

XlsxWriter

i

About the Tutorial

XlsxWriter is a Python library for creating spreadsheet files in Excel 2007

(XLSX) format. This library has been developed by John McNamara. Its

latest version is 3.0.2 which was released in November 2021. The latest

version requires Python 3.4 or above.

Audience

This tutorial is meant for Python developers who are interested in

programmatically automating the functionality of MS Excel software.

Prerequisites

Before proceeding with this tutorial, you should have an understanding of

Python programming and proficiency in handling MS Excel of intermediate

level. The knowledge of object oriented programming is desired but not

essential.

Disclaimer & Copyright

 Copyright 2022 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse,

retain, copy, distribute or republish any contents or a part of contents of

this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and

as precisely as possible, however, the contents may contain inaccuracies or

errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the

accuracy, timeliness or completeness of our website or its contents

including this tutorial. If you discover any errors on our website or in this

tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

XlsxWriter

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. XLSXWRITER – OVERVIEW ...1

XlsxWriter Features ... 1

2. XLSXWRITER – ENVIRONMENT SETUP ...2

Installing XlsxWriter using PIP ... 2

Installing from a Tarball .. 2

Cloning from GitHub ... 2

3. XLSXWRITER – HELLO WORLD ...4

4. XLSXWRITER – IMPORTANT CLASSES ...6

Workbook Class .. 6

Worksheet Class .. 7

Format Class .. 11

Chart Class .. 12

Chartsheet Class .. 15

Exception Class .. 17

5. XLSXWRITER – CELL NOTATION AND RANGES ...20

XlsxWriter

iii

6. XLSXWRITER – DEFINED NAMES ..24

7. XLSXWRITER – FORMULA AND FUNCTION ...27

The write_formula() Method .. 27

The write_array_formula() Method .. 28

The write_dynamic_array_data() Method ... 30

8. XLSXWRITER – DATE AND TIME ...33

9. XLSXWRITER – TABLES ...39

The add_table() Method ... 39

10. XLSXWRITER – APPLYING FILTER ..44

Applying Filter Criteria for a Column ... 44

Applying a Column List Filter ... 49

11. XLSXWRITER – FONTS AND COLORS ..53

Working with Fonts ... 53

Text Alignment ... 56

Cell Background and Foreground Colors .. 59

12. XLSXWRITER – NUMBER FORMATS ...61

13. XLSXWRITER – BORDER ...64

Working with Cell Border .. 64

Working with Textbox Border ... 66

14. XLSXWRITER – HYPERLINKS ...69

XlsxWriter

iv

15. XLSXWRITER – CONDITIONAL FORMATTING ..72

The conditional_format() method ... 73

16. XLSXWRITER – ADDING CHARTS ..77

17. XLSXWRITER – CHART FORMATTING ...86

18. XLSXWRITER – CHART LEGENDS ..90

Working with Chart Legends ... 90

19. XLSXWRITER – BAR CHART ..94

20. XLSXWRITER – LINE CHART ..97

Working with XlsxWriter Line Chart .. 97

21. XLSXWRITER – PIE CHART .. 101

Working with XlsxWriter Pie Chart .. 101

22. XLSXWRITER – SPARKLINES .. 105

Working with XlsxWriter Sparklines .. 105

23. XLSXWRITER – DATA VALIDATION ... 110

Working with XlsxWriter Data Validation .. 112

24. XLSXWRITER – OUTLINES AND GROUPING .. 117

Working with Outlines and Grouping .. 118

25. XLSXWRITER – FREEZE AND SPLIT PANES ... 122

The freeze_panes() method .. 122

The split_panes() method ... 125

XlsxWriter

v

26. XLSXWRITER – HIDE/PROTECT WORKSHEET .. 127

27. XLSXWRITER – TEXTBOX .. 130

Working with XlsxWriter – Textbox ... 130

28. XLSXWRITER – INSERT IMAGE .. 135

29. XLSXWRITER – PAGE SETUP ... 137

30. XLSXWRITER – HEADER AND FOOTER .. 139

31. XLSXWRITER – CELL COMMENTS ... 142

32. XLSXWRITER – WORKING WITH PANDAS ... 146

Using XlsxWriter with Pandas ... 146

33. XLSXWRITER – VBA MACRO ... 152

XlsxWriter

1

XlsxWriter is a Python module for creating spreadsheet files in Excel 2007

(XLSX) format that uses open XML standards. XlsxWriter module has been

developed by John McNamara. Its earliest version (0.0.1) was released in

2013. The latest version 3.0.2 was released in November 2021. The latest

version requires Python 3.4 or above.

XlsxWriter Features

Some of the important features of XlsxWriter include:

 Files created by XlsxWriter are 100% compatible with Excel XLSX files.

 XlsxWriter provides full formatting features such as Merged cells,

Defined names, conditional formatting, etc.

 XlsxWriter allows programmatically inserting charts in XLSX files.

 Autofilters can be set using XlsxWriter.

 XlsxWriter supports Data validation and drop-down lists.

 Using XlsxWriter, it is possible to insert PNG/JPEG/GIF/BMP/WMF/EMF

images.

 With XlsxWriter, Excel spreadsheet can be integrated with Pandas library.

 XlsxWriter also provides support for adding Macros.

 XlsxWriter has a Memory optimization mode for writing large files.

1. XlsxWriter – Overview

XlsxWriter

2

Installing XlsxWriter using PIP

The easiest and recommended method of installing XlsxWriter is to use PIP

installer. Use the following command to install XlsxWriter (preferably in a

virtual environment).

pip3 install xlsxwriter

Installing from a Tarball

Another option is to install XlsxWriter from its source code, hosted at

https://github.com/jmcnamara/XlsxWriter/. Download the latest source

tarball and install the library using the following commands:

$ curl -O -L

http://github.com/jmcnamara/XlsxWriter/archive/main.tar.gz

$ tar zxvf main.tar.gz

$ cd XlsxWriter-main/

$ python setup.py install

Cloning from GitHub

You may also clone the GitHub repository and install from it.

$ git clone https://github.com/jmcnamara/XlsxWriter.git

$ cd XlsxWriter

$ python setup.py install

2. XlsxWriter – Environment Setup

https://github.com/jmcnamara/XlsxWriter/

XlsxWriter

3

To confirm that XlsxWriter is installed properly, check its version from the

Python prompt:

>>> import xlsxwriter

>>> xlsxwriter.__version__

'3.0.2'

XlsxWriter

4

Getting Started

The first program to test if the module/library works correctly is often to

write Hello world message. The following program creates a file with .XLSX

extension. An object of the Workbook class in the xlsxwriter module

corresponds to the spreadsheet file in the current working directory.

wb = xlsxwriter.Workbook('hello.xlsx')

Next, call the add_worksheet() method of the Workbook object to insert a

new worksheet in it.

ws = wb.add_worksheet()

We can now add the Hello World string at A1 cell by invoking the write()

method of the worksheet object. It needs two parameters: the cell address

and the string.

ws.write('A1', 'Hello world')

Example

The complete code of hello.py is as follows:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

ws.write('A1', 'Hello world')

wb.close()

Output

After the above code is executed, hello.xlsx file will be created in the

current working directory. You can now open it using Excel software.

3. XlsxWriter – Hello World

XlsxWriter

5

XlsxWriter

6

The XlsxWriter library comprises of following classes. All the methods

defined in these classes allow different operations to be done

programmatically on the XLSX file. The classes are:

 Workbook class

 Worksheet class

 Format class

 Chart class

 Chartsheet class

 Exception class

Workbook Class

This is the main class exposed by the XlsxWriter module and it is the only

class that you will need to instantiate directly. It represents the Excel file

as it is written on a disk.

wb=xlsxwriter.Workbook('filename.xlsx')

The Workbook class defines the following methods:

add_worksheet() Adds a new worksheet to a workbook.

add_format()
Used to create new Format objects which are used

to apply formatting to a cell.

add_chart()

Creates a new chart object that can be inserted

into a worksheet via the insert_chart() Worksheet

method

add_chartsheet() Adds a new chartsheet to a workbook.

close()
Closes the Workbook object and write the XLSX

file.

define_name()
Creates a defined name in the workbook to use as

a variable.

add_vba_project()
Used to add macros or functions to a workbook

using a binary VBA project file

4. XlsxWriter – Important classes

XlsxWriter

7

worksheets() Returns a list of the worksheets in a workbook.

Worksheet Class

The worksheet class represents an Excel worksheet. An object of this class

handles operations such as writing data to cells or formatting worksheet

layout. It is created by calling the add_worksheet() method from a

Workbook() object.

The Worksheet object has access to the following methods:

write()

Writes generic data to a worksheet cell.

Parameters:

 row – The cell row (zero indexed).

 col – The cell column (zero indexed).

 *args – The additional args passed to the

sub methods such as number, string and

cell_format.

Returns:

 0: Success

 -1: Row or column is out of worksheet

bounds.

write_string()

Writes a string to the cell specified by row and

column.

Parameters:

 row (int) – The cell row (zero indexed).

 col (int) – The cell column (zero

indexed).

 string (string) – String to write to cell.

 cell_format (Format) – Optional

Format object.

Returns:

XlsxWriter

8

 0: Success

 -1: Row or column is out of worksheet

bounds.

 -2: String truncated to 32k characters.

write_number()

Writes numeric types to the cell specified by row

and column.

Parameters:

 row (int) – The cell row (zero indexed).

 col (int) – The cell column (zero

indexed).

 string (string) – String to write to cell.

 cell_format (Format) – Optional

Format object.

Returns:

 0: Success

 -1: Row or column is out of worksheet

bounds.

XlsxWriter

9

write_formula()

Writes a formula or function to the cell specified

by row and column.

Parameters:

 row (int) – The cell row (zero indexed).

 col (int) – The cell column (zero

indexed).

 formula (string) – Formula to write to

cell.

 cell_format (Format) – Optional

Format object.

 value – Optional result. The value if the

formula was calculated.

Returns:

 0: Success

 -1: Row or column is out of worksheet

bounds.

insert_image()

Used to insert an image into a worksheet. The

image can be in PNG, JPEG, GIF, BMP, WMF or

EMF format.

Parameters:

 row (int) – The cell row (zero indexed).

 col (int) – The cell column (zero

indexed).

 filename – Image filename (with path if

required).

Returns:

 0: Success

 -1: Row or column is out of worksheet

bounds.

XlsxWriter

10

insert_chart()

Used to insert a chart into a worksheet. A chart
object is created via the Workbook add_chart()

method.

Parameters:

 row (int) – The cell row (zero indexed).

 col (int) – The cell column (zero

indexed).

 chart – A chart object.

conditional_format()

Used to add formatting to a cell or range of cells

based on user-defined criteria.

Parameters:

 first_row (int) – The first row of the

range. (All zero indexed)

 first_col (int) – The first column of the

range.

 last_row (int) – The last row of the

range.

 last_col (int) – The last col of the

range.

 options (dict) – Conditional formatting

options. must be a dictionary containing

the parameters that describe the type

and style of the conditional format.

Returns:

 0: Success

 -1: Row or column is out of worksheet

bounds.

 -2: Incorrect parameter or option.

XlsxWriter

11

add_table()

Used to group a range of cells into an Excel Table.

Parameters:

 first_row (int) – The first row of the

range. (All zero indexed)

 first_col (int) – The first column of the

range.

 last_row (int) – The last row of the

range.

 last_col (int) – The last col of the

range.

 options (dict) – Table formatting

options.

autofilter()

Set the auto-filter area in the worksheet. It adds

drop down lists to the headers of a 2D range of

worksheet data. User can filter the data based on

simple criteria

Parameters:

 first_row (int) – The first row of the

range. (All zero indexed)

 first_col (int) – The first column of the

range.

 last_row (int) – The last row of the

range.

 last_col (int) – The last col of the

range.

Format Class

Format objects are created by calling the workbook add_format() method.

Methods and properties available to this object are related to fonts, colors,

patterns, borders, alignment and number formatting.

Font formatting methods and properties:

XlsxWriter

12

Method Name Description Property

set_font_name() Font type 'font_name'

set_font_size() Font size 'font_size'

set_font_color() Font color 'font_color'

set_bold() Bold 'bold'

set_italic() Italic 'italic'

set_underline() Underline 'underline'

set_font_strikeout() Strikeout 'font_strikeout'

set_font_script() Super/Subscript 'font_script'

Alignment formatting methods and properties:

Method Name Description Property

set_align() Horizontal align 'align'

set_align() Vertical align 'valign'

set_rotation() Rotation 'rotation'

set_text_wrap() Text wrap 'text_wrap'

set_reading_order() Reading order 'reading_order'

set_text_justlast() Justify last 'text_justlast'

set_center_across() Center across 'center_across'

set_indent() Indentation 'indent'

set_shrink() Shrink to fit 'shrink'

Chart Class

A chart object is created via the add_chart() method of the Workbook

object where the chart type is specified.

chart = workbook.add_chart({'type': 'column'})

The chart object is inserted in the worksheet by calling insert_chart()

method.

XlsxWriter

13

worksheet.insert_chart('A7', chart)

XlxsWriter supports the following chart types:

 area: Creates an Area (filled line) style chart.

 bar: Creates a Bar style (transposed histogram) chart.

 column: Creates a column style (histogram) chart.

 line: Creates a Line style chart.

 pie: Creates a Pie style chart.

 doughnut: Creates a Doughnut style chart.

 scatter: Creates a Scatter style chart.

 stock: Creates a Stock style chart.

 radar: Creates a Radar style chart.

The Chart class defines the following methods:

add_series(options)

Add a data series to a chart. Following properties

can be given:

 Values, categories

 name

 line, border

 fill , pattern , gradient

 data_labels, points

set_x_axis(options)

Set the chart X-axis options including

 name, name_font

 num_font, num_format

 line, fill, pattern, gradient

 min, max

 position_axis

 label_position, label_align

 date_axis, text_axis

 minor_unit_type, major_unit_type

XlsxWriter

14

set_y_axis(options)

Set the chart Y-axis options including:

 name, name_font

 num_font, num_format

 line, fill, pattern, gradient

 min, max

 position_axis

 label_position, label_align

 date_axis, text_axis

 minor_unit_type, major_unit_type

set_size()

This method is used to set the dimensions of the

chart. The size of the chart can be modified by

setting the width and height or by setting the

x_scale and y_scale.

set_title(options)

Set the chart title options.

Parameters:

 options (dict) – A dictionary of chart

size options.

 name: Set the name (title) for the chart.

The name is displayed above the chart.

 name_font: Set the font properties for

the chart title.

 overlay: Allow the title to be overlaid on

the chart.

 layout: Set the (x, y) position of the title

in chart relative units.

set_legend()

This method formats the chart legends with the

following properties:

 none

 position, font, border

 fill, pattern, gradient

XlsxWriter

15

Chartsheet Class

A chartsheet in a XLSX file is a worksheet that only contains a chart and no

other data. a new chartsheet object is created by calling the

add_chartsheet() method from a Workbook object:

chartsheet = workbook.add_chartsheet()

Some functionalities of the Chartsheet class are similar to that of data

Worksheets such as tab selection, headers, footers, margins, and print

properties. However, its primary purpose is to display a single chart, whereas

an ordinary data worksheet can have one or more embedded charts.

The data for the chartsheet chart must be present on a separate worksheet.

Hence it is always created along with at least one data worksheet, using

set_chart() method.

chartsheet = workbook.add_chartsheet()

chart = workbook.add_chart({'type': 'column'})

chartsheet.set_chart(chart)

Remember that a Chartsheet can contain only one chart.

Example

The following code writes the data series in the worksheet names sheet1

but opens a new chartsheet to add a column chart based on the data in

sheet1.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

cs = wb.add_chartsheet()

chart = wb.add_chart({'type': 'column'})

data = [

 [10, 20, 30, 40, 50],

XlsxWriter

16

 [20, 40, 60, 80, 100],

 [30, 60, 90, 120, 150],

]

worksheet.write_column('A1', data[0])

worksheet.write_column('B1', data[1])

worksheet.write_column('C1', data[2])

chart.add_series({'values': '=Sheet1!A1:A5'})

chart.add_series({'values': '=Sheet1!B1:B5'})

chart.add_series({'values': '=Sheet1!C1:C5'})

cs.set_chart(chart)

cs.activate()

wb.close()

The following workbook shows a chartsheet with default caption as chart1.

XlsxWriter

17

Exception Class

XlsxWriter identifies various run-time errors or exceptions which can be

trapped using Python's error handling technique so as to avoid corruption

of Excel files. The Exception classes in XlsxWriter are as follows:

XlsxWriterException Base exception for XlsxWriter.

XlsxFileError Base exception for all file related errors.

XlsxInputError
Base exception for all input data related

errors.

FileCreateError

Occurs if there is a file permission error, or

IO error, when writing the xlsx file to disk

or if the file is already open in Excel.

UndefinedImageSize

Raised with insert_image() method if the

image doesn't contain height or width

information. The exception is raised during

Workbook close().

UnsupportedImageFormat

Raised if the image isn't one of the

supported file formats: PNG, JPEG, GIF,

BMP, WMF or EMF.

EmptyChartSeries

This exception occurs when a chart is

added to a worksheet without a data

series.

InvalidWorksheetName
if a worksheet name is too long or contains

invalid characters.

DuplicateWorksheetName
This exception is raised when a worksheet

name is already present.

Exception FileCreateError

Assuming that a workbook named hello.xlsx is already opened using Excel

app, then the following code will raise a FileCreateError:

import xlsxwriter

workbook = xlsxwriter.Workbook('hello.xlsx')

XlsxWriter

18

worksheet = workbook.add_worksheet()

workbook.close()

When this program is run, the error message is displayed as below:

PermissionError: [Errno 13] Permission denied: 'hello.xlsx'

During handling of the above exception, another exception

occurred:

Traceback (most recent call last):

 File "hello.py", line 4, in <module>

 workbook.close()

 File "e:\xlsxenv\lib\site-packages\xlsxwriter\workbook.py",

line 326, in close

 raise FileCreateError(e)

xlsxwriter.exceptions.FileCreateError: [Errno 13] Permission
denied: 'hello.xlsx'

Handling the Exception

We can use Python's exception handling mechanism for this purpose.

import xlsxwriter

try:

 workbook = xlsxwriter.Workbook('hello.xlsx')

 worksheet = workbook.add_worksheet()

 workbook.close()

except:

 print ("The file is already open")

Now the custom error message will be displayed.

(xlsxenv) E:\xlsxenv>python ex34.py

The file is already open

XlsxWriter

19

Exception EmptyChartSeries

Another situation of an exception being raised when a chart is added with a

data series.

import xlsxwriter

workbook = xlsxwriter.Workbook('hello.xlsx')

worksheet = workbook.add_worksheet()

chart = workbook.add_chart({'type': 'column'})

worksheet.insert_chart('A7', chart)

workbook.close()

This leads to EmptyChartSeries exception:

xlsxwriter.exceptions.EmptyChartSeries: Chart1 must contain at

least one data series.

XlsxWriter

20

Each worksheet in a workbook is a grid of a large number of cells, each of

which can store one piece of data - either value or formula. Each Cell in the

grid is identified by its row and column number.

In Excel's standard cell addressing, columns are identified by alphabets, A,

B, C, …., Z, AA, AB etc., and rows are numbered starting from 1.

The address of each cell is alphanumeric, where the alphabetic part

corresponds to the column and number corresponding to the row. For

example, the address "C5" points to the cell in column "C" and row number

"5".

Cell Notations

The standard Excel uses alphanumeric sequence of column letter and

1-based row. XlsxWriter supports the standard Excel notation (A1 notation)

as well as Row-column notation which uses a zero based index for both

row and column.

5. XlsxWriter – Cell Notation and Ranges

XlsxWriter

21

Example

In the following example, a string 'Hello world' is written into A1 cell using

Excel's standard cell address, while 'Welcome to XLSXWriter' is written into

cell C5 using row-column notation.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

ws.write('A1', 'Hello world') # A1 notation

ws.write(4,2,"Welcome to XLSXWriter") # Row-column notation

wb.close()

Open the hello.xlsx file using Excel software.

The numbered row-column notation is especially useful when referring to

the cells programmatically. In the following code data in a list of lists has to

be written to a range of cells in a worksheet. This is achieved by two nested

loops, the outer representing the row numbers and the inner loop for

column numbers.

XlsxWriter

22

data = [

 ['Name', 'Physics', 'Chemistry', 'Maths', 'Total'],

 ['Ravi', 60, 70, 80],

 ['Kiran', 65, 75, 85],

 ['Karishma', 55, 65, 75],

]

for row in range(len(data)):

 for col in range(len(data[row])):

 ws.write(row, col, data[row][col])

The same result can be achieved by using write_row() method of the

worksheet object used in the code below:

for row in range(len(data)):

 ws.write_row(6+row,0, data[row])

The worksheet object has add_table() method that writes the data to a

range and converts into Excel range, displaying autofilter dropdown arrows
in the top row.

ws.add_table('G6:J9', {'data': data, 'header_row':True})

Example

The output of all the three codes above can be verified by the following code

and displayed in the following figure:

import xlsxwriter

wb = xlsxwriter.Workbook('ex1.xlsx')

ws = wb.add_worksheet()

data = [

 ['Name', 'Physics', 'Chemistry', 'Maths', 'Total'],

 ['Ravi', 60, 70, 80],

 ['Kiran', 65, 75, 85],

 ['Karishma', 55, 65, 75],

XlsxWriter

23

]

for row in range(len(data)):

 for col in range(len(data[row])):

 ws.write(row, col, data[row][col])

for row in range(len(data)):

 ws.write_row(6+row,0, data[row])

ws.add_table('G6:J9', {'data': data, 'header_row':False})

wb.close()

Output:

Execute the above program and open the ex1.xlsx using Excel software.

XlsxWriter

24

In Excel, it is possible to identify a cell, a formula, or a range of cells by

user-defined name, which can be used as a variable used to make the

definition of formula easy to understand. This can be achieved using the

define_name() method of the Workbook class.

In the following code snippet, we have a range of cells consisting of

numbers. This range has been given a name as marks.

data=['marks',50,60,70, 'Total']

ws.write_row('A1', data)

wb.define_name('marks', '=Sheet1!A1:E1')

If the name is assigned to a range of cells, the second argument of

define_name() method is a string with the name of the sheet followed by

"!" symbol and then the range of cells using the absolute addressing

scheme. In this case, the range A1:E1 in sheet1 is named as marks.

This name can be used in any formula. For example, we calculate the sum

of numbers in the range identified by the name marks.

ws.write('F1', '=sum(marks)')

We can also use the named cell in the write_formula() method. In the

following code, this method is used to calculate interest on the amount

where the rate is a defined_name.

ws.write('B5', 10)

wb.define_name('rate', '=sheet1!B5')

ws.write_row('A5', ['Rate', 10])

data=['Amount',1000, 2000, 3000]

ws.write_column('A6', data)

ws.write('B6', 'Interest')

6. XlsxWriter – Defined Names

XlsxWriter

25

for row in range(6,9):

 ws.write_formula(row, 1, '= rate*$A{}/100'.format(row+1))

We can also use write_array_formula() method instead of the loop in the

above code:

ws.write_array_formula('D7:D9' , '{=rate/100*(A7:A9)}')

Example

The complete code using define_name() method is given below:

import xlsxwriter

wb = xlsxwriter.Workbook('ex2.xlsx')

ws = wb.add_worksheet()

data = ['marks',50,60,70, 'Total']

ws.write_row('A1', data)

wb.define_name('marks', '=Sheet1!A1:E1')

ws.write('F1', '=sum(marks)')

ws.write('B5', 10)

wb.define_name('rate', '=sheet1!B5')

ws.write_row('A5', ['Rate', 10])

data=['Amount',1000, 2000, 3000]

ws.write_column('A6', data)

ws.write('B6', 'Interest')

for row in range(6,9):

XlsxWriter

26

 ws.write_formula(row, 1, '= rate*$A{}/100'.format(row+1))

wb.close()

Output:

Run the above program and open ex2.xlsx with Excel.

XlsxWriter

27

The Worksheet class offers three methods for using formulas.

 write_formula()

 write_array_formula()

 write_dynamic_array_formula()

All these methods are used to assign formula as well as function to a cell.

The write_formula() Method

The write_formula() method requires the address of the cell, and a string

containing a valid Excel formula. Inside the formula string, only the A1 style

address notation is accepted. However, the cell address argument can be

either standard Excel type or zero based row and column number notation.

Example

In the example below, various statements use write_formula() method.

The first uses a standard Excel notation to assign a formula. The second

statement uses row and column number to specify the address of the target

cell in which the formula is set. In the third example, the IF() function is

assigned to G2 cell.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data=[

 ['Name', 'Phy', 'Che', 'Maths', 'Total', 'percent', 'Result'],

 ['Arvind', 50,60,70]

]

7. XlsxWriter – Formula and Function

XlsxWriter

28

ws.write_row('A1', data[0])

ws.write_row('A2', data[1])

ws.write_formula('E2', '=B2+C2+D2')

ws.write_formula(1,5, '=E2*100/300')

ws.write_formula('G2', '=IF(F2>=50, "PASS","FAIL")')

wb.close()

Output:

The Excel file shows the following result:

The write_array_formula() Method

The write_array_formula() method is used to extend the formula over a

range. In Excel, an array formula performs a calculation on a set of values.

It may return a single value or a range of values.

An array formula is indicated by a pair of braces around the formula:

{=SUM(A1:B1*A2:B2)}. The range can be either specified by row and column

XlsxWriter

29

numbers of first and last cell in the range (such as 0,0, 2,2) or by the string

representation 'A1:C2'.

Example

In the following example, array formulas are used for columns E, F and G

to calculate total, percent and result from marks in the range B2:D4

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data=[

 ['Name', 'Phy', 'Che', 'Maths', 'Total', 'percent', 'Result'],

 ['Arvind', 50,60,70],

 ['Amar', 55,65,75],

 ['Asha', 75,85,80]

]

for row in range(len(data)):

 ws.write_row(row,0, data[row])

ws.write_array_formula('E2:E4', '{=B2:B4+C2:C4+D2:D4}')

ws.write_array_formula(1,5,3,5, '{=(E2:E4)*100/300}')

ws.write_array_formula('G2:G4', '{=IF((F2:F4)>=50, "PASS","FAIL")}')

wb.close()

XlsxWriter

30

Here is how the worksheet appears when opened using MS Excel:

The write_dynamic_array_data() Method

The write_dynamic_array_data() method writes an dynamic array formula

to a cell range. The concept of dynamic arrays has been introduced in

EXCEL's 365 version, and some new functions that leverage the advantage

of dynamic arrays have been introduced. These functions are:

FILTER Filter data and return matching records

RANDARRAY Generate array of random numbers

SEQUENCE Generate array of sequential numbers

SORT Sort range by column

SORTBY Sort range by another range or array

UNIQUE Extract unique values from a list or range

XLOOKUP replacement for VLOOKUP

XMATCH replacement for the MATCH function

Dynamic arrays are ranges of return values whose size can change based

on the results. For example, a function such as FILTER() returns an array

of values that can vary in size depending on the filter results.

XlsxWriter

31

Example

In the example below, the data range is A1:D17. The filter function uses

this range and the criteria range is C1:C17, in which the product names are

given. The FILTER() function results in a dynamic array as the number of

rows satisfying the criteria may change.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data = (['Region', 'SalesRep', 'Product', 'Units'],

 ['East', 'Tom', 'Apple', 6380],

 ['West', 'Fred', 'Grape', 5619],

 ['North', 'Amy', 'Pear', 4565],

 ['South', 'Sal', 'Banana', 5323],

 ['East', 'Fritz', 'Apple', 4394],

 ['West', 'Sravan', 'Grape', 7195],

 ['North', 'Xi', 'Pear', 5231],

 ['South', 'Hector', 'Banana', 2427],

 ['East', 'Tom', 'Banana', 4213],

 ['West', 'Fred', 'Pear', 3239],

 ['North', 'Amy', 'Grape', 6520],

 ['South', 'Sal', 'Apple', 1310],

 ['East', 'Fritz', 'Banana', 6274],

 ['West', 'Sravan', 'Pear', 4894],

 ['North', 'Xi', 'Grape', 7580],

 ['South', 'Hector', 'Apple', 9814])

for row in range(len(data)):

 ws.write_row(row,0, data[row])

ws.write_dynamic_array_formula('F1', '=FILTER(A1:D17,C1:C17="Apple")')

wb.close()

XlsxWriter

32

Note that the formula string to write_dynamic_array_formula() need not

contain curly brackets. The resultant hello.xlsx must be opened with

Excel 365 app.

XlsxWriter

33

In Excel, dates are stored as real numbers so that they can be used in

calculations. By default, January 1, 1900 (called as epoch) is treated 1, and

hence January 28, 2022 corresponds to 44589. Similarly, the time is

represented as the fractional part of the number, as the percentage of day.
Hence, January 28, 2022 11.00 corresponds to 44589.45833.

The set_num_format() Method

Since date or time in Excel is just like any other number, to display the number

as a date you must apply an Excel number format to it. Use
set_num_format() method of the Format object using appropriate formatting.

The following code snippet displays a number in "dd/mm/yy" format.

num = 44589

format1 = wb.add_format()

format1.set_num_format('dd/mm/yy')

ws.write('B2', num, format1)

8. XlsxWriter – Date and Time

XlsxWriter

34

The num_format Parameter

Alternatively, the num_format parameter of add_format() method can be set

to the desired format.

format1 = wb.add_format({'num_format':'dd/mm/yy'})

ws.write('B2', num, format1)

Example

The following code shows the number in various date formats.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

num=44589

ws.write('A1', num)

format2 = wb.add_format({'num_format': 'dd/mm/yy'})

ws.write('A2', num, format2)

format3 = wb.add_format({'num_format': 'mm/dd/yy'})

ws.write('A3', num, format3)

format4 = wb.add_format({'num_format': 'd-m-yyyy'})

ws.write('A4', num, format4)

format5 = wb.add_format({'num_format': 'dd/mm/yy hh:mm'})

ws.write('A5', num, format5)

format6 = wb.add_format({'num_format': 'd mmm yyyy'})

XlsxWriter

35

ws.write('A6', num, format6)

format7 = wb.add_format({'num_format': 'mmm d yyyy hh:mm AM/PM'})

ws.write('A7', num, format7)

wb.close()

Output:

The worksheet looks like the following in Excel software:

write_datetime() and strptime()

The XlsxWriter's Worksheet object also has write_datetime() method that

is useful when handling date and time objects obtained with datetime

module of Python's standard library.

The strptime() method returns datetime object from a string parsed

according to the given format. Some of the codes used to format the string

are given below:

%a Abbreviated weekday name Sun, Mon

XlsxWriter

36

%A Full weekday name Sunday, Monday

%d Day of the month as a zero-padded decimal 01, 02

%-d day of the month as decimal number 1, 2..

%b Abbreviated month name Jan, Feb

%m Month as a zero padded decimal number 01, 02

%-m Month as a decimal number 1, 2

%B Full month name January, February

%y Year without century as a zero padded

decimal number

99, 00

%-y Year without century as a decimal number 0, 99

%Y Year with century as a decimal number 2022, 1999

%H Hour (24 hour clock) as a zero padded

decimal number

01, 23

%-H Hour (24 hour clock) as a decimal

number

1, 23

%I Hour (12 hour clock) as a zero padded

decimal number

01, 12

%-I Hour (12 hour clock) as a decimal

number

1, 12

%p locale's AM or PM AM, PM

%M Minute as a zero padded decimal number 01, 59

%-M Minute as a decimal number 1, 59

%S Second as a zero padded decimal number 01, 59

%-S Second as a decimal number 1, 59

%c locale's appropriate date and time

representation

Mon Sep 30 07:06:05

2022

The strptime() method is used as follows:

>>> from datetime import datetime

>>> dt="Thu February 3 2022 11:35:5"

>>> code="%a %B %d %Y %H:%M:%S"

>>> datetime.strptime(dt, code)

datetime.datetime(2022, 2, 3, 11, 35, 5)

This datetime object can now be written into the worksheet with

write_datetime() method.

Example

XlsxWriter

37

In the following example, the datetime object is written with different

formats.

import xlsxwriter

from datetime import datetime

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

dt="Thu February 3 2022 11:35:5"

code="%a %B %d %Y %H:%M:%S"

obj=datetime.strptime(dt, code)

date_formats = (

 'dd/mm/yy',

 'mm/dd/yy',

 'dd m yy',

 'd mm yy',

 'd mmm yy',

 'd mmmm yy',

 'd mmmm yyy',

 'd mmmm yyyy',

 'dd/mm/yy hh:mm',

 'dd/mm/yy hh:mm:ss',

 'dd/mm/yy hh:mm:ss.000',

 'hh:mm',

 'hh:mm:ss',

 'hh:mm:ss.000',

)

worksheet.write('A1', 'Formatted date')

worksheet.write('B1', 'Format')

row = 1

for fmt in date_formats:

 date_format = wb.add_format({'num_format': fmt, 'align': 'left'})

XlsxWriter

38

 worksheet.write_datetime(row, 0, obj, date_format)

 worksheet.write_string(row, 1, fmt)

 row += 1

wb.close()

Output:

The worksheet appears as follows when opened with Excel.

XlsxWriter

39

In MS Excel, a Table is a range of cells that has been grouped as a single

entity. It can be referenced from formulas and has common formatting

attributes. Several features such as column headers, autofilters, total rows,

column formulas can be defined in a worksheet table.

The add_table() Method

The worksheet method add_table() is used to add a cell range as a table.

worksheet.add_table(first_row, first_col, last_row, last_col,

options)

Both the methods, the standard 'A1' or 'Row/Column' notation are

allowed for specifying the range. The add_table() method can take one or

more of the following optional parameters. Note that except the range

parameter, others are optional. If not given, an empty table is created.

data

This parameter can be used to specify the data in the cells of the table. Look

at the following example:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data = [

 ['Namrata', 75, 65, 80],

 ['Ravi', 60, 70, 80],

 ['Kiran', 65, 75, 85],

 ['Karishma', 55, 65, 75],

]

9. XlsxWriter – Tables

XlsxWriter

40

ws.add_table("A1:D4", {'data':data})

wb.close()

Output:

Here's the result:

header_row

This parameter can be used to turn on or off the header row in the table. It

is on by default. The header row will contain default captions such as

Column 1, Column 2, etc. You can set required captions by using the

columns parameter.

columns

This property is used to set column captions.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

XlsxWriter

41

data = [

 ['Namrata', 75, 65, 80],

 ['Ravi', 60, 70, 80],

 ['Kiran', 65, 75, 85],

 ['Karishma', 55, 65, 75],

]

ws.add_table("A1:D4",

 {'data':data,

 'columns': [

 {'header': 'Name'},

 {'header': 'physics'},

 {'header': 'Chemistry'},

 {'header': 'Maths'}]

 })

wb.close()

Output:

The header row is now set as shown:

XlsxWriter

42

autofilter

This parameter is ON, by default. When set to OFF, the header row doesn't

show the dropdown arrows to set the filter criteria.

name

In Excel worksheet, the tables are named as Table1, Table2, etc. The name

parameter can be used to set the name of the table as required.

ws.add_table("A1:E4", {'data':data, 'name':'marklist'})

formula

Column with a formula can be created by specifying formula sub-property

in columns options.

Example

In the following example, the table's name property is set to 'marklist'. The

formula for 'Total' column E performs sum of marks, and is assigned the

value of formula sub-property.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data = [

 ['Namrata', 75, 65, 80],

 ['Ravi', 60, 70, 80],

 ['Kiran', 65, 75, 85],

 ['Karishma', 55, 65, 75],

]

formula = '=SUM(marklist[@[physics]:[Maths]])'

tbl = ws.add_table("A1:E5",

XlsxWriter

43

 {'data': data,

 'autofilter': False,

 'name': 'marklist',

 'columns': [

 {'header': 'Name'},

 {'header': 'physics'},

 {'header': 'Chemistry'},

 {'header': 'Maths'},

 {'header': 'Total', 'formula': formula}]

 })

wb.close()

Output:

When the above code is executed, the worksheet shows the Total column

with the sum of marks.

XlsxWriter

44

In Excel, you can set filter on a tabular data based upon criteria using logical

expressions. In XlsxWriter's worksheet class, we have autofilter()

method or the purpose. The mandatory argument to this method is the cell

range. This creates drop-down selectors in the heading row. To apply some

criteria, we have two methods available: filter_column() or

filter_column_list().

Applying Filter Criteria for a Column

In the following example, the data in the range A1:D51 (i.e. cells 0,0 to

50,3) is used as the range argument for autofilter() method. The filter

criteria 'Region == East' is set on 0th column (with Region heading) with

filter_column() method.

All the rows in the data range not meeting the filter criteria are hidden by

setting hidden option to true for the set_row() method of the worksheet

object.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data = (['Region', 'SalesRep', 'Product', 'Units'],

 ['East', 'Tom', 'Apple', 6380],

 ['West', 'Fred', 'Grape', 5619],

 ['North', 'Amy', 'Pear', 4565],

 ['South', 'Sal', 'Banana', 5323],

 ['East', 'Fritz', 'Apple', 4394],

 ['West', 'Sravan', 'Grape', 7195],

 ['North', 'Xi', 'Pear', 5231],

 ['South', 'Hector', 'Banana', 2427],

10. XlsxWriter – Applying Filter

XlsxWriter

45

 ['East', 'Tom', 'Banana', 4213],

 ['West', 'Fred', 'Pear', 3239],

 ['North', 'Amy', 'Grape', 6520],

 ['South', 'Sal', 'Apple', 1310],

 ['East', 'Fritz', 'Banana', 6274],

 ['West', 'Sravan', 'Pear', 4894],

 ['North', 'Xi', 'Grape', 7580],

 ['South', 'Hector', 'Apple', 9814])

for row in range(len(data)):

 ws.write_row(row,0, data[row])

ws.autofilter(0, 0, 50, 3)

ws.filter_column(0, 'Region == East')

row = 1

for row_data in (data):

 region = row_data[0]

 if region != 'East':

 ws.set_row(row, options={'hidden': True})

 ws.write_row(row, 0, row_data)

 row += 1

wb.close()

XlsxWriter

46

Output:

When we open the worksheet with the help of Excel, we will find that only

the rows with Region='East' are visible and others are hidden (which you

can display again by clearing the filter).

The column parameter can either be a zero indexed column number or a

string column name. All the logical operators allowed in Python can be used

in criteria (==, !=, <, >, <=, >=). Filter criteria can be defined on more

than one columns and they can be combined by and or or operators. An

example of criteria with logical operator can be as follows:

ws.filter_column('A', 'x > 2000')

ws.filter_column('A', 'x != 2000')

ws.filter_column('A', 'x > 2000 and x<5000')

Note that "x" in the criteria argument is just a formal place holder and can

be any suitable string as it is ignored anyway internally.

ws.filter_column('A', 'price > 2000')

ws.filter_column('A', 'x != 2000')

ws.filter_column('A', 'marks > 60 and x<75')

XlsxWriter

47

XlsxWriter also allows the use of wild cards "*" and "?" in the filter criteria

on columns containing string data.

ws.filter_column('A', name=K*') #starts with K

ws.filter_column('A', name=*K*') #contains K

ws.filter_column('A', name=?K*') # second character as K

ws.filter_column('A', name=*K??') #any two characters after K

Example:

In the following example, first filter on column A requires region to be West

and second filter's criteria on column D is "units > 5000". Rows not

satisfying the condition "region = West" or "units > 5000" are hidden.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data = (['Region', 'SalesRep', 'Product', 'Units'],

 ['East', 'Tom', 'Apple', 6380],

 ['West', 'Fred', 'Grape', 5619],

 ['North', 'Amy', 'Pear', 4565],

 ['South', 'Sal', 'Banana', 5323],

 ['East', 'Fritz', 'Apple', 4394],

 ['West', 'Sravan', 'Grape', 7195],

 ['North', 'Xi', 'Pear', 5231],

 ['South', 'Hector', 'Banana', 2427],

 ['East', 'Tom', 'Banana', 4213],

 ['West', 'Fred', 'Pear', 3239],

 ['North', 'Amy', 'Grape', 6520],

 ['South', 'Sal', 'Apple', 1310],

 ['East', 'Fritz', 'Banana', 6274],

 ['West', 'Sravan', 'Pear', 4894],

XlsxWriter

48

 ['North', 'Xi', 'Grape', 7580],

 ['South', 'Hector', 'Apple', 9814])

for row in range(len(data)):

 ws.write_row(row,0, data[row])

ws.autofilter(0, 0, 50, 3)

ws.filter_column('A', 'x == West')

ws.filter_column('D', 'x > 5000')

row = 1

for row_data in (data[1:]):

 region = row_data[0]

 volume = int(row_data[3])

 if region == 'West' or volume > 5000:

 pass

 else:

 ws.set_row(row, options={'hidden': True})

 ws.write_row(row, 0, row_data)

 row += 1

wb.close()

Output:

In Excel, the filter icon can be seen on columns A and D headings. The

filtered data is seen as below:

XlsxWriter

49

Applying a Column List Filter

The filter_column_list() method can be used to represent filters with

multiple selected criteria in Excel 2007 style.

ws.filter_column_list(col,list)

The second argument is a list of values against which the data in a given

column is matched. For example:

ws.filter_column_list('C', ['March', 'April', 'May'])

It results in filtering the data so that value in column C matches with any

item in the list.

Example

In the following example, the filter_column_list() method is used to

filter the rows with region equaling either East or West.

XlsxWriter

50

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data = (['Region', 'SalesRep', 'Product', 'Units'],

 ['East', 'Tom', 'Apple', 6380],

 ['West', 'Fred', 'Grape', 5619],

 ['North', 'Amy', 'Pear', 4565],

 ['South', 'Sal', 'Banana', 5323],

 ['East', 'Fritz', 'Apple', 4394],

 ['West', 'Sravan', 'Grape', 7195],

 ['North', 'Xi', 'Pear', 5231],

 ['South', 'Hector', 'Banana', 2427],

 ['East', 'Tom', 'Banana', 4213],

 ['West', 'Fred', 'Pear', 3239],

 ['North', 'Amy', 'Grape', 6520],

 ['South', 'Sal', 'Apple', 1310],

 ['East', 'Fritz', 'Banana', 6274],

 ['West', 'Sravan', 'Pear', 4894],

 ['North', 'Xi', 'Grape', 7580],

 ['South', 'Hector', 'Apple', 9814])

for row in range(len(data)):

 ws.write_row(row,0, data[row])

ws.autofilter(0, 0, 50, 3)

l1= ['East', 'West']

ws.filter_column_list('A', l1)

row = 1

for row_data in (data[1:]):

XlsxWriter

51

 region = row_data[0]

 if region not in l1:

 ws.set_row(row, options={'hidden': True})

 ws.write_row(row, 0, row_data)

 row += 1

wb.close()

Output:

The Column A shows that the autofilter is applied. All the rows with Region

as East or West are displayed and rest are hidden.

XlsxWriter

52

From the Excel software, click on the filter selector arrow in the Region

heading and we should see that the filter on region equal to East or West is

applied.

XlsxWriter

53

Working with Fonts

To perform formatting of worksheet cell, we need to use Format object with

the help of add_format() method and configure it with its properties or
formatting methods.

f1 = workbook.add_format()

f1 = set_bold(True)

or

f2 = wb.add_format({'bold':True})

This format object is then used as an argument to worksheet's write()
method.

ws.write('B1', 'Hello World', f1)

Example

To make the text in a cell bold, underline, italic or strike through, we

can either use these properties or corresponding methods. In the following
example, the text Hello World is written with set methods.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

for row in range(4):

 ws.write(row,0, "Hello World")

f1=wb.add_format()

f2=wb.add_format()

f3=wb.add_format()

11. XlsxWriter – Fonts and Colors

XlsxWriter

54

f4=wb.add_format()

f1.set_bold(True)

ws.write('B1', '=A1', f1)

f2.set_italic(True)

ws.write('B2', '=A2', f2)

f3.set_underline(True)

ws.write('B3', '=A3', f3)

f4.set_font_strikeout(True)

ws.write('B4', '=A4', f4)

wb.close()

Output:

Here is the result:

XlsxWriter

55

Example

On the other hand, we can use font_color, font_name and font_size

properties to format the text as in the following example:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

for row in range(4):

 ws.write(row,0, "Hello World")

f1=wb.add_format({'bold':True, 'font_color':'red'})

f2=wb.add_format({'italic':True,'font_name':'Arial'})

f3=wb.add_format({'font_size':20})

f4=wb.add_format({'font_color':'blue','font_size':14,'font_nam

e':'Times New Roman'})

ws.write('B1', '=A1', f1)

ws.write('B2', '=A2', f2)

ws.write('B3', '=A3', f3)

ws.write('B4', '=A4', f4)

wb.close()

Output:

The output of the above code can be verified by opening the worksheet with

Excel:

XlsxWriter

56

Text Alignment

XlsxWriter's Format object can also be created with alignment

methods/properties. The align property can have left, right, center and

justify values.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

for row in range(4):

 ws.write(row,0, "Hello World")

ws.set_column('B:B', 30)

f1=wb.add_format({'align':'left'})

f2=wb.add_format({'align':'right'})

f3=wb.add_format({'align':'center'})

f4=wb.add_format({'align':'justify'})

ws.write('B1', '=A1', f1)

ws.write('B2', '=A2', f2)

ws.write('B3', '=A3', f3)

XlsxWriter

57

ws.write('B4', 'Hello World', f4)

wb.close()

Output:

The following output shows the text "Hello World" with different alignments.

Note that the width of B column is set to 30 by set_column() method of the

worksheet object.

Example:

Format object also has valign properties to control vertical placement of

the cell.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

for row in range(4):

 ws.write(row,0, "Hello World")

XlsxWriter

58

ws.set_column('B:B', 30)

for row in range(4):

 ws.set_row(row, 40)

f1=wb.add_format({'valign':'top'})

f2=wb.add_format({'valign':'bottom'})

f3=wb.add_format({'align':'vcenter'})

f4=wb.add_format({'align':'vjustify'})

ws.write('B1', '=A1', f1)

ws.write('B2', '=A2', f2)

ws.write('B3', '=A3', f3)

ws.write('B4', '=A4', f4)

wb.close()

Output:

In the above code, the height of rows 1 to 4 is set to 40 with set_row()

method.

XlsxWriter

59

Cell Background and Foreground Colors

Two important properties of Format object are bg_color and fg_color to set

the background and foreground color of a cell.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

ws.set_column('B:B', 30)

f1=wb.add_format({'bg_color':'red', 'font_size':20})

f2=wb.add_format({'bg_color':'#0000FF', 'font_size':20})

ws.write('B1', 'Hello World', f1)

ws.write('B2', 'HELLO WORLD', f2)

wb.close()

XlsxWriter

60

Output:

The result of above code looks like this:

XlsxWriter

61

In Excel, different formatting options of numeric data are provided in the

Number tab of Format Cells menu.

To control the formatting of numbers with XlsxWriter, we can use the

set_num_format() method or define num_format property of add_format()

method.

f1 = wb.add_format()

f1.set_num_format(FormatCode)

#or

f1 = wb.add_format('num_format': FormatCode)

12. XlsxWriter – Number Formats

XlsxWriter

62

Excel has a number of predefined number formats. They can be found under

the custom category of Number tab as shown in the above figure. For

example, the format code for number with two decimal points and comma

separator is #,##0.00.

Example

In the following example, a number 1234.52 is formatted with different

format codes.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

ws.set_column('B:B', 30)

num=1234.52

num_formats = (

 '0.00',

 '#,##0.00',

 '0.00E+00',

 '##0.0E+0',

 '₹#,##0.00',

)

ws.write('A1', 'Formatted Number')

ws.write('B1', 'Format')

row = 1

for fmt in num_formats:

 format = wb.add_format({'num_format': fmt})

 ws.write_number(row, 0, num, format)

 ws.write_string(row, 1, fmt)

 row += 1

XlsxWriter

63

wb.close()

Output:

The formatted number along with the format code used is shown in the

following figure:

XlsxWriter

64

This section describes how to apply and format the appearance of cell

border as well as a border around text box.

Working with Cell Border

The properties in the add_format() method that control the appearance

of cell border are as shown in the following table:

Description Property method

Cell border 'border' set_border()

Bottom border 'bottom' set_bottom()

Top border 'top' set_top()

Left border 'left' set_left()

Right border 'right' set_right()

Border color 'border_color' set_border_color()

Bottom color 'bottom_color' set_bottom_color()

Top color 'top_color' set_top_color()

Left color 'left_color' set_left_color()

Right color 'right_color' set_right_color()

Note that for each property of add_format() method, there is a

corresponding format class method starting with the set_propertyname()

method.

For example, to set a border around a cell, we can use border property in

add_format() method as follows:

f1= wb.add_format({ 'border':2})

The same action can also be done by calling the set_border() method:

f1 = workbook.add_format()

f1.set_border(2)

13. XlsxWriter – Border

XlsxWriter

65

Individual border elements can be configured by the properties or format

methods as follows:

 set_bottom()

 set_top()

 set_left()

 set_right()

These border methods/properties have an integer value corresponding to

the predefined styles as in the following table:

Index Name Weight Style

0 None 0

1 Continuous 1 -----------

2 Continuous 2 -----------

3 Dash 1 - - - - - -

4 Dot 1

5 Continuous 3 -----------

6 Double 3 ===========

7 Continuous 0 -----------

8 Dash 2 - - - - - -

9 Dash Dot 1 - . - . - .

10 Dash Dot 2 - . - . - .

11 Dash Dot Dot 1 - . . - . .

12 Dash Dot Dot 2 - . . - . .

13 SlantDash Dot 2 / - . / - .

Example

Following code shows how the border property is used. Here, each row is

having a border style 2 corresponding to continuous bold.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

f1=wb.add_format({'bold':True, 'border':2, 'border_color':'red'})

f2=wb.add_format({'border':2, 'border_color':'red'})

headings = ['Month', 'Product A', 'Product B']

XlsxWriter

66

data = [

 ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June'],

 [10, 40, 50, 20, 10, 50],

 [30, 60, 70, 50, 40, 30],

]

ws.write_row('A1', headings, f1)

ws.write_column('A2', data[0], f2)

ws.write_column('B2', data[1],f2)

ws.write_column('C2', data[2],f2)

wb.close()

Output:

The worksheet shows a bold border around the cells.

Working with Textbox Border

The border property is also available for the text box object. The text box

also has a line property which is similar to border, so that they can be used

XlsxWriter

67

interchangeably. The border itself can further be formatted by none, color,
width and dash_type parameters.

Line or border set to none means that the text box will not have any border.
The dash_type parameter can be any of the following values:

 solid

 round_dot

 square_dot

 dash

 dash_dot

 long_dash

 long_dash_dot

 long_dash_dot_dot

Example

Here is a program that displays two text boxes, one with a solid border, red

in color; and the second box has dash_dot type border in blue color.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

ws.insert_textbox('B2', 'Welcome to Tutorialspoint',

 {'border': {'color': '#FF9900'}})

ws.insert_textbox('B10', 'Welcome to Tutorialspoint',

 {'line':

 {'color': 'blue',

 'dash_type': 'dash_dot'}

 })

wb.close()

Output:

The output worksheet shows the textbox borders.

XlsxWriter

68

XlsxWriter

69

A hyperlink is a string, which when clicked, takes the user to some other

location, such as a URL, another worksheet in the same workbook or

another workbook on the computer. Worksheet class provides write_url()

method for the purpose. Hyperlinks can also be placed inside a textbox with

the use of url property.

First, let us learn about write_url() method. In addition to the Cell

location, it needs the URL string to be directed to.

import xlsxwriter

workbook = xlsxwriter.Workbook('hello.xlsx')

worksheet = workbook.add_worksheet()

worksheet.write_url('A1', 'https://www.tutorialspoint.com/index.htm')

workbook.close()

This method has a few optional parameters. One is a Format object to

configure the font, color properties of the URL to be displayed. We can also

specify a tool tip string and a display text foe the URL. When the text is not

given, the URL itself appears in the cell.

Different types of URLs supported are http://, https://, ftp:// and

mailto:. In the example below, we use these URLs.

import xlsxwriter

workbook = xlsxwriter.Workbook('hello.xlsx')

worksheet = workbook.add_worksheet()

worksheet.write_url('A1', 'https://www.tutorialspoint.com/index.htm')

worksheet.write_url('A3', 'http://localhost:8080')

worksheet.write_url('A5', 'ftp://www.python.org')

14. XlsxWriter – Hyperlinks

XlsxWriter

70

worksheet.write_url('A7', 'mailto:dummy@abc.com')

workbook.close()

Output:

Run the above code and open the hello.xlsx file using Excel.

We can also insert hyperlink to either another workskeet in the same

workbook, or another workbook. This is done by prefixing with internal: or

external: the local URIs.

import xlsxwriter

workbook = xlsxwriter.Workbook('hello.xlsx')

worksheet = workbook.add_worksheet()

worksheet.write_url('A1',

 'internal:Sheet2!A1',

 string="Link to sheet2",

 tip="Click here")

XlsxWriter

71

worksheet.write_url('A4',

 "external:c:/test/testlink.xlsx",

 string="Link to other workbook")

workbook.close()

Output:

Note that the string and tip parameters are given as an alternative text to

the link and tool tip. The output of the above program is as given below:

XlsxWriter

72

Excel uses conditional formatting to change the appearance of cells in a

range based on user defined criteria. From the conditional formatting menu,

it is possible to define criteria involving various types of values.

In the worksheet shown below, the column A has different numbers. Numbers

less than 50 are shown in red font color and grey background color.

15. XlsxWriter – Conditional Formatting

XlsxWriter

73

This is achieved by defining a conditional formatting rule below:

The conditional_format() method

In XlsxWriter, there as a conditional_format() method defined in the

Worksheet class. To achieve the above shown result, the

conditional_format() method is called as in the following code:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data=[56,95,63,34,81,47,74,5,99,12]

row=0

for num in data:

 ws.write(row,0,num)

 row+=1

f1 = wb.add_format({'bg_color': '#D9D9D9',

 'font_color': 'red'})

ws.conditional_format('A1:A10', {'type':'cell',

XlsxWriter

74

 'criteria':'<',

 'value':50,

 'format':f1

 }

)

wb.close()

Parameters:

The conditional_format() method's first argument is the cell range, and

the second argument is a dictionary of conditional formatting options.

The options dictionary configures the conditional formatting rules with the

following parameters:

The type option is a required parameter. Its value is either cell, date, text,

formula, etc. Each parameter has sub-parameters such as criteria, value,

format, etc.

 type is the most common conditional formatting type. It is used

when a format is applied to a cell based on a simple criterion.

 criteria parameter sets the condition by which the cell data will be

evaluated. All the logical operator in addition to between and not

between operators are the possible values of criteria parameter.

 value parameter is the operand of the criteria that forms the rule.

 format parameter is the Format object (returned by the

add_format() method). This defines the formatting features such as

font, color, etc. to be applied to cells satisfying the criteria.

The date type is similar the cell type and uses the same criteria and values.

However, the value parameter should be given as a datetime object.

The text type specifies Excel's "Specific Text" style conditional format. It is

used to do simple string matching using the criteria and value parameters.

When formula type is used, the conditional formatting depends on a user

defined formula.

XlsxWriter

75

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data = [['Anil', 45, 55, 50], ['Ravi', 60, 70, 80],

 ['Kiran', 65, 75, 85], ['Karishma', 55, 65, 45]]

for row in range(len(data)):

 ws.write_row(row,0, data[row])

f1 = wb.add_format({'font_color': 'blue', 'bold':True})

ws.conditional_format('A1:D4',

 {'type':'formula',

 'criteria':'=AVERAGE($B1:$D1)>60',

 'value':50,

 'format':f1

 })

wb.close()

Output:

Open the resultant workbook using MS Excel. We can see the rows satisfying

the above condition displayed in blue color according to the format object.

The conditional format rule manager also shows the criteria that we have

set in the above code.

XlsxWriter

76

XlsxWriter

77

One of the most important features of Excel is its ability to convert data into

chart. A chart is a visual representation of data. Different types of charts

can be generated from the Chart menu.

To generate charts programmatically, XlsxWriter library has a Chart class.

Its object is obtained by calling add_chart() method of the Workbook

class. It is then associated with the data ranges in the worksheet with the

help of add_series() method. The chart object is then inserted in the

worksheet using its insert_chart() method.

16. XlsxWriter – Adding Charts

XlsxWriter

78

Example

Given below is the code for displaying a simple column chart.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

chart = wb.add_chart({'type': 'column'})

data = [

 [10, 20, 30, 40, 50],

 [20, 40, 60, 80, 100],

 [30, 60, 90, 120, 150],

]

worksheet.write_column('A1', data[0])

worksheet.write_column('B1', data[1])

worksheet.write_column('C1', data[2])

chart.add_series({'values': '=Sheet1!A1:A5'})

chart.add_series({'values': '=Sheet1!B1:B5'})

chart.add_series({'values': '=Sheet1!C1:C5'})

worksheet.insert_chart('B7', chart)

wb.close()

XlsxWriter

79

Output:

The generated chart is embedded in the worksheet and appears as follows:

The add_series() method has following additional parameters:

 values: This is the most important property mandatory option. It

links the chart with the worksheet data that it displays.

 categories: This sets the chart category labels. If not given, the

chart will just assume a sequential series from 1…n.

 name: Set the name for the series. The name is displayed in the

formula bar.

 line: Set the properties of the series line type such as color and

width.

 border: Set the border properties of the series such as color and

style.

 fill: Set the solid fill properties of the series such as color.

 pattern: Set the pattern fill properties of the series.

 gradient: Set the gradient fill properties of the series.

XlsxWriter

80

 data_labels: Set data labels for the series.

 points: Set properties for individual points in a series.

In the following examples, while adding the data series, the value and

categories properties are defined. The data for the example is:

Add the worksheet data that the charts will refer to.

headings = ['Name', 'Phy', 'Maths']

data = [

 ["Jay", 30, 60],

 ["Mohan", 40, 50],

 ["Veeru", 60, 70],

]

After creating the chart object, the first data series corresponds to the

column with phy as the value of name property. Names of the students in

the first column are used as categories

chart1.add_series({

 'name': '=Sheet1!B1',

 'categories': '=Sheet1!A2:A4',

 'values': '=Sheet1!B2:B4',

})

The second data series too refers to names in column A as categories and

column C with heading as Maths as the values property.

chart1.add_series({

 'name': ['Sheet1', 0, 2],

 'categories': ['Sheet1', 1, 0, 3, 0],

 'values': ['Sheet1', 1, 2, 3, 2],

})

XlsxWriter

81

Example

Here is the complete example code:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

chart1 = wb.add_chart({'type': 'column'})

Add the worksheet data that the charts will refer to.

headings = ['Name', 'Phy', 'Maths']

data = [

 ["Jay", 30, 60],

 ["Mohan", 40, 50],

 ["Veeru", 60, 70],

]

worksheet.write_row(0,0, headings)

worksheet.write_row(1,0, data[0])

worksheet.write_row(2,0, data[1])

worksheet.write_row(3,0, data[2])

chart1.add_series({

 'name': '=Sheet1!B1',

 'categories': '=Sheet1!A2:A4',

 'values': '=Sheet1!B2:B4',

})

chart1.add_series({

 'name': ['Sheet1', 0, 2],

 'categories': ['Sheet1', 1, 0, 3, 0],

 'values': ['Sheet1', 1, 2, 3, 2],

})

XlsxWriter

82

worksheet.insert_chart('B7', chart1)

wb.close()

Output:

The worksheet and the chart based on it appears as follows:

The add_series() method also has data_labels property. If set to True,

values of the plotted data points are displayed on top of each column.

Example:

Here is the complete code example for add_series() method:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

chart1 = wb.add_chart({'type': 'column'})

XlsxWriter

83

Add the worksheet data that the charts will refer to.

headings = ['Name', 'Phy', 'Maths']

data = [

 ["Jay", 30, 60],

 ["Mohan", 40, 50],

 ["Veeru", 60, 70],

]

worksheet.write_row(0,0, headings)

worksheet.write_row(1,0, data[0])

worksheet.write_row(2,0, data[1])

worksheet.write_row(3,0, data[2])

chart1.add_series({

 'name': '=Sheet1!B1',

 'categories': '=Sheet1!A2:A4',

 'values': '=Sheet1!B2:B4',

 'data_labels': {'value':True},

})

chart1.add_series({

 'name': ['Sheet1', 0, 2],

 'categories': ['Sheet1', 1, 0, 3, 0],

 'values': ['Sheet1', 1, 2, 3, 2],

 'data_labels': {'value':True},

})

worksheet.insert_chart('B7', chart1)

wb.close()

XlsxWriter

84

Output:

Execute the code and open Hello.xlsx. The column chart now shows the

data labels.

The data labels can be displayed for all types of charts. Position parameter

of data label can be set to top, bottom, left or right.

XlsxWriter supports the following types of charts:

 area: Creates an Area (filled line) style chart.

 bar: Creates a Bar style (transposed histogram) chart.

 column: Creates a column style (histogram) chart.

 line: Creates a Line style chart.

 pie: Creates a Pie style chart.

 doughnut: Creates a Doughnut style chart.

 scatter: Creates a Scatter style chart.

 stock: Creates a Stock style chart.

 radar: Creates a Radar style chart.

Many of the chart types also have subtypes. For example, column, bar, area

and line charts have sub types as stacked and percent_stacked. The type

and subtype parameters can be given in the add_chart() method.

XlsxWriter

85

workbook.add_chart({'type': column, 'subtype': 'stacked'})

The chart is embedded in the worksheet with its insert_chart() method

that takes following parameters:

worksheet.insert_chart(location, chartObj, options)

The options parameter is a dictionary that configures the position and scale

of chart. The option properties and their default values are:

{

 'x_offset': 0,

 'y_offset': 0,

 'x_scale': 1,

 'y_scale': 1,

 'object_position': 1,

 'description': None,

 'decorative': False,

}

The x_offset and y_offset values are in pixels, whereas x_scale and

y_scale values are used to scale the chart horizontally / vertically. The

description field can be used to specify a description or "alt text" string for

the chart.

The decorative parameter is used to mark the chart as decorative, and thus

uninformative, for automated screen readers. It has to be set to True/False.

Finally, the object_position parameter controls the object positioning of

the chart. It allows the following values:

 1: Move and size with cells (the default).

 2: Move but don't size with cells.

 3: Don't move or size with cells.

XlsxWriter

86

The default appearance of chart can be customized to make it more

appealing, explanatory and user friendly. With XlsxWriter, we can do

following enhancements to a Chart object:

 Set and format chart title

 Set the X and Y axis titles and other parameters

 Configure the chart legends

 Chat layout options

 Setting borders and patterns

Title

You can set and configure the main title of a chart object by calling its

set_title() method. Various parameters that can be are as follows:

 name: Set the name (title) for the chart to be displayed above the

chart. The name property is optional. The default is to have no chart

title.

 name_font: Set the font properties for the chart title.

 overlay: Allow the title to be overlaid on the chart.

 layout: Set the (x, y) position of the title in chart relative units.

 none: Excel adds an automatic chart title. The none option turns

this default title off. It also turns off all other set_title() options.

X and Y axis

The two methods set_x_axis() and set_y_axis() are used to axis titles, the

name_font to be used for the title text, the num_font to be used for numbers

displayed on the X and Y axis.

 name: Set the title or caption for the axis.

 name_font: Set the font properties for the axis title.

17. XlsxWriter – Chart Formatting

XlsxWriter

87

 num_font: Set the font properties for the axis numbers.

 num_format: Set the number format for the axis.

 major_gridlines: Configure the major gridlines for the axis.

 display_units: Set the display units for the axis.

In the previous example, where the data of marklist has been shown in the

form of a column chart, we set up the chart formatting options such as the

chart title and X as well as Y axis captions and their other display properties

as follows:

chart1.set_x_axis(

 {'name': 'Students',

 'name_font':{'name':'Arial', 'size':16, 'bold':True},

 })

chart1.set_y_axis(

 {'name': 'Marks',

 'name_font':{'name':'Arial', 'size':16, 'bold':True},

 'num_font':{'name':'Arial', 'italic':True}

 })

Example

Add the above snippet in the complete code. It now looks as given below:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

chart1 = wb.add_chart({'type': 'column'})

Add the worksheet data that the charts will refer to.

headings = ['Name', 'Phy', 'Maths']

XlsxWriter

88

data = [

 ["Jay", 30, 60],

 ["Mohan", 40, 50],

 ["Veeru", 60, 70],

]

worksheet.write_row(0,0, headings)

worksheet.write_row(1,0, data[0])

worksheet.write_row(2,0, data[1])

worksheet.write_row(3,0, data[2])

chart1.add_series({

 'name': '=Sheet1!B1',

 'categories': '=Sheet1!A2:A4',

 'values': '=Sheet1!B2:B4',

})

chart1.add_series({

 'name': ['Sheet1', 0, 2],

 'categories': ['Sheet1', 1, 0, 3, 0],

 'values': ['Sheet1', 1, 2, 3, 2],

})

chart1.set_title ({'name': 'Marklist',

 'name_font': {'name':'Times New Roman', 'size':24}

 })

chart1.set_x_axis({'name': 'Students',

 'name_font': {'name':'Arial', 'size':16, 'bold':True},

 })

XlsxWriter

89

chart1.set_y_axis({'name': 'Marks',

 'name_font':{'name':'Arial', 'size':16, 'bold':True},

 'num_font':{'name':'Arial', 'italic':True}

 })

worksheet.insert_chart('B7', chart1)

wb.close()

Output:

The chart shows the title and axes captions as follows:

XlsxWriter

90

Depending upon the type of chart, the data is visually represented in the

form of columns, bars, lines, arcs, etc. in different colors or patterns. The

chart legend makes it easy to quickly understand which color/pattern

corresponds to which data series.

Working with Chart Legends

To set the legend and configure its properties such as position and font,

XlsxWriter has set_legend() method. The properties are:

 none: In Excel chart legends are on by default. The none=True

option turns off the chart legend

 position: Set the position of the chart legend. It can be set to top,

bottom, left, right, none

 font: Set the font properties (like name, size, bold, italic etc.) of the

chart legend.

 border: Set the border properties of the legend such as color and style.

 fill: Set the solid fill properties of the legend such as color.

 pattern: Set the pattern fill properties of the legend.

 gradient: Set the gradient fill properties of the legend.

Some of the legend properties are set for the chart as below:

chart1.set_legend(

 {'position':'bottom',

 'font': {'name':'calibri','size': 9, 'bold': True}})

Example

Here is the complete code to display legends as per the above

characteristics:

18. XlsxWriter – Chart Legends

XlsxWriter

91

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

chart1 = wb.add_chart({'type': 'column'})

Add the worksheet data that the charts will refer to.

headings = ['Name', 'Phy', 'Maths']

data = [

 ["Jay", 30, 60],

 ["Mohan", 40, 50],

 ["Veeru", 60, 70],

]

worksheet.write_row(0,0, headings)

worksheet.write_row(1,0, data[0])

worksheet.write_row(2,0, data[1])

worksheet.write_row(3,0, data[2])

chart1.add_series({

 'name': '=Sheet1!B1',

 'categories': '=Sheet1!A2:A4',

 'values': '=Sheet1!B2:B4',

})

chart1.add_series({

 'name': ['Sheet1', 0, 2],

 'categories': ['Sheet1', 1, 0, 3, 0],

 'values': ['Sheet1', 1, 2, 3, 2],

})

chart1.set_title ({'name': 'Marklist', 'name_font':

 {'name':'Times New Roman', 'size':24}})

XlsxWriter

92

chart1.set_x_axis({'name': 'Students', 'name_font':

 {'name':'Arial', 'size':16, 'bold':True},})

chart1.set_y_axis({'name': 'Marks','name_font':

 {'name':'Arial', 'size':16, 'bold':True},

 'num_font':{'name':'Arial', 'italic':True}})

chart1.set_legend({'position':'bottom', 'font':

 {'name':'calibri','size': 9, 'bold': True}})

worksheet.insert_chart('B7', chart1)

wb.close()

Output:

The chart shows the legend below the caption of the X axis.

XlsxWriter

93

In the chart, the columns corresponding to physics and maths are shown in

different colors. The small colored box symbols to the right of the chart are

the legends that show which color corresponds to physics or maths.

XlsxWriter

94

The bar chart is similar to a column chart, except for the fact that the data

is represented in proportionate horizontal bars instead of vertical columns.

To produce a bar chart, the type argument of add_chart() method must

be set to 'bar'

chart1 = workbook.add_chart({'type': 'bar'})

The bar chart appears as follows:

There are two subtypes of bar chart, namely stacked and percent_stacked.

In the stacked chart, the bars of different colors for a certain category are
placed one after the other. In a percent_stacked chart, the length of each

bar shows its percentage in the total value in each category.

chart1 = workbook.add_chart({

 'type': 'bar',

 'subtype': 'percent_stacked'

})

Example

Program to generate percent stacked bar chart is given below:

19. XlsxWriter – Bar Chart

XlsxWriter

95

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

chart1 = wb.add_chart({'type': 'bar', 'subtype': 'percent_stacked'})

Add the worksheet data that the charts will refer to.

headings = ['Name', 'Phy', 'Maths']

data = [

 ["Jay", 30, 60],

 ["Mohan", 40, 50],

 ["Veeru", 60, 70],

]

worksheet.write_row(0,0, headings)

worksheet.write_row(1,0, data[0])

worksheet.write_row(2,0, data[1])

worksheet.write_row(3,0, data[2])

chart1.add_series({

 'name': '=Sheet1!B1',

 'categories': '=Sheet1!A2:A4',

 'values': '=Sheet1!B2:B4',

})

chart1.add_series({

 'name': ['Sheet1', 0, 2],

 'categories': ['Sheet1', 1, 0, 3, 0],

 'values': ['Sheet1', 1, 2, 3, 2],

})

chart1.set_title ({'name': 'Marklist', 'name_font':

XlsxWriter

96

 {'name':'Times New Roman', 'size':24}})

chart1.set_x_axis({'name': 'Students', 'name_font':

 {'name':'Arial', 'size':16, 'bold':True}, })

chart1.set_y_axis({'name': 'Marks','name_font':

 {'name':'Arial', 'size':16, 'bold':True},

 'num_font':{'name':'Arial', 'italic':True}})

chart1.set_legend({'position':'bottom', 'font':

 {'name':'calibri','size': 9, 'bold': True}})

worksheet.insert_chart('B7', chart1)

wb.close()

Output:

The output file will look like the one given below:

XlsxWriter

97

A line shows a series of data points connected with a line along the X-axis.

It is an independent axis because the values on the X-axis do not depend

on the vertical Y-axis.

The Y-axis is a dependent axis because its values depend on the X-axis and

the result is the line that progress horizontally.

Working with XlsxWriter Line Chart

To generate the line chart programmatically using XlsxWriter, we use

add_series().The type of chart object is defined as 'line'.

In the following example, we shall plot line chart showing the sales figures

of two products over six months. Two data series corresponding to sales

figures of Product A and Product B are added to the chart with add_series()

method.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

headings = ['Month', 'Product A', 'Product B']

data = [

 ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June'],

 [10, 40, 50, 20, 10, 50],

 [30, 60, 70, 50, 40, 30],

]

bold=wb.add_format({'bold':True})

worksheet.write_row('A1', headings, bold)

worksheet.write_column('A2', data[0])

worksheet.write_column('B2', data[1])

20. XlsxWriter – Line Chart

XlsxWriter

98

worksheet.write_column('C2', data[2])

chart1 = wb.add_chart({'type': 'line'})

chart1.add_series({

 'name': '=Sheet1!B1',

 'categories': '=Sheet1!A2:A7',

 'values': '=Sheet1!B2:B7',

})

chart1.add_series({

 'name': ['Sheet1', 0, 2],

 'categories': ['Sheet1', 1, 0, 6, 0],

 'values': ['Sheet1', 1, 2, 6, 2],

})

chart1.set_title ({'name': 'Sales analysis'})

chart1.set_x_axis({'name': 'Months'})

chart1.set_y_axis({'name': 'Units'})

worksheet.insert_chart('D2', chart1)

wb.close()

Output:

After executing the above program, here is how XlsxWriter generates the

Line chart:

XlsxWriter

99

Along with data_labels, the add_series() method also has a marker

property. This is especially useful in a line chart. The data points are

indicated by marker symbols such as a circle, triangle, square, diamond etc.

Let us assign circle and square symbols to the two data series in this chart.

chart1.add_series({

 'name': '=Sheet1!B1',

 'categories': '=Sheet1!A2:A7',

 'values': '=Sheet1!B2:B7',

 'data_labels': {'value': True},

 'marker': {'type': 'circle'},

})

chart1.add_series({

 'name': ['Sheet1', 0, 2],

 'categories': ['Sheet1', 1, 0, 6, 0],

 'values': ['Sheet1', 1, 2, 6, 2],

 'data_labels': {'value': True},

 'marker': {'type': 'square'},})

XlsxWriter

100

The data labels and markers are added to the line chart.

Line chart also supports stacked and percent_stacked subtypes.

XlsxWriter

101

A pie chart is a representation of a single data series into a circle, which is

divided into slices corresponding to each data item in the series. In a pie

chart, the arc length of each slice is proportional to the quantity it

represents. In the following worksheet, quarterly sales figures of a product
are displayed in the form of a pie chart.

Working with XlsxWriter Pie Chart

To generate the above chart programmatically using XlsxWriter, we first
write the following data in the worksheet.

headings = ['Category', 'Values']

data = [

 ['Q1', 'Q2', 'Q3', 'Q4'],

 [125, 60, 100, 80],

]

worksheet.write_row('A1', headings, bold)

worksheet.write_column('A2', data[0])

21. XlsxWriter – Pie Chart

XlsxWriter

102

worksheet.write_column('B2', data[1])

A Chart object with type=pie is declared and the cell range B1:D1 is used

as value parameter for add_series() method and the quarters (Q1, Q2,

Q3 and Q4) in column A are the categories.

chart1.add_series({

 'name': 'Quarterly sales data',

 'categories': ['Sheet1', 1, 0, 4, 0],

 'values': ['Sheet1', 1, 1, 4, 1],

})

chart1.set_title({'name': 'Pie Chart of Quarterly Sales'})

In the pie chart, we can use data_labels property to represent the percent
value of each pie by setting percentage=True.

Example

The complete program for pie chart generation is as follows:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

headings = ['Category', 'Values']

data = [

 ['Q1', 'Q2', 'Q3', 'Q4'],

 [125, 60, 100, 80],

]

bold=wb.add_format({'bold':True})

worksheet.write_row('A1', headings, bold)

worksheet.write_column('A2', data[0])

worksheet.write_column('B2', data[1])

chart1 = wb.add_chart({'type': 'pie'})

XlsxWriter

103

chart1.add_series({

 'name': 'Quarterly sales data',

 'categories': ['Sheet1', 1, 0, 4, 0],

 'values': ['Sheet1', 1, 1, 4, 1],

 'data_labels': {'percentage':True},

})

chart1.set_title({'name': 'Pie Chart of Quarterly Sales'})

worksheet.insert_chart('D2', chart1)

wb.close()

Output:

Have a look at the pie chart that the above program produces.

XlsxWriter

104

Doughnut Chart

The doughnut chart is a variant of the pie chart, with a hole in its center,

and it displays categories as arcs rather than slices. Both make

part-to-whole relationships easy to grasp at a glance. Just change the chart

type to doughnut.

chart1 = workbook.add_chart({'type': 'doughnut'})

The doughnut chart of the data in above example appears as below:

XlsxWriter

105

A sparkline is a small chart, that doesn't have axes or coordinates. It gives

a representation of variation of a certain parameter. Normal charts are

bigger in size, with a lot of explanatory features such as title, legend, data

labels etc. and are set off from the accompanying text. Sparkline on the

other hand is small in size and can be embedded inside the text, or a

worksheet cell that has its context.

Feature of Sparkline was introduced by Edward Tufte in 1983. Microsoft

introduced sparklines in Excel 2010. We can find sparkline option in the

insert ribbon of Excel software.

Sparklines are of three types:

 line: Similar to line chart

 column: Similar to column chart

 win_loss: Whether each value is positive (win) or negative (loss).

Working with XlsxWriter Sparklines

XlsxWriter module has add_sparkline() method. It basically needs the cell

location of the sparkline and the data range to be represented as a

sparkline. Optionally, other parameters such as type, style, etc. are

provided in the form of dictionary object. By default, the type is line.

Example

Following program represents same list of numbers in line and column

sparklines.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data=[12,23,9,17,31,3,7,21,10,15]

22. XlsxWriter – Sparklines

XlsxWriter

106

ws.write_row('A1', data)

ws.set_column('K:K', 40)

ws.set_row(0, 30)

ws.add_sparkline('K1', {'range':'Sheet1!A1:J1'})

ws.write_row('A5', data)

ws.set_column('K:K', 40)

ws.set_row(4, 30)

ws.add_sparkline('K5', {'range':'Sheet1!A5:J5', 'type':'column'})

wb.close()

Output:

In cell K, the sparklines are added.

The properties are:

 range: is the mandatory parameter. It specifies the cell data range

that the sparkline will plot.

 type: specifies the type of sparkline. There are 3 available sparkline

types are line, column and win_loss.

XlsxWriter

107

 markers: Turn on the markers for line style sparklines

 style: The sparkline styles defined in MS Excel. There are 36 style

types.

 negative_points: If set to True, the negative points in a sparkline

are highlighted.

Example

The following program produces a line sparkline with markers and a

win_loss sparkline having negative points highlighted.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data=[12,23,9,17,31,3,7,21,10,15]

ws.write_row('A1', data)

ws.set_column('K:K', 40)

ws.set_row(0, 30)

data=[1,1,-1,-1,-1,1,1,1,-1,-1]

ws.write_row('A5', data)

ws.set_column('K:K', 40)

ws.set_row(4, 30)

ws.add_sparkline('K1', {'range':'Sheet1!A1:J1', 'markers':True})

ws.add_sparkline('K5', {'range':'Sheet1!A5:J5', 'type':'win_loss',

 'negative_points':True})

wb.close()

XlsxWriter

108

Output:

Line Sparkline in K1 has markers. The sparkline in K5 shows negative points

highlighting.

Example – Style Types

Following code displays a series of numbers in column sparkline. Ten

different style types are used here.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data=[12,23,9,17,31,3,7,21,10,15]

ws.write_row('C3', data)

ws.set_column('B:B',40)

for i in range(1,11):

 ws.write(i+4,0, 'style {}'.format(i))

 ws.add_sparkline(i+4,1,

 {'range':'Sheet1!C3:L3',

XlsxWriter

109

 'type':'column',

 'style':i})

wb.close()

Output:

It will produce the following output:

XlsxWriter

110

Data validation feature in Excel allows you to control what a user can

enter into a cell. You can use it to ensure that the value in a cell is a

number/date within a specified range, text with required length, or to

present a dropdown menu to choose the value from.

The data validation tools are available in the Data menu. The first tab allows

you to set a validation criterion. Following figure shows that criteria requires

the cell should contain an integer between 1 to 25:

In the second tab, set the message to be flashed when user's cursor is on

the desired cell, which in this case is 'Enter any integer between 1 to 25'.

You can also set the message title; in this case it is Age.

23. XlsxWriter – Data Validation

XlsxWriter

111

The third tab allows asks you to define any error message you would like to

flash if the validation criteria fails.

When the user places the cursor in I10 (for which the validation is set), you

can see the input message.

XlsxWriter

112

When the entered number is not in the range, the error message will flash.

Working with XlsxWriter Data Validation

You can set the validation criteria, input and error message

programmatically with data_validation() method.

worksheet.data_validation('I10',

 {'validate': 'integer','criteria': 'between',

 'minimum': 1,'maximum': 25,

 'input_title': 'Enter an integer:',

 'input_message': 'between 1 and 25',

 'error_title': 'Input value is not valid!',

 'error_message': 'It should be an integer
between 1 and 25'

 })

XlsxWriter

113

The data_validation() method accepts options parameter as a dictionary

with following parameters:

 validate: It is used to set the type of data that you wish to validate.

Allowed values are integer, decimal, list, date, time, length etc.

 criteria: It is used to set the criteria for validation. It can be set to

any logical operator including between/ not between, ==, !=, <, >, <=,

>=, etc.

 value: Sets the limiting value to which the criteria is applied. It is

always required. When using the list validation, it is given as a

Comma Separated Variable string.

 input_title: Used to set the title of the input message when the

cursor is placed in the target cell.

 input_message: The message to be displayed when a cell is

entered.

 error_title: The title of the error message to be displayed when

validation criteria is not met.

 error_message: Sets the error message. The default error

message is "The value you entered is not valid. A user has restricted

values that can be entered into the cell."

Example

Following usage of data_validation() method results in the behavior of

data validation feature as shown in the above figures.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

worksheet.data_validation('I10',

 {'validate': 'integer','criteria': 'between',

 'minimum': 1,'maximum': 25,

XlsxWriter

114

 'input_title': 'Enter an integer:',

 'input_message': 'between 1 and 25',

 'error_title': 'Input value is not valid!',

 'error_message':'It should be an integer between 1
and 25'})

wb.close()

As another example, the cell I10 is set a validation criterion so as to force

the user choose its value from a list of strings in a drop down.

worksheet.data_validation('I10',

 {'validate': 'list',

 'source': ['Mumbai', 'Delhi', 'Chennai', 'Kolkata'],

 'input_title': 'Choose one:',

 'input_message': 'Select a value from th list',})

Example:

The modified program for validation with the drop down list is as follows:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

worksheet.data_validation('I10',

 {'validate': 'list',

 'source': ['Mumbai', 'Delhi', 'Chennai', 'Kolkata'],

 'input_title': 'Choose one:',

 'input_message': 'Select a value from th list',})

wb.close()

XlsxWriter

115

Output:

The dropdown list appears when the cursor is placed in I10 cell:

Example:

If you want to make the user enter a string of length greater than 5, use >=

as criteria and value set to 5

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

worksheet.data_validation('I10',{'validate': 'length',

 'criteria': '>=','value': 5,'input_title': 'Enter name:',

 'input_message': 'Minimum length 5 character',

 'error_message':'Name should have at least 5

characters'})

wb.close()

XlsxWriter

116

Output:

If the string is having less than 5 characters, the error message pops up as

follows:

XlsxWriter

117

In Excel, you can group rows or columns having same value of a particular

column (or row)) so that they can be hidden or displayed with a single

mouse click. This feature is called to as outlines and grouping. It helps

in displaying sub-totals or summaries. This feature can be found in MS excel

software's Data->Outline group.

To use this feature, the data range must have all rows should be in the

sorted order of values in one column. Suppose we have sales figures of

different items. After sorting the range on name of item, click on the
Subtotal option in the Outline group. Following dialog box pops up.

The worksheet shows item-wise subtotal of sales and at the end the grand

total. On the left of the worksheet, the outline levels are shown. The original

data is at level 3, the subtotals at level 2 and grand total at level 1.

24. XlsxWriter – Outlines and Grouping

XlsxWriter

118

Working with Outlines and Grouping

To do this using XlsxWriter, we need to use the level property of the
set_row() method. The data rows are set at level 2.

ws.set_row(row, None, None, {'level': 2})

The rows for subtotal are having level 1.

ws.set_row(row, None, None, {'level': 1})

We use SUBTOTAL() function to calculate and display the sum of sales

figures in one group.

Example

The complete code is given below:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

XlsxWriter

119

headings=['Item', 'Sales']

data=[

 ['Apple', 45], ['Apple', 84], ['Apple', 125],

 ['Mango', 32], ['Mango', 65], ['Mango', 90],

 ['Oranges', 60], ['Oranges', 75], ['Oranges',100],

]

ws.write_row('A1', headings)

item='Apple'

rownum=1

startrow=1

for row in data:

 if row[0]==item:

 ws.set_row(rownum, None, None, {'level': 2})

 ws.write_row(rownum,0, row)

 rownum+=1

 else:

 ws.set_row(rownum, None, None, {'level': 1})

 ws.write(rownum, 0, item+' Subtotal')

 cellno='B{}:B{}'.format(startrow,rownum)

 print (cellno)

 ws.write(rownum,1,'=SUBTOTAL(9,'+cellno+')')

 # rownum+=1

 item=data[rownum][0]

 rownum+=1

 ws.set_row(rownum, None, None, {'level': 2})

 ws.write_row(rownum,0, row)

 rownum+=1

 startrow=rownum

else:

 ws.set_row(rownum, None, None, {'level': 1})

 ws.write(rownum, 0, item+' Subtotal')

XlsxWriter

120

 cellno='B{}:B{}'.format(startrow,rownum)

 ws.write(rownum,1,'=SUBTOTAL(9,'+cellno+')')

rownum+=1

ws.write(rownum, 0, 'Grand Total')

cellno='B{}:B{}'.format(1,rownum)

ws.write(rownum,1,'=SUBTOTAL(9,'+cellno+')')

wb.close()

Output:

Run the code and open hello.xlsx using Excel. As we can see, the outlines

are displayed on the left.

At each level, the minus sign indicates that the rows can be collapsed and

only the subtotal row will be displayed.

XlsxWriter

121

This figure shows all rows at level 2 have been collapsed. It now shows

plus symbol in the outline which means that the data rows can be expanded.

If you click the minus symbol at level 1, only the grand total will remain on

the worksheet.

XlsxWriter

122

The freeze_panes() method

The freeze_panes() method of Worksheet object in XlsxWriter library

divides or splits the worksheet into horizontal or vertical regions known as

panes, and "freezes" either or both of these panes so that if we scroll down

or scroll down or scroll towards right, the panes (top or left respectively)

remains stationary.

The method requires the parameters row and col to specify the location of

the split. It should be noted that the split is specified at the top or left of a

cell and that the method uses zero based indexing. You can set one of the

row and col parameters as zero if you do not want either a vertical or

horizontal split.

Example

The worksheet in the following example displays incrementing multiples of

the column number in each row, so that each cell displays product of row

number and column number.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

format1=wb.add_format({'bg_color':'#D9D9D9', 'bold':True})

for col in range(0, 15):

 worksheet.write(0, col, col+1, format1)

for row in range(1, 51):

 for col in range(0,15):

 if col==0:

25. XlsxWriter – Freeze and Split Panes

XlsxWriter

123

 worksheet.write(row,col,(col+1)*(row + 1), format1)

 else:

 worksheet.write(row,col,(col+1)*(row + 1))

Freeze pane on the top row.

worksheet.freeze_panes(1, 0)

wb.close()

Output:

We then freeze the top row pane. As a result, after opening the worksheet,

if the cell pointer is scrolled down, the top row always remains on the

worksheet.

Similarly, we can make the first column stationery.

Freeze pane on the first column.

worksheet.freeze_panes(0, 1)

The following screenshot shows that column A remains visible even if we
scroll towards the right.

XlsxWriter

124

By setting row and column parameter in freeze_panes() method to 1, both

the top row and leftmost column will freeze.

Freeze pane on the first row, first column.

worksheet.freeze_panes(1, 1)

Open the resulting worksheet and scroll the cell cursor around. You will find

that row and column numbers in top row and leftmost column, which have

been formatted in bold and with a background color, are visible always.

XlsxWriter

125

The split_panes() method

The split_panes() method also divides the worksheet into horizontal or

vertical regions known as panes, but unlike freeze_panes() method, the

splits between the panes will be visible to the user and each pane will have
its own scroll bars.

The method has the parameters "y" and "x" that are used to specify the

vertical and horizontal position of the split. These parameters are in terms

of row height and column width used by Excel. The row heights and column

widths have default values as 15 for a row and 8.43 for a column.

You can set one of the "y" and "x" parameters as zero if you do not want
either a vertical or horizontal split.

To create a split at the 10th row and 7th column, the split_panes() method

is used as follows:

worksheet.split_panes(15*10, 8.43*7)

You will find the splitters at 10th row and 7th column of the worksheet. You

can scroll the panes to the left and right of vertical splitter and to the top

and bottom of horizontal splitter. Note that the other panes will remain

constant.

Example

Here's the complete code that creates the splitter, and below that the output

is shown:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

format1=wb.add_format({'bg_color':'#D9D9D9', 'bold':True})

for col in range(0, 15):

 worksheet.write(0, col, col+1, format1)

for row in range(1, 51):

 for col in range(0,15):

 if col==0:

XlsxWriter

126

 worksheet.write(row,col,(col+1)*(row + 1), format1)

 else:

 worksheet.write(row,col,(col+1)*(row + 1))

worksheet.split_panes(15*10, 8.43*7)

wb.close()

Output:

Run the code and open hello.xlsx using Excel. As we can see, the

worksheet is split into different panes at 10th row and 7th column.

XlsxWriter

127

The worksheet object's hide() method makes the worksheet disappear till

it is unhidden through Excel menu.

In the following worksheet, there are three sheets, of which sheet2 is

hidden.

sheet1 = workbook.add_worksheet()

sheet2 = workbook.add_worksheet()

sheet3 = workbook.add_worksheet()

Hide Sheet2. It won't be visible until it is unhidden in Excel.

worksheet2.hide()

It will create the following worksheet:

You can't hide the "active" worksheet, which generally is the first

worksheet, since this would cause an Excel error. So, in order to hide the

first sheet, you will need to activate another worksheet.

26. XlsxWriter – Hide/Protect Worksheet

XlsxWriter

128

sheet2.activate()

sheet1.hide()

Hide Specific Rows or Columns

To hide specific rows or columns in a worksheet, set hidden parameter to 1

in set_row() or set_column() method. The following statement hides the

columns C, D and E in the active worksheet.

worksheet.set_column('C:E', None, None, {'hidden': 1})

Example

Consider the following program:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

format1=wb.add_format({'bg_color':'#D9D9D9', 'bold':True})

for col in range(0, 15):

 worksheet.write(0, col, col+1, format1)

for row in range(1, 51):

 for col in range(0,15):

 if col==0:

 worksheet.write(row,col,(col+1)*(row + 1), format1)

 else:

 worksheet.write(row,col,(col+1)*(row + 1))

worksheet.set_column('C:E', None, None, {'hidden': 1})

wb.close()

XlsxWriter

129

Output:

As a result of executing the above code, the columns C, D and E are not

visible in the worksheet below:

Similarly, we can hide rows with set_row() method with the help of hidden

parameter.

for row in range(5, 7):

 worksheet.set_row(row, None, None, {'hidden':1})

Here is the result:

XlsxWriter

130

In Excel, a text box is a graphic object that can be placed anywhere on the

worksheet, and can be moved around if needed. Desired formatting features

such as font (color, size, name etc.), alignment, fill effects, orientation etc.

can be applied on the text contained in the text box.

Working with XlsxWriter – Textbox

In XlsxWriter, there is insert_textbox() method to place text box on the

worksheet. The cell location of the text box and the text to be written in it

must be given. Additionally, different formatting options are given in the

form of a dictionary object.

Example

The following code displays a text box at cell C5, the given string is

displayed with font and alignment properties as shown below:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

text = 'Welcome to TutorialsPoint'

options = {'font': {'color': 'red','size': 14},

 'align': {'vertical': 'middle','horizontal': 'center'}

 }

worksheet.insert_textbox('C5', text, options)

wb.close()

27. XlsxWriter – Textbox

XlsxWriter

131

Output:

Open the worksheet 'hello.xlsx' with Excel app. The text box appears as

below:

Textbox Options – fill

The text box is by default 192X120 pixels in size (corresponds to 3 columns

and 6 rows). This size can be changed with width and height parameters,

both given in pixels. One of the parameters acceptable to inset_textbox()

method is the fill parameter. It takes a predefined color name or color

representation in hexadecimal as value.

Example

The following code displays a multi-line string in the custom sized text box

having background filled with red color.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

text = 'TutorialsPoint - Simple Easy Learning\nThe best
resource for Online Education'

XlsxWriter

132

options = {

 'width': 384,

 'height':80,

 'font': {'color': 'blue',

 'bold':True,

 'size': 14},

 'align': {'vertical': 'middle',

 'horizontal': 'center'

 },

 'fill':{'color':'red'},

 }

worksheet.insert_textbox('C5', text, options)

wb.close()

As we can see in the figure below, a text box with multiple lines is rendered

at cell C5.

Textbox Options – text_rotation

XlsxWriter

133

Another important property is the text_rotation. By default, the text

appears horizontally. If required, you may change its orientation by giving

an angle as its value. Look as the following options.

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

worksheet = wb.add_worksheet()

text = 'TutorialsPoint - Simple Easy Learning\nThe best resour
ce for Online Education'

options = {

 'width': 128,

 'height':200,

 'font': {'bold':True, 'name':'Arial', 'size': 14},

 'text_rotation':90,

 }

worksheet.insert_textbox('C5', text, options)

wb.close()

The text now appears in the text box with its vertical orientation.

XlsxWriter

134

The object_position parameter controls the behaviour of the text box. It

can have the following possible values and their effect:

 "1": Move and size with cells (the default).

 "2": Move but don't size with cells.

 "3": Don't move or size with cells.

XlsxWriter

135

It is possible to insert an image object at a certain cell location of the

worksheet, with the help of insert_image() method. Basically, you have

to specify the location of cell using any type of notation and the image to

be inserted.

worksheet.insert_image('C5', 'logo.png')

The insert_image() method takes following optional parameters in a

dictionary.

Parameter Default

'x_offset' 0,

'y_offset' 0,

'x_scale' 1,

'y_scale' 1,

'object_position' 2,

'image_data' None

'url' None

'description' None

'decorative' False

The offset values are in pixels. The x_scale and y_scale parameters are

used to scale the image horizontally and vertically.

The image_data parameter is used to add an in-memory byte stream in

io.BytesIO format.

Example

The following program extracts the image data from a file in the current

folder and uses is as value for image_data parameter.

from io import BytesIO

import xlsxwriter

28. XlsxWriter – Insert Image

XlsxWriter

136

workbook = xlsxwriter.Workbook('hello.xlsx')

worksheet = workbook.add_worksheet()

filename = 'logo.png'

file = open(filename, 'rb')

data = BytesIO(file.read())

file.close()

worksheet.insert_image('C5', filename, {'image_data': data})

workbook.close()

Output:

Here is the view of the resultant worksheet:

XlsxWriter

137

The worksheet page setup methods are related to appearance of the

worksheet when it is printed. These worksheet methods control the

orientation, paper size, margins, etc.

set_landscape()

This method is used to set the orientation of a worksheet's printed page to

landscape.

set_portrait()

This method is used to set the orientation of a worksheet's printed page to
portrait. This is the default orientation.

set_page_view()

This method is used to display the worksheet in "Page View/Layout" mode.

set_paper()

This method is used to set the paper format for the printed output of a

worksheet. It takes index as an integer argument. It is the Excel paper
format index.

Following are some of the paper styles and index values:

Index Paper format Paper size

0 Printer default Printer default

1 Letter 8 1/2 x 11 in

2 Letter Small 8 1/2 x 11 in

3 Tabloid 11 x 17 in

4 Ledger 17 x 11 in

5 Legal 8 1/2 x 14 in

6 Statement 5 1/2 x 8 1/2 in

7 Executive 7 1/4 x 10 1/2 in

8 A3 297 x 420 mm

9 A4 210 x 297 mm

29. XlsxWriter – Page Setup

XlsxWriter

138

set_margin()

This method is used to set the margins of the worksheet when it is printed.

It accepts left, right, top and bottom parameters whose values are in inches.

All parameters are optional The left and right parameters are 0.7 by default,

and top and bottom are 0.75 by default.

XlsxWriter

139

When the worksheet is printed using the above methods, the header and

footer are generated on the paper. The print preview also displays the

header and footer. Both are configured with set_header() and

set_footer() methods. Header and footer string is configured by following

control characters:

Control Category Description

&L Justification Left

&C Center

&R Right

&P Information Page number

&N Total number of pages

&D Date

&T Time

&F File name

&A Worksheet name

&Z Workbook path

&fontsize Font Font size

&"font,style" Font name and style

&U Single underline

&E Double underline

&S Strikethrough

&X Superscript

&Y Subscript

&[Picture] Images Image placeholder

&G Same as &[Picture]

&& Misc. Literal ampersand "&"

30. XlsxWriter – Header and Footer

XlsxWriter

140

Example

The following code uses set_header() and set_footer() methods:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data = [['Anil', 45, 55, 50], ['Ravi', 60, 70, 80],

 ['Kiran', 65, 75, 85],['Karishma', 55, 65, 45]]

for row in range(len(data)):

 ws.write_row(row,0, data[row])

header1 = '&CTutorialspoint'

footer1 = '&LSimply Easy Learning'

ws.set_landscape()

ws.set_paper(9) #A4 paper

ws.set_header(header1)

ws.set_footer(footer1)

ws.set_column('A:A', 50)

wb.close()

Output:

Run the above Python code and open the worksheet. From File menu,

choose Print option. On the right pane, the preview is shown. You should

be able to see the header and footer.

XlsxWriter

141

XlsxWriter

142

In an Excel worksheet, comments can be inserted for various reasons. One

of the uses is to explain a formula in a cell. Also, Excel comments also serve

as reminders or notes for other users. They are useful for cross-referencing

with other Excel workbooks.

From Excel's menu system, comment feature is available on Review menu

in the ribbon.

To add and format comments, XlsxWriter has add_comment() method.

Two mandatory parameters for this method are cell location (either in A1

type or row and column number), and the comment text.

Example

Here is a simple example:

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

data='XlsxWriter Library'

ws.set_column('C:C', 25)

ws.set_row(2, 50)

ws.write('C3', data)

31. XlsxWriter – Cell Comments

XlsxWriter

143

text = 'Developed by John McNamara'

ws.write_comment('C3', text)

wb.close()

Output:

When we open the workbook, a comment will be seen with a marker on top

right corner of C3 cell when the cursor is placed in it.

By default, the comments are not visible until the cursor hovers on the cell

in which the comment is written. You can either show all the comments in

a worksheet by invoking show_comment() method of worksheet object,

or setting visible property of individual comment to True.

ws.write_comment('C3', text, {'visible': True})

Example:

In the following code, there are three comments placed. However, the one

in cell C3 is has been configured with visible property set to False. Hence,

it cannot be seen until the cursor is placed in the cell.

XlsxWriter

144

import xlsxwriter

wb = xlsxwriter.Workbook('hello.xlsx')

ws = wb.add_worksheet()

ws.show_comments()

data='Python'

ws.set_column('C:C', 25)

ws.set_row(0, 50)

ws.write('C1', data)

text = 'Programming language developed by Guido Van Rossum'

ws.write_comment('C1', text)

data= 'XlsxWriter'

ws.set_row(2, 50)

ws.write('C3', data)

text = 'Developed by John McNamara'

ws.write_comment('C3', text, {'visible':False})

data= 'OpenPyXl'

ws.set_row(4, 50)

ws.write('C5', data)

text = 'Developed by Eric Gazoni and Charlie Clark'

ws.write_comment('C5', text, {'visible':True})

wb.close()

Output:

It will produce the following output:

XlsxWriter

145

You can set author option to indicate who is the author of the cell comment.

The author of the comment is also displayed in the status bar at the bottom

of the worksheet.

worksheet.write_comment('C3', 'Atonement', {'author': 'Tutorialspoint'})

The default author for all cell comments can be set using the
set_comments_author() method:

worksheet.set_comments_author('Tutorialspoint')

It will produce the following output:

XlsxWriter

146

Pandas is a popular Python library for data manipulation and analysis. We

can use XlsWriter for writing Pandas dataframes into an Excel worksheet.

To learn the features described in this section, we need to install Pandas

library in the same environment in which XlsxWriter has been installed.

pip3 install pandas

Using XlsxWriter with Pandas

Let us start with a simple example. First, create a Pandas dataframe from

the data from a list of integers. Then use XlsxWriter as the engine to create

a Pandas Excel writer. With the help of this engine object, we can write the

dataframe object to Excel worksheet.

import pandas as pd

df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})

writer = pd.ExcelWriter('hello.xlsx', engine='xlsxwriter')

df.to_excel(writer, sheet_name='Sheet1')

writer.save()

Output:

The worksheet so created shows up as follows:

32. XlsxWriter – Working with Pandas

XlsxWriter

147

Adding Charts to Padas Dataframe

Just as we obtain an object of Workbook class, and then a Worksheet object

by calling its add_worksheet() method, the writer object can also be used

to fetch these objects. Once we get them, the XlsxWriter methods to add

chart, data table etc. can be employed.

In this example, we set up a Pandas dataframe and obtain its dimension (or

shape).

import pandas as pd

df = pd.DataFrame({'Data': [105, 60, 35, 90, 15, 30, 75]})

writer = pd.ExcelWriter('hello.xlsx', engine='xlsxwriter')

df.to_excel(writer, sheet_name='Sheet1')

(max_row, max_col) = df.shape

The workbook and worksheet objects are created from the writer.

workbook = writer.book

worksheet = writer.sheets['Sheet1']

XlsxWriter

148

Rest of things are easy. The chart object is added as we have done earlier.

chart = workbook.add_chart({'type': 'column'})

chart.add_series({'values': ['Sheet1', 1, 1, max_row, 1]})

worksheet.insert_chart(1, 3, chart)

writer.save()

Example

The following code uses Pandas dataframe to write an Excel workbook and

a column chart is prepared by XlsxWriter.

import pandas as pd

df = pd.DataFrame({'Data': [105, 60, 35, 90, 15, 30, 75]})

writer = pd.ExcelWriter('hello.xlsx', engine='xlsxwriter')

df.to_excel(writer, sheet_name='Sheet1')

(max_row, max_col) = df.shape

workbook = writer.book

worksheet = writer.sheets['Sheet1']

chart = workbook.add_chart({'type': 'column'})

chart.add_series({'values': ['Sheet1', 1, 1, max_row, 1]})

worksheet.insert_chart(1, 3, chart)

writer.save()

Output:

The column chart along with the data is shown below:

XlsxWriter

149

Writing Dataframe to Excel Table

Similarly, the dataframe can be written to Excel table object. The dataframe

here is derived from a Python dictionary, where the keys are dataframe

column headers. Each key has list as a value which in turn becomes values

of each column.

import pandas as pd

df = pd.DataFrame({

 'Name': ['Namrata','Ravi','Kiran','Karishma'],

 'Percent': [73.33, 70, 75, 65.5],

 'RollNo': [1, 2,3,4]})

df = df[['RollNo', 'Name', 'Percent']]

(max_row, max_col) = df.shape

XlsxWriter

150

Use xlsxwriter engine to write the dataframe to a worksheet (sheet1)

writer = pd.ExcelWriter('hello.xlsx', engine='xlsxwriter')

df.to_excel(writer, sheet_name='Sheet1', startrow=1,

header=False, index=False)

Following lines give Workbook and Worksheet objects.

workbook = writer.book

worksheet = writer.sheets['Sheet1']

Data in the worksheet is converted to Table with the help of add_table()

method.

column_settings = [{'header': column} for column in df.columns]

worksheet.add_table(0, 0, max_row, max_col - 1, {'columns':

column_settings})

writer.save()

Example

Below is the complete code to write pandas dataframe to Excel table.

import pandas as pd

df = pd.DataFrame({

 'Name': ['Namrata','Ravi','Kiran','Karishma'],

 'Percent': [73.33, 70, 75, 65.5],

 'RollNo': [1, 2,3,4]})

df = df[['RollNo', 'Name', 'Percent']]

(max_row, max_col) = df.shape

writer = pd.ExcelWriter('hello.xlsx', engine='xlsxwriter')

XlsxWriter

151

df.to_excel(writer, sheet_name='Sheet1', startrow=1, header=Fa

lse, index=False)

workbook = writer.book

worksheet = writer.sheets['Sheet1']

column_settings = [{'header': column} for column in df.columns]

worksheet.add_table(0, 0, max_row, max_col - 1, {'columns': co

lumn_settings})

writer.save()

Output:

The Table using default autofilter settings appears at A1 cell onwards.

XlsxWriter

152

In Excel, a macro is a recorded series of steps that can be repeated any

number of times with a shortcut key. The steps performed while recording

the macro are translated into programming instructions VBA which stands

for Visual Basic for Applications. VBA is a subset of Visual basic language,

especially written to automate the tasks in MS Office apps such as Word,

Excel, PowerPoint etc.

The option to record a macro is available in the Developer menu of MS

Excel. If this menu is not seen, it has to be activated by going to the
"File→Options→Customize" ribbon screen.

As shown in the following figure, click the Record Macro button by going to

"View→Macros→Record Macro", and give a suitable name to the macro and

perform desired actions to be recorded. After the steps are over stop the

recording. Assign a desired shortcut so that the recorded action can be

repeated as and it is pressed.

To view the VBA code, edit the macro by going View->Macros->View

Macros. Select the Macro from Macro name and click on Edit.

33. XlsxWriter – VBA Macro

XlsxWriter

153

The VBA editor will be shown. Delete all the steps generated by Excel and

add the statement to popup a message box.

Confirm that the macro works perfectly. Press CTL+Shift+M and the

message box pops up. Save this file with the .xlsm extension. It internally

contains vbaproject.bin, a binary OLE COM container. To extract it from

the Excel macro file, use the vba_extract.py utility.

(xlsxenv) E:\xlsxenv>vba_extract.py test.xlsm

Extracted: vbaProject.bin

XlsxWriter

154

This vbaProject.bin file can now be added to the XlsxWriter workbook using
the add_vba_project() method. On this worksheet, place a button object

at B3 cell, and link it to the macro that we had already created (i.e., macro1)

import xlsxwriter

workbook = xlsxwriter.Workbook('testvba.xlsm')

worksheet = workbook.add_worksheet()

worksheet.set_column('A:A', 30)

workbook.add_vba_project('./vbaProject.bin')

worksheet.write('A3', 'Press the button to say Welcome.')

worksheet.insert_button('B3',

 {'macro': 'macro1',

 'caption': 'Press Me',

 'width': 80, 'height': 30})

workbook.close()

When the above code is executed, the macro enabled workbook named

testvba.xlsm will be created. Open it and click on the button. It will cause

the message box to pop up as shown.

