
http://www.tutorialspoint.com/software_architecture_design/key_principles.htm Copyright © tutorialspoint.com

KEY PRINCIPLESKEY PRINCIPLES

Software architecture is described as the organization of a system, where the system represents a
set of components that accomplish the defined functions.

Architectural Style
The architectural style, also called as architectural pattern, is a set of principles which shapes
an application. It defines an abstract framework for a family of system in terms of the pattern of
structural organization.

The architectural style is responsible to −

Provide a lexicon of components and connectors with rules on how they can be combined.

Improve partitioning and allow the reuse of design by giving solutions to frequently occurring
problems.

Describe a particular way to configure a collection of components 
amodulewithwell − definedinterfaces, reusable, andreplaceable and connectors 
communicationlinkbetweenmodules.

The software that is built for computer-based systems exhibit one of many architectural styles.
Each style describes a system category that encompasses −

A set of component types which perform a required function by the system.

A set of connectors subroutinecall, remoteprocedurecall, datastream, andsocket that enable
communication, coordination, and cooperation among different components.

Semantic constraints which define how components can be integrated to form the system.

A topological layout of the components indicating their runtime interrelationships.

Common Architectural Design
The following table lists architectural styles that can be organized by their key focus area −

Category Architectural Design Description

Communication

Message bus Prescribes use of a software system that can
receive and send messages using one or
more communication channels.

Service–Oriented
Architecture SOA

Defines the applications that expose and
consume functionality as a service using
contracts and messages.

Deployment

Client/server Separate the system into two applications,
where the client makes requests to the server.

3-tier or N-tier Separates the functionality into separate
segments with each segment being a tier
located on a physically separate computer.

Domain Domain Driven Design Focused on modeling a business domain and
defining business objects based on entities
within the business domain.

Component Based Breakdown the application design into
reusable functional or logical components
that expose well-defined communication

http://www.tutorialspoint.com/software_architecture_design/key_principles.htm


Structure

interfaces.

Layered Divide the concerns of the application into
stacked groups layers.

Object oriented Based on the division of responsibilities of an
application or system into objects, each
containing the data and the behavior relevant
to the object.

Types of Architecture
There are four types of architecture from the viewpoint of an enterprise and collectively, these
architectures are referred to as enterprise architecture.

Business architecture − Defines the strategy of business, governance, organization, and
key business processes within an enterprise and focuses on the analysis and design of
business processes.

Application software architecture − Serves as the blueprint for individual application
systems, their interactions, and their relationships to the business processes of the
organization.

Information architecture − Defines the logical and physical data assets and data
management resources.

Information technology IT architecture − Defines the hardware and software building
blocks that make up the overall information system of the organization.

Architecture Design Process
The architecture design process focuses on the decomposition of a system into different
components and their interactions to satisfy functional and nonfunctional requirements. The key
inputs to software architecture design are −

The requirements produced by the analysis tasks.

The hardware architecture 
thesoftwarearchitectinturnprovidesrequirementstothesystemarchitect, whoconfiguresthehardwarearchitecture.

The result or output of the architecture design process is an architectural description. The basic
architecture design process is composed of the following steps −

Understand the Problem
This is the most crucial step because it affects the quality of the design that follows. Without a clear
understanding of the problem, it is not possible to create an effective solution. In fact, many
software projects and products are considered as unsuccessful because they did not actually solve
a valid business problem or have a recognizable return on investment ROI.

Identify Design Elements and their Relationships
In this phase, build a baseline for defining the boundaries and context of the system.
Decomposition of the system into its main components is based on the functional requirements.
The decomposition can be modeled by using a design structure matrix DSM, which shows the
dependencies between design elements without specifying the granularity of the elements.

In this step, the first validation of the architecture is done by describing a number of system
instances and this step is referred as functionality based architectural design.



Evaluate the Architecture Design
Each quality attribute is given an estimate, so in order to gather qualitative measures or
quantitative data, the design is evaluated. It involves evaluating the architecture for conformance
to architectural quality attributes requirements.

If all the estimated quality attributes are as per the required standard, the architectural design
process is finished. If not, then the third phase of software architecture design is entered:
architecture transformation. However, if the observed quality attribute does not meet its
requirements, then a new design must be created.

Transform the Architecture Design
This step is performed after an evaluation of the architectural design. The architectural design
must be changed until it completely satisfies the quality attribute requirements. It is concerned
with selecting design solutions to improve the quality attributes while preserving the domain
functionality.

Further, a design is transformed by applying design operators, styles, or patterns. For
transformation, take the existing design and apply design operator such as decomposition,
replication, compression, abstraction, and resource sharing.

Moreover, the design is again evaluated and the same process is repeated multiple times if
necessary and even performed recursively. The transformations i. e. qualityattributeoptimizingsolutions
generally improve one or some quality attributes while they affect others negatively.

Key Architecture Principles
Following are the key principles to be considered while designing an architecture −

Build to Change Instead of Building to Last
Consider how the application may need to change over time to address new requirements and
challenges, and build in the flexibility to support this.

Reduce Risk and Model to Analyze
Use design tools, visualizations, modeling systems such as UML to capture requirements and
design decisions. The impacts can also be analyzed. Do not formalize the model to the extent that
it suppresses the capability to iterate and adapt the design easily.

Use Models and Visualizations as a Communication and Collaboration
Tool
Efficient communication of the design, the decisions, and ongoing changes to the design is critical



to good architecture. Use models, views, and other visualizations of the architecture to
communicate and share the design efficiently with all the stakeholders. This enables rapid
communication of changes to the design.

Identify and understand key engineering decisions and areas where mistakes are most often
made. Invest in getting key decisions right the first time to make the design more flexible and less
likely to be broken by changes.

Use an Incremental and Iterative Approach
Start with baseline architecture and then evolve candidate architectures by iterative testing to
improve the architecture. Iteratively add details to the design over multiple passes to get the big or
right picture and then focus on the details.

Key Design Principles
Following are the design principles to be considered for minimizing cost, maintenance
requirements, and maximizing extendibility, usability of architecture −

Separation of Concerns
Divide the components of system into specific features so that there is no overlapping among the
components functionality. This will provide high cohesion and low coupling. This approach avoids
the interdependency among components of system which helps in maintaining the system easy.

Single Responsibility Principle
Each and every module of a system should have one specific responsibility, which helps the user to
clearly understand the system. It should also help with integration of the component with other
components.

Principle of Least Knowledge
Any component or object should not have the knowledge about internal details of other
components. This approach avoids interdependency and helps maintainability.

Minimize Large Design Upfront
Minimize large design upfront if the requirements of an application are unclear. If there is a
possibility of modifying requirements, then avoid making a large design for whole system.

Do not Repeat the Functionality
It specifies that functionality of the components should not to be repeated and hence a piece of
code should be implemented in one component only. Duplication of functionality within a single
application can make it difficult to implement changes, decrease clarity, and introduce potential
inconsistencies.

Prefer Composition over Inheritance while Reusing the Functionality
Inheritance creates dependency between children and parent classes and hence it blocks the free
use of the child classes. In contrast, the composition provides a great level of freedom and reduces
the inheritance hierarchies.

Identify Components and Group them in Logical Layers
Identity components and the area of concern that are needed in system to satisfy the
requirements. Then group these related components in a logical layer, which will help the user to
understand the structure of the system at a high level. Avoid mixing components of different type
of concerns in same layer.

Define the Communication Protocol between Layers



Understand how components will communicate with each other which requires a complete
knowledge of deployment scenarios and the production environment.

Define Data Format for a Layer
Various components will interact with each other through data format. Do not mix the data formats
so that applications are easy to implement, extend, and maintain. Try to keep data format same
for a layer, so that various components need not code/decode the data while communicating with
each other. It reduces a processing overhead.

System Service Components should be Abstract
Code related to security, communications, or system services like logging, profiling, and
configuration should be abstracted in the separate components. Do not mix this code with
business logic, as it is easy to extend design and maintain it.

Design Exceptions and Exception Handling Mechanism
Defining exceptions in advance, helps the components to manage errors or unwanted situation in
an elegant manner. The exception management will be same throughout the system.

Naming Conventions
Naming conventions should be defined in advance. They provide a consistent model that helps the
users to understand the system easily. It is easier for team members to validate code written by
others, and hence will increase the maintainability.
Loading [MathJax]/jax/output/HTML-CSS/jax.js


