test takes more than specified time, it will be marked as failed.

Python's testing framework doesn't contain any support for time out. However, a third part

module called timeout-decorator can do the job.

Download and install the module from

https://pypi.python.org/packages/source/t/timeout-decorator/timeout-

decorator-0.3.2.tar.gz

 Import timeout_decorator in the code

 Put timeout decorator before the test

 @timeout_decorator.timeout(10)

If a test method below this line takes more than the timeout mentioned (10 mins) here, a

TimeOutError will be raised. For example:

import time

import timeout_decorator

class timeoutTest(unittest.TestCase):

 @timeout_decorator.timeout(5)

 def testtimeout(self):

 print "Start"

 for i in range(1,10):

 time.sleep(1)

 print "%d seconds have passed" % i

if __name__ == '__main__':

 unittest.main()

8. Unit Testing — Time Test

https://pypi.python.org/packages/source/t/timeout-decorator/timeout-decorator-0.3.2.tar.gz
https://pypi.python.org/packages/source/t/timeout-decorator/timeout-decorator-0.3.2.tar.gz

Unit Testing

33

unittest2 is a backport of additional features added to the Python testing framework in

Python 2.7 and onwards. It is tested to run on Python 2.6, 2.7, and 3.*. Latest version

can be downloaded from https://pypi.python.org/pypi/unittest2

To use unittest2 instead of unittest, simply replace import unittest with import unittest2.

Classes in unittest2 derive from the appropriate classes in unittest, so it should be possible

to use the unittest2 test running infrastructure without having to switch all your tests to

using unittest2 immediately. In case you intend to implement new features, subclass your

testcase from unittest2.TestCase instead of unittest.TestCase

The following are the new features of unittest2:

 addCleanups for better resource management

 Contains many new assert methods

 assertRaises as context manager, with access to the exception afterwards

 Has module level fixtures such as setUpModule and tearDownModule

 Includes load_tests protocol for loading tests from modules or packages

 startTestRun and stopTestRun methods on TestResult

In Python 2.7, you invoke the unittest command line features (including test discover)

with python -m unittest <args>.

Instead, unittest2 comes with a script unit2.

unit2 discover

unit2 -v test_module

9. Unit Testing — Unittest2

https://pypi.python.org/pypi/unittest2

Unit Testing

34

More efficient handling of control-C during a test run is provided by The -c/--

catch command-line option to unittest, along with the catchbreak parameter. With catch

break behavior enabled, control-C will allow the currently running test to complete, and

the test run will then end and report all the results so far. A second control-c will raise

a KeyboardInterrupt in the usual way.

If the unittest handler is called but signal.SIGINT handler isn’t installed, then it calls for

the default handler. This will normally be the expected behavior by code that replaces an

installed handler and delegates to it. For individual tests that need unittest control-c

handling disabled, the removeHandler() decorator can be used.

The following utility functions enable control-c handling functionality within test

frameworks:

unittest.installHandler()

Install the control-c handler. When a signal.SIGINT is received all registered results

have TestResult.stop() called.

unittest.registerResult(result)

Register a TestResult object for control-c handling. Registering a result stores a weak

reference to it, so it doesn’t prevent the result from being garbage collected.

unittest.removeResult(result)

Remove a registered result. Once a result has been removed then TestResult.stop() will

no longer be called on that result object in response to a control-c.

unittest.removeHandler(function=None)

When called without arguments, this function removes the control-c handler if it has been

installed. This function can also be used as a test decorator to temporarily remove the

handler whilst the test is being executed.

GUI Test Runner

The unittest module is installed to discover and run tests interactively. This utility, a Python

script 'inittestgui.py' uses Tkinter module which is a Python port for TK graphics tool kit.

It gives an easy to use GUI for discovery and running tests.

Python unittestgui.py

10. Unit Testing — Signal Handling

https://docs.python.org/2/library/unittest.html#unittest.removeHandler

Unit Testing

35

Click the 'Discover Tests' button. A small dialog box appears where you can select directory

and modules from which test are to be run.

Finally, click the start button. Tests will be discovered from the selected path and module

names, and the result pane will display the results.

Unit Testing

36

In order to see the details of individual test, select and click on test in the result box:

If you do not find this utility in the Python installation, you can obtain it from the project

page http://pyunit.sourceforge.net/.

Similar, utility based on wxpython toolkit is also available there.

http://pyunit.sourceforge.net/

Unit Testing

37

Python' standard distribution contains 'Doctest' module. This module's functionality makes

it possible to search for pieces of text that look like interactive Python sessions, and

executes these sessions to see if they work exactly as shown.

Doctest can be very useful in the following scenarios:

 To check that a module’s docstrings are up-to-date by verifying that all interactive

examples still work as documented.

 To perform regression testing by verifying that interactive examples from a test file

or a test object work as expected.

 To write tutorial documentation for a package, liberally illustrated with input-output

examples

In Python, a 'docstring' is a string literal which appears as the first expression in a class,

function or module. It is ignored when the suite is executed, but it is recognized by the

compiler and put into the __doc__ attribute of the enclosing class, function or module.

Since it is available via introspection, it is the canonical place for documentation of the

object.

It is a usual practice to put example usage of different parts of Python code inside the

docstring. The doctest module allows to verify that these docstrings are up-to-date with

the intermittent revisions in code.

In the following code, a factorial function is defined interspersed with example usage. In

order to verify if the example usage is correct, call the testmod() function in doctest

module.

"""

This is the "example" module.

The example module supplies one function, factorial(). For example,

>>> factorial(5)

120

"""

def factorial(x):

 """Return the factorial of n, an exact integer >= 0.

 >>> factorial(-1)

11. Unit Testing — Doctest

Unit Testing

38

 Traceback (most recent call last):

 ...

 ValueError: x must be >= 0

 """

 if not x >= 0:

 raise ValueError("x must be >= 0")

 f=1

 for i in range(1,x+1):

 f=f*i

 return f

if __name__ == "__main__":

 import doctest

 doctest.testmod()

Enter and save the above script as FactDocTest.py and try to execute this script from the

command line.

Python FactDocTest.py

No output will be shown unless the example fails. Now, change the command line to the

following:

Python FactDocTest.py –v

The console will now show the following output:

C:\Python27>python FactDocTest.py -v

Trying:

 factorial(5)

Expecting:

 120

ok

Trying:

 factorial(-1)

Expecting:

 Traceback (most recent call last):

 ...

 ValueError: x must be >= 0

Unit Testing

39

ok

2 items passed all tests:

 1 tests in __main__

 1 tests in __main__.factorial

2 tests in 2 items.

2 passed and 0 failed.

Test passed.

If, on the other hand, the code of factorial() function doesn't give expected result in

docstring, failure result will be displayed. For instance, change f=2 in place of f=1 in the

above script and run the doctest again. The result will be as follows:

Trying:

 factorial(5)

Expecting:

 120

**

File "docfacttest.py", line 6, in __main__

Failed example:

 factorial(5)

Expected:

 120

Got:

 240

Trying:

 factorial(-1)

Expecting:

 Traceback (most recent call last):

 ...

 ValueError: x must be >= 0

ok

1 items passed all tests:

 1 tests in __main__.factorial

**

1 items had failures:

 1 of 1 in __main__

Unit Testing

40

2 tests in 2 items.

1 passed and 1 failed.

Test Failed 1 failures.

Doctest: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can

be done with the testfile() function.

The following text is stored in a text file named 'example.txt'.

Using ''factorial''

This is an example text file in reStructuredText format. First import

''factorial'' from the ''example'' module:

 >>> from example import factorial

Now use it:

 >>> factorial(5)

 120

The file content is treated as docstring. In order to verify the examples in the text file, use

the testfile() function of doctest module.

def factorial(x):

 if not x >= 0:

 raise ValueError("x must be >= 0")

 f=1

 for i in range(1,x+1):

 f=f*i

 return f

if __name__ == "__main__":

 import doctest

 doctest.testfile("example.txt")

 As with the testmod(), testfile() won’t display anything unless an example fails. If

an example does fail, then the failing example(s) and the cause(s) of the failure(s)

are printed to console, using the same format as testmod().

Unit Testing

41

 In most cases a copy-and-paste of an interactive console session works fine, but

doctest isn’t trying to do an exact emulation of any specific Python shell.

 Any expected output must immediately follow the final '>>> ' or '... ' line containing

the code, and the expected output (if any) extends to the next '>>> ' or all-

whitespace line.

 Expected output cannot contain an all-whitespace line, since such a line is taken to

signal the end of expected output. If expected output does contain a blank line, put

<BLANKLINE> in your doctest example each place a blank line is expected.

Unit Testing

42

The doctest API revolves around the following two container classes used to store

interactive examples from docstrings:

 Example: A single Python statement, paired with its expected output.

 DocTest: A collection of Examples, typically extracted from a single docstring or a

text file.

The following additional processing classes are defined to find, parse, and run, and check

doctest examples:

 DocTestFinder: Finds all docstrings in a given module, and uses a DocTestParser

to create a DocTest from every docstring that contains interactive examples.

 DocTestParser: Creates a doctest object from a string (such as an object’s

docstring).

 DocTestRunner: Executes the examples in a doctest, and uses an OutputChecker

to verify their output.

 OutputChecker: Compares the actual output from a doctest example with the

expected output, and decides whether they match.

DocTestFinder Class

It is a processing class used to extract the doctests that are relevant to a given object,

from its docstring and the docstrings of its contained objects. Doctests can currently be

extracted from the following object types — modules, functions, classes, methods,

staticmethods, classmethods, and properties.

This class defines the find() method. It returns a list of the DocTests that are defined by

the object‘s docstring, or by any of its contained objects’ docstrings.

DocTestParser Class

It is a processing class used to extract interactive examples from a string, and use them

to create a DocTest object. This class defines the following methods:

 get_doctest(): Extract all doctest examples from the given string, and collect

them into a DocTest object.

 get_examples(string[, name]): Extract all doctest examples from the given

string, and return them as a list of Example objects. Line numbers are 0-based.

12. Unit Testing — Doctest API

mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTestFinder
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTestParser
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTest
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTestParser
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTest
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTestRunner
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTest
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.OutputChecker
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.OutputChecker
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTest
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.DocTest

Unit Testing

43

The optional argument name is a name identifying this string, and is only used for

error messages.

 parse(string[, name]): Divide the given string into examples and intervening

text, and return them as a list of alternating Examples and strings. Line numbers

for the Examples are 0-based. The optional argument name is a name identifying

this string, and is only used for error messages.

DocTestRunner Class

This is a processing class used to execute and verify the interactive examples in a DocTest.

The following methods are defined in it:

report_start()

Report that the test runner is about to process the given example. This method is provided

to allow subclasses of DocTestRunner to customize their output; it should not be called

directly

report_success()

Report that the given example ran successfully. This method is provided to allow

subclasses of DocTestRunner to customize their output; it should not be called directly.

report_failure()

Report that the given example failed. This method is provided to allow subclasses of

DocTestRunner to customize their output; it should not be called directly.

report_unexpected_exception()

Report that the given example raised an unexpected exception. This method is provided

to allow subclasses of DocTestRunner to customize their output; it should not be called

directly.

run(test)

Run the examples in test (a DocTest object), and display the results using the writer

function out.

summarize([verbose])

Print a summary of all the test cases that have been run by this DocTestRunner, and return

a named tuple TestResults(failed, attempted). The optional verbose argument controls

how detailed the summary is. If the verbosity is not specified, then the DocTestRunner‘s

verbosity is used.

mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/doctest.html#doctest.Example
https://docs.python.org/2/library/doctest.html#doctest.DocTestRunner

Unit Testing

44

OutputChecker Class

This class is used to check whether the actual output from a doctest example matches the

expected output.

The following methods are defined in this class:

check_output()

Return True if the actual output from an example (got) matches with the expected output

(want). These strings are always considered to match if they are identical; but depending

on what option flags the test runner is using, several non-exact match types are also

possible. See section Option Flags and Directives for more information about option flags.

output_difference()

Return a string describing the differences between the expected output for a given

example (example) and the actual output (got).

DocTest Integration with Unittest

The doctest module provides two functions that can be used to create unittest test suites

from modules and text files containing doctests. To integrate with unittest test discovery,

include a load_tests() function in your test module:

import unittest

import doctest

import doctestexample

def load_tests(loader, tests, ignore):

 tests.addTests(doctest.DocTestSuite(doctestexample))

 return tests

A combined TestSuite of tests from unittest as well as doctest will be formed and it can

now be executed by unittest module's main() method or run() method.

The following are the two main functions for creating unittest.TestSuite instances from

text files and modules with the doctests:

doctest.DocFileSuite()

It is used to convert doctest tests from one or more text files to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs the

interactive examples in each file. If any of the examples in a file fails, then the synthesized

unit test fails, and a failureException exception is raised showing the name of the file

containing the test and a (sometimes approximate) line number.

Unit Testing

45

doctest.DocTestSuite()

It is used to convert doctest tests for a module to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs each

doctest in the module. If any of the doctests fail, then the synthesized unit test fails, and

a failureException exception is raised showing the name of the file containing the test

and a (sometimes approximate) line number

Under the covers, DocTestSuite() creates a unittest.TestSuite out of

doctest.DocTestCase instances, and DocTestCase is a subclass of unittest.TestCase.

Similarly, DocFileSuite() creates a unittest.TestSuite out of doctest.DocFileCase instances,

and DocFileCase is a subclass of DocTestCase.

So both ways of creating a unittest.TestSuite run instances of DocTestCase. When you run

doctest functions yourself, you can control the doctest options in use directly, by passing

option flags to doctest functions.

However, if you’re writing a unittest framework, unittest ultimately controls when and how

the tests get run. The framework author typically wants to control doctest reporting

options (perhaps, e.g., specified by command line options), but there’s no way to pass

options through unittest to doctest test runners.

mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/unittest.html#unittest.TestSuite
mk:@MSITStore:C:/Python27/Doc/python272.chm::/library/unittest.html#unittest.TestSuite

Unit Testing

46

It was in 2004 that Holger Krekel renamed his std package, whose name was often

confused with that of the Standard Library that ships with Python, to the (only slightly less

confusing) name 'py.' Though the package contains several sub-packages, it is now known

almost entirely for its py.test framework.

The py.test framework has set up a new standard for Python testing, and has become very

popular with many developers today. The elegant and Pythonic idioms it introduced for

test writing have made it possible for test suites to be written in a far more compact style.

py.test is a no-boilerplate alternative to Python’s standard unittest module. Despite being

a fully-featured and extensible test tool, it boasts of a simple syntax. Creating a test suite

is as easy as writing a module with a couple of functions.

py.test runs on all POSIX operating systems and WINDOWS (XP/7/8) with Python versions

2.6 and above.

Installation

Use the following code to load the pytest module in the current Python distribution as well

as a py.test.exe utility. Tests can be run using both.

pip install pytest

Usage

You can simply use the assert statement for asserting test expectations. pytest’s assert

introspection will intelligently report intermediate values of the assert expression freeing

you from the need to learn the many names of JUnit legacy methods.

content of test_sample.py

def func(x):

 return x + 1

def test_answer():

 assert func(3) == 5

Use the following command line to run the above test. Once the test is run, the following

result is displayed on console:

C:\Python27>scripts\py.test -v test_sample.py

============================= test session starts =====================

13. Unit Testing — Py.test Module

Unit Testing

47

platform win32 -- Python 2.7.9, pytest-2.9.1, py-1.4.31, pluggy-0.3.1 --

C:\Pyth

on27\python.exe

cachedir: .cache

rootdir: C:\Python27, inifile:

collected 1 items

test_sample.py::test_answer FAILED

================================== FAILURES =====================

_________________________________ test_answer _________________________________

 def test_answer():

> assert func(3) == 5

E assert 4 == 5

E + where 4 = func(3)

test_sample.py:7: AssertionError

========================== 1 failed in 0.05 seconds ====================

The test can also be run from the command line by including pytest module using –m

switch.

python -m pytest test_sample.py

Grouping Multiple Tests in a Class

Once you start to have more than a few tests it often makes sense to group tests logically,

in classes and modules. Let’s write a class containing two tests:

class TestClass:

 def test_one(self):

 x = "this"

 assert 'h' in x

 def test_two(self):

 x = "hello"

 assert hasattr(x, 'check')

The following test result will be displayed:

C:\Python27>scripts\py.test -v test_class.py

============================= test session starts =====================

Unit Testing

48

platform win32 -- Python 2.7.9, pytest-2.9.1, py-1.4.31, pluggy-0.3.1 -- C:\Pyt

on27\python.exe

cachedir: .cache

rootdir: C:\Python27, inifile:

collected 2 items

test_class.py::TestClass::test_one PASSED

test_class.py::TestClass::test_two FAILED

================================== FAILURES =====================

_____________________________ TestClass.test_two ______________________________

self = <test_class.TestClass instance at 0x01309DA0>

 def test_two(self):

 x = "hello"

> assert hasattr(x, 'check')

E assert hasattr('hello', 'check')

test_class.py:7: AssertionError

===================== 1 failed, 1 passed in 0.06 seconds ======================

Unit Testing

49

The nose project was released in 2005, the year after py.test received its modern guise.

It was written by Jason Pellerin to support the same test idioms that had been pioneered

by py.test, but in a package that is easier to install and maintain.

The nose module can be installed with the help of pip utility

pip install nose

This will install the nose module in the current Python distribution as well as a

nosetest.exe, which means the test can be run using this utility as well as using –m switch.

C:\python>nosetests –v test_sample.py

Or

C:\python>python –m nose test_sample.py

nose collects tests from unittest.TestCase subclasses, of course. We can also write

simple test functions, as well as test classes that are not subclasses of unittest.TestCase.

nose also supplies a number of helpful functions for writing timed tests, testing for

exceptions, and other common use cases.

nose collects tests automatically. There’s no need to manually collect test cases into test

suites. Running tests is responsive, since nose begins running tests as soon as the first

test module is loaded.

As with the unittest module, nose supports fixtures at the package, module, class, and

test case level, so expensive initialization can be done as infrequently as possible.

Basic Usage

Let us consider nosetest.py similar to the script used earlier:

content of nosetest.py

def func(x):

 return x + 1

def test_answer():

 assert func(3) == 5

In order to run the above test, use the following command line syntax:

C:\python>nosetests –v nosetest.py

14. Unit Testing — Nose Testing Framework

Unit Testing

50

The output displayed on console will be as follows:

nosetest.test_answer ... FAIL

==

FAIL: nosetest.test_answer

--

Traceback (most recent call last):

 File "C:\Python34\lib\site-packages\nose\case.py", line 198, in runTest

 self.test(*self.arg)

 File "C:\Python34\nosetest.py", line 6, in test_answer

 assert func(3) == 5

AssertionError

--

Ran 1 test in 0.000s

FAILED (failures=1)

nose can be integrated with DocTest by using with-doctest option in athe bove command

line.

\nosetests --with-doctest -v nosetest.py

You may use nose in a test script:

import nose

nose.main()

If you do not wish the test script to exit with 0 on success and 1 on failure (like

unittest.main), use nose.run() instead:

import nose

result = nose.run()

The result will be true if the test run is successful, or false if it fails or raises an uncaught

exception.

nose supports fixtures (setup and teardown methods) at the package, module, class, and

test level. As with py.test or unittest fixtures, setup always runs before any test (or

collection of tests for test packages and modules); teardown runs if setup has completed

successfully, regardless of the status of the test run.

Unit Testing

51

The nose.tools module provides a number of testing aids that you may find useful,

including decorators for restricting test execution time and testing for exceptions, and all

of the same assertX methods found in unittest.TestCase.

 nose.tools.ok_(expr, msg=None): Shorthand for assert.

 nose.tools.eq_(a, b, msg=None): Shorthand for ‘assert a == b, “%r != %r” %

(a, b)

 nose.tools.make_decorator(func): Wraps a test decorator so as to properly

replicate metadata of the decorated function, including nose’s additional stuff

(namely, setup and teardown).

 nose.tools.raises(*exceptions): Test must raise one of expected exceptions to

pass.

 nose.tools.timed(limit): Test must finish within specified time limit to pass

 nose.tools.istest(func): Decorator to mark a function or method as a test

 nose.tools.nottest(func): Decorator to mark a function or method as not a test

Parameterized Testing

Python's testing framework, unittest, doesn't have a simple way of running parametrized

test cases. In other words, you can't easily pass arguments into a unittest.TestCase from

outside.

However, pytest module ports test parametrization in several well-integrated ways:

 pytest.fixture() allows you to define parametrization at the level of fixture

functions.

 @pytest.mark.parametrize allows to define parametrization at the function or

class level. It provides multiple argument/fixture sets for a particular test function

or class.

 pytest_generate_tests enables implementing your own custom dynamic

parametrization scheme or extensions.

A third party module 'nose-parameterized' allows Parameterized testing with any Python

test framework. It can be downloaded from this link: https://github.com/wolever/nose-

parameterized

15. Unit Testing — Tools for Nose Testing

https://github.com/wolever/nose-parameterized
https://github.com/wolever/nose-parameterized
https://github.com/wolever/nose-parameterized

