The perpendicular bisector of the line segment joining the points \( A(1,5) \) and B \( (4,6) \) cuts the \( y \)-axis at
(A) \( (0,13) \)
(B) \( (0,-13) \)
(C) \( (0,12) \)
(D) \( (13,0) \)


Given:

The line segment joining the points \( A(1,5) \) and \( B(4,6) \).

To do:

We have to find the point at which the perpendicular bisector of the line segment joining the points \( A(1,5) \) and B \( (4,6) \) cuts the \( y \)-axis.

Solution:

We know that,

The perpendicular bisector of a line segment divides the line segment into two equal parts.

The perpendicular bisector of the line segment passes through the mid-point of the line segment.

Let the perpendicular bisector of $A B$ meets $\mathrm{y}$ axis at $\mathrm{P}(0, \mathrm{y})$

Therefore,

$\mathrm{AP}=\mathrm{BP}$

Squaring both sides, we get,

$AP^{2}=BP^{2}$

Using distance formula, we get,

$(\mathrm{x}_{1}-0)^{2}+(\mathrm{y}_{1}-\mathrm{y})^{2}=(\mathrm{x}_{2}-0)^{2}+(\mathrm{x}_{2}-\mathrm{y})^{2}$

$(1-0)^{2}+(5-\mathrm{y})^{2}=(4-0)^{2}+(6-\mathrm{y})^{2}$

$1+5^2-2(5)(y)+y^2=16+6^2-2(6)(y)+y^2$

$1+25-10y=16+36-12y$

$12y-10y=52-26$

$2y=26$

$y=13$

Therefore, the point is \( (0,13) \).

Updated on: 10-Oct-2022

112 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements