

Falcon – Python Web Framework

i

About the Tutorial

Falcon is a Python library for developing mission-critical REST APIs and

microservices. It supports both WSGI and ASGI specifications. Falcon

framework has been developed by Kurt Griffiths in January 2013. The latest

version of Falcon is 3.1.0, released in March 2022.

Audience

This tutorial is designed for developers who want to learn building

mission-critical REST APIs and microservices using Falcon, a minimalist

ASGI/WSGI framework.

Prerequisites

Before you proceed, make sure that you understand the basics of procedural

and object-oriented programming in Python. Knowledge of REST

architecture is an added advantage.

Disclaimer & Copyright

 Copyright 2022 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse,

retain, copy, distribute or republish any contents or a part of contents of

this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and

as precisely as possible, however, the contents may contain inaccuracies or

errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the

accuracy, timeliness or completeness of our website or its contents

including this tutorial. If you discover any errors on our website or in this

tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Falcon – Python Web Framework

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. FALCON – INTRODUCTION ..1

Falcon – Important Features ... 1

Falcon – Design Philosophy ... 1

Falcon – Comparison with Other Frameworks ... 2

2. FALCON – ENVIRONMENT SETUP ..4

3. FALCON – WSGI VS ASGI ..6

Web Server Gateway Interface (WSGI) .. 6

Asynchronous Server Gateway Interface (ASGI) .. 7

4. FALCON – HELLO WORLD (WSGI) ..9

5. FALCON – WAITRESS ...12

6. FALCON – ASGI ..14

Hello World – ASGI .. 14

7. FALCON – UVICORN...16

8. FALCON – API TESTING TOOLS ...18

cURL .. 18

Falcon – Python Web Framework

iii

HTTPie ... 19

Postman .. 19

9. FALCON – REQUEST AND RESPONSE ...22

Request ... 22

Response ... 23

10. FALCON – RESOURCE CLASS ..25

11. FALCON – APP CLASS ...28

12. FALCON – ROUTING ..32

Field Converters .. 32

13. FALCON – SUFFIXED RESPONDERS ..38

14. FALCON – INSPECT MODULE ...46

15. FALCON – JINJA2 TEMPLATE ..48

Hello World Template ... 48

Template Variable ... 50

Loop in jinja2 Template ... 52

HTML Form Template .. 54

Multipart Forms .. 57

16. FALCON – COOKIES ..62

17. FALCON – STATUS CODES ..64

18. FALCON – ERROR HANDLING ...66

Falcon – Python Web Framework

iv

Predefined Error Classes.. 66

Redirection .. 68

19. FALCON – HOOKS ..69

20. FALCON – MIDDLEWARE ...73

21. FALCON – CORS ...76

22. FALCON – WEBSOCKET ..77

How Does a WebSocket Function in Falcon? ... 77

23. FALCON – SQLALCHEMY MODELS ...81

Database Engine.. 82

Model class ... 82

on_post() .. 84

on_get() .. 85

on_put() .. 87

on_delete() ... 89

24. FALCON – TESTING ..90

Using unittest .. 91

Using Pytest .. 92

25. FALCON – DEPLOYMENT ...95

Falcon – Python Web Framework

1

Falcon is a Python library for developing mission-critical REST APIs and

microservices. It supports both WSGI and ASGI specifications. Falcon

framework has been developed by Kurt Griffiths in Jan. 2013. The latest

version of Falcon is 3.1.0, released in March 2022.

Falcon is a lightweight web development framework. Its minimalist design

allows the developer to select the best strategies and 3rd-party packages

as required.

Falcon – Important Features

Falcon is released under the terms of the Apache 2.0 License.

Some of the important features of Falcon include:

 Latest version of Falcon supports ASGI, WSGI, as well as WebSocket.

 Falcon provides native support for asyncio.

 Its stable interfaces ensure backwards-compatibility

 Falcon follows REST architectural style for building APIs.

 Class based construction of HTTP resources.

 Highly-optimized, extensible code base.

 Falcon provides easy access to headers and bodies through request

and response classes

 Middleware components and hooks available for DRY request

processing.

 Idiomatic HTTP error responses and exception handling.

Falcon – Design Philosophy

Falcon minimizes the instantiation of number of objects so as to avoid the

expense of creating the object, and to reduce memory usage. The same

instance will be used to serve all requests coming in on that route.

1. Falcon – Introduction

Falcon – Python Web Framework

2

 Exceptions are properly handled by the resource responders

(methods such as on_get(), on_post(), etc.). Falcon doesn't try

very hard to protect responder code from itself. A high-quality Falcon

API should fulfil following requirements:

o Resource responders set response variables to sane values.

o Your code is well-tested, with high code coverage.

o Custom error handlers are provided within each responder to

anticipate, detect, and handle errors.

 The Falcon framework is thread-safe. Separate new Request and

Response objects are created for each incoming HTTP request.

However, a single instance of each resource class attached to a route

is shared among all requests. Middleware objects, hooks, and

custom error handlers, are also shared. Therefore, your WSGI app

as a whole will be thread-safe.

 Starting with version 3.0, Falcon supports asyncio. Use the

falcon.asgi.App class to create an async application, and serve it

via an ASGI application server such as Uvicorn.

 The async version of Falcon supports the ASGI WebSocket protocol.

Falcon – Comparison with Other Frameworks

There are two major categories of Python web frameworks: full-stack and
micro frameworks.

 Full-stack frameworks come with built-in features and libraries.

Django, Turbogears, and Web2Py are full-stack frameworks.

 In contrast, micro-frameworks are minimalistic, only providing the

bare minimum; thus gives developers the freedom to choose official

or third-party extensions and only include plugins which they need.
Flask, Falcon, Pyramid belong to micro framework category.

We compare Falcon framework against different frameworks on the basis of
the following parameters:

Performance

Falcon application is very fast, in comparison with micro frameworks such

as Flask and pyramid. The full stack frameworks are generally slow.

Falcon – Python Web Framework

3

REST Support

Falcon is intended to be a framework of choice for development of REST

APIs and microservices. FastAPI also encourages REST development. Flask

and Django don't have built-in REST support. However, it can be enabled

using extensions.

Templating

Falcon app is not supposed to serve template web pages. It is not bundled

with any templating library. However, one can use jinja2 or Macho

libraries. On the other hand, Flask has a built-in support for jinja2. Django

has its own templating library. FastAPI also can handle any template library

of choice.

Database Support

In Falcon database support is not built-in. It is possible to use SQLAlchemy

models to interact with relational databases like MyQL, PostgreSQL, SQLite

etc. Django on the other hand has its own ORM framework for use out of

the box.

A Flask application also can interact with databases through Flask

extensions. Earlier versions of TurboGears had compatibility with SQLObject

ORM library. The newer version is compatible with SQLAlchemy.

Flexibility

Falcon applications are very flexible. It is ideal for applications that require

a high degree of customization and performance tuning. FastAPI and Flask

too are flexible to code and doesn't restrict users to a particular project or

code layout.

Security

Falcon has no built-in support to ensure security. Other frameworks like

Django and FastAPI ensure high degree of security. Flask also provides

excellent protection against security threats such as CSRF and XSS attacks.

Testing

Falcon offers built-in testing support using unittest and Pytest. Flask and

Django also supports unittest. FastAPI supports unittest and starlette

testing features.

Falcon – Python Web Framework

4

The latest version of Falcon requires Python 3.5 or newer version. The

easiest as well as recommended way to install Falcon is with PIP installer,

preferably in a virtual environment.

The latest stable version can be installed by running the following

command:

pip3 install falcon

To verify if the installation has been performed successfully, import the

library and check its version.

>>> import falcon

>>>falcon.__version__

'3.1.0'

To install the latest beta version, following command should be used:

pip3 install --pre falcon

Right from the early version, Falcon supports WSGI. A Falcon app can be

run with the help of built-in WSGI server in Python's standard library module

wsgiref. However, it is not suitable for production environment, for which

WSGI servers such as gunicorn, waitress or uwsgi are required.

For Falcon on Windows, one can use Waitress, a production-quality,

pure-Python WSGI server. As usual, install it with pip installer.

pip3 install waitress

The Gunicorn server can't be installed on Windows. However, it can be

used inside a Windows Subsystem Linux (WSL) environment on Windows

10. For using gunicorn on Linux, WSL or inside Docker containers, use

pip3 install gunicorn

2. Falcon – Environment Setup

Falcon – Python Web Framework

5

If you want to run an asynchronous Falcon app, an ASGI compliant

application server is required. The Uvicorn server can be used on Windows

as well as Linux systems.

pip3 install uvicorn

Falcon – Python Web Framework

6

Web Server Gateway Interface (WSGI)

Some of the most popular Python web frameworks implement WSGI (stands

for Web Server Gateway Interface). WSGI is essentially a set of

specifications for a universal interface between web server and web

applications, to be implemented by web server software for handling

requests from Python-based web application. WSGI specifications were first

introduced in 2003 (PEP 333) and later updated in 2010 (PEP 3333).

A WSGI Application object is invoked by the server by passing the following

arguments:

 environ: A Python dict object which is similar to CGI environment

variables and certain WSGI specific variables.

 start_response: A callback function to be used by the application

to return its response along with headers and status code.

This object can be any callable object as in Python such as a function,

method, a class or its instance with __call__() method available to it. This

application object must return an iterator consisting of a single byte string.

def application (environ, start_response):

 ...

 ...

 return [("Hello World!".encode("utf-8")]

However, WSGI-enabled servers are synchronous in operation, because of

which the applications are not that efficient. Python started asynchronous

programming support with version 3.4 by introducing the asyncio module

as a part of the standard library.

The asyncio module provides the ability to incorporate in Python

applications a style of concurrent programming (which is often called

cooperative multitasking). In this approach, the operating system doesn’t

obstruct the context switching among different processes. Instead, a

process yields periodically to accommodate other processes so that many

applications can run simultaneously.

3. Falcon – WSGI vs ASGI

Falcon – Python Web Framework

7

In Python’s version 3.5, these two keywords async and await were added.

A Python function defined with the async keyword becomes a coroutine

and hence can’t be run like a normal function. Instead, we need to call it

using asyncio.run (coroutine). The execution of a coroutine can be made

to pause till the completion of another coroutine by the await keyword.

import asyncio

async def main():

 print('hello')

 await asyncio.sleep(5)

 print('world')

asyncio.run(main())

Asynchronous Server Gateway Interface (ASGI)

ASGI stands for Asynchronous Server Gateway Interface (as per its

official documentation, it is a spiritual successor to WSGI), it adds the async

capabilities to Python web servers, applications and frameworks.

An ASGI application is an asynchronous callable object (a user-defined

function or an object of a class having __call__() method). It takes three

arguments as follows:

 scope – A dict containing details of a specific connection

 send – An asynchronous callable, by which event messages can be

sent to the client

 receive – Another asynchronous callable. The application can
receive event messages from the client.

Following is the prototype of a simple ASGI application represented by an

asynchronous function:

async def app(scope, receive, send):

 assert scope['type'] == 'http'

 await send({

Falcon – Python Web Framework

8

 'type': 'http.response.start',

 'status': 200,

 'headers': [

 [b'content-type', b'text/plain'],

],

 })

 await send({

 'type': 'http.response.body',

 'body': b'Hello, world!',

 })

Falcon – Python Web Framework

9

To create a simple Hello World Falcon app, start with importing the library

and declaring an instance of App object.

import falcon

app = falcon.App()

Falcon follows REST architectural style. Declare a resource class that

includes one or more methods representing the standard HTTP verbs. The

following HelloResource class contains on_get() method that is expected

to get called when the server receives GET request. The method returns

Hello World response.

class HelloResource:

 def on_get(self, req, resp):

 """Handles GET requests"""

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello World'

)

To invoke this method, we need to register it to a route or URL. The Falcon

application object handles the incoming requests by assigning the handler

methods to corresponding URLs by add_rule method.

hello = HelloResource()

app.add_route('/hello', hello)

The Falcon application object is nothing but a WSGI application. We can use

the built-in WSGI server in the wsgiref module of Python's standard library.

from wsgiref.simple_server import make_server

if __name__ == '__main__':

4. Falcon – Hello World (WSGI)

Falcon – Python Web Framework

10

with make_server('', 8000, app) as httpd:

print('Serving on port 8000...')

Serve until process is killed

httpd.serve_forever()

Let us put all these code fragments in hellofalcon.py

from wsgiref.simple_server import make_server

import falcon

app = falcon.App()

class HelloResource:

 def on_get(self, req, resp):

 """Handles GET requests"""

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello World'

)

hello = HelloResource()

app.add_route('/hello', hello)

if __name__ == '__main__':

with make_server('', 8000, app) as httpd:

print('Serving on port 8000...')

Serve until process is killed

httpd.serve_forever()

Falcon – Python Web Framework

11

Run this code from the command prompt.

(falconenv) E:\falconenv>python hellofalcon.py

Serving on port 8000...

In another terminal, run the Curl command as follows:

C:\Users\user>curl localhost:8000/hello

Hello World

You can also open a browser window and enter the above URL to obtain the

"Hello World" response.

Falcon – Python Web Framework

12

The development server is not recommended to be used in production

environment. The development server is not efficient, stable, or secure.

Waitress is a production-quality pure-Python WSGI server with very

acceptable performance. It has no dependencies except ones that live in

the Python standard library. It runs on CPython on Unix and Windows.

Make sure that Waitress server has been installed in the working

environment. The library contains serve class whose object is responsible

for serving the incoming requests. The constructor of serve class requires

three parameters.

serve (app, host, port)

The falcon application object is the app parameter. The default values of

host and port are localhost 8080 by default. The listen parameter is a string

as a combination of host:port parameter defaulting to '0.0.0.0:8080'

In the hellofalcon.py code, we import the serve class instead of

simple_server and instantiate its object as follows:

from waitress import serve

import falcon

class HelloResource:

 def on_get(self, req, resp):

 """Handles GET requests"""

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello World'

)

app = falcon.App()

5. Falcon – Waitress

Falcon – Python Web Framework

13

hello = HelloResource()

app.add_route('/hello', hello)

if __name__ == '__main__':

 serve(app, host='0.0.0.0', port=8000)

Execute hellofalcon.py and visit the http://localhost:8000/hello link in the

browser as before. Note that the host 0.0.0.0 makes the localhost publicly

visible.

The Waitress server can be launched from the command line also, as shown

below:

waitress-serve --port=8000 hellofalcon:app

http://localhost:8000/hello

Falcon – Python Web Framework

14

ASGI stands for Asynchronous Server Gateway Interface (as per its

official documentation, it is a spiritual successor to WSGI), it adds the async

capabilities to Python web servers, applications and frameworks.

For running an async web application, we'll need an ASGI application server.

Popular choices include:

 Uvicorn

 Daphne

 Hypercorn

We shall use Uvicorn server for async examples in this tutorial.

Hello World – ASGI

The ASGI related functionality of Falcon is available in the falcon.asgi

module. Hence, we need to import it in the beginning.

import falcon

import falcon.asgi

While the resource class remains the same as in the previous example, the

on_get() method must be declared with async keyword. we have to obtain

the instance of Falson's ASGI app.

app = falcon.asgi.App()

Hence, the hellofalcon.py for ASGI will be as follows:

import falcon

import falcon.asgi

class HelloResource:

 async def on_get(self, req, resp):

 """Handles GET requests"""

6. Falcon – ASGI

Falcon – Python Web Framework

15

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello World'

)

app = falcon.asgi.App()

hello = HelloResource()

app.add_route('/hello', hello)

To run the application, start the Uvicorn server from the command line as

follows:

uvicorn hellofalcon:app –reload

Open the browser and visit http://localhost:/8000/hello. You will see the

response in the browser window.

http://localhost/8000

Falcon – Python Web Framework

16

Uvicorn uses uvloop and httptools libraries. It also provides support for

HTTP/2 and WebSockets, which cannot be handled by WSGI. uvloop is

similar to the built-in asyncio event loop. httptools library handles the

http protocols.

Falcon's ASGI compliant application is launched on Uvicorn server with

following command:

Uvicorn hellofalcon:app – reload

The --reload option enables the debug mode, so that any changes in

app.py will be automatically reflected and the display on the client browser

will be automatically refreshed. In addition, the following command-line

options may be used:

--host TEXT
Bind socket to this host. [default

127.0.0.1]

--port INTEGER Bind socket to this port. [default 8000]

--uds TEXT Bind to a UNIX domain socket.

--fd INTEGER Bind to socket from this file descriptor.

--reload Enable auto-reload.

--reload-dir PATH
Set reload directories explicitly,

defaultcurrent working directory.

--reload-include TEXT
Include files while watching. Includes

'*.py' by default

--reload-exclude TEXT Exclude while watching for files.

--reload-delay FLOAT
Delay between previous and next check

default 0.25

--loop [auto|asyncio|uvloop]
Event loop implementation. [default

auto]

--http [auto|h11|httptools]
HTTP protocol implementation.

[default auto]

--interface auto|asgi|wsgi
Select application interface. [default

auto]

7. Falcon – Uvicorn

Falcon – Python Web Framework

17

--env-file PATH Environment configuration file.

--log-config PATH
Logging configuration file. Supported

formats .ini, .json, .yaml.

--version Display the Uvicorn version and exit.

--app-dir TEXT
Look for APP in the specified directory

default current directory

--help Show this message and exit.

The Uvicorn server can also be launched from within the program instead

of the above command line. To do that, import uvicorn module and call

uvicorn.run() method as shown below:

import uvicorn

if __name__ == "__main__":

uvicorn.run("hellofalcon:app", host="0.0.0.0", port=8000, reload=True)

Change the hellofalcon.py code accordingly, and execute the same from

command prompt. The result can be verified by the curl command or in the

browser as explained earlier.

Falcon – Python Web Framework

18

Falcon is a minimalistic framework suitable for developing APIs. An API is

an interface between two applications. The API developer needs to test its

functionality, reliability, stability, scalability, and performance etc. before

releasing it for use in production environment.

Various API testing tools are available for this purpose. In this section, we

shall learn how to use command line tools Curl and HTTPie, and a GUI tool

called Postman.

cURL

cURL is an open source project that provides libcurl library and a command

line tool called curl that enables transferring data using various protocols.

More than 20 protocols including HTTP are supported. The acronym cURL

stands for Client URL. The syntax for using Curl from command line is:

curl [options] [URL1, URL2,..]

The URL parameter consists of protocol dependent, one or more URL

strings. The Curl command can be customized with various options. Some

of the important command line options are as follows:

 – X : Mention the request method. By default, Curl assumes GET to be the
request method. To send POST, PUT or DELTETE requests, this option must
be used. For example:

Curl –X DELETE http://localhost:8000/student/1

 – H : This option is used to add headers in the request. For example:

Curl –H "Content-Type: application/json" -X GET

http://localhost:8000/students

 – i : When this option is included in the command line, all the

response headers are displayed. For example:

Curl –I –X DELETE http://localhost:8000/student/2

8. Falcon – API Testing Tools

http://localhost:8000/student/1
http://localhost:8000/students
http://localhost:8000/student/2

Falcon – Python Web Framework

19

 – d : To include data in the HTTP request for processing, we have to

use this option, particularly when POST or PUT request is needed.

Curl –H "Content-Type: application/json" -X PUT -d

"{"""marks""":"""50"""}" http://localhost:8000/students/3

 HTTPie

The HTTPie is a command line tool written in Python. It is said to be a "cURL-

like tool for humans". It supports forms and file uploads and generates

nicely formatted colorized terminal output. Its expressive and intuitive

syntax makes it easier to use as compared to Curl.

Examples:

 GET request: http GET localhost:8000/students

 POST request: http POST localhost:8000/students id=4

name="aaa" percent=50

 PUT request: http PUT localhost:8000/students/2 id=3

name="Mathews" percent=55

 DEETE request: http DELETE localhost:8000/students/2

Postman

Postman is a very popular API testing tool. It is a GUI app as against Curl

and HTTPie. It is available in the form of a browser plugin as well as a

desktop application. As the browser plugin doesn't accept requests for

localhost based APIs, we need to download the desktop version from

https://www.postman.com/downloads.

After completing the wizard based installation, start the Postman app and

create a new request.

http://localhost:8000/students/3
https://www.postman.com/downloads

Falcon – Python Web Framework

20

The dropdown shows various HTTP request types to choose from.

Enter http://localhost:8000/hello in the request URL field. The response

pane on the right shows the result.

http://localhost:8000/hello

Falcon – Python Web Framework

21

We shall use the corresponding request types later when we test the Falcon

API for CRUD operations on a SQLite database.

Falcon – Python Web Framework

22

The HTTP protocol states that the client sends a HTTP request to the server

where certain business logic is applied and a response is formulated, which

is redirected towards the client. In case of synchronous transfer between

the two, Python frameworks use WSGI standard, while asynchronous

transfer follows ASGI standard. Falcon supports both.

The WSGI/ASGI server provides Request and Response objects in the

context data. These objects are used by the responders, hooks, middleware

etc. as the parameters. For WSGI apps, the instance of falcon.Request

class is processed. In ASGI apps, it represents falcon.asgi.Request class.

though different, both the classes are designed to have similar properties

and methods so as to minimize the confusion and allow easier portability.

Request

The Request object represents the HTTP request. Since it is provided by the

server, this object is not meant to be instantiated directly by the responder

methods. This object provides the following properties and methods to be

used inside the responder, hooks and middleware methods:

 method: HTTP method requested (e.g., 'GET', 'POST', etc.)

 host: Host request header field

 port: Port used for the request. Default one for the given schema is

returned (80 for HTTP and 443 for HTTPS)

 uri: The fully-qualified URI for the request.

 path: Path portion of the request URI (not including query string).

 query_string: Query string portion of the request URI, without the

preceding '?' character.

 cookies: A dict of name/value cookie pairs.

 content_type: Value of the Content-Type header, or None if the

header is missing.

9. Falcon – Request and Response

Falcon – Python Web Framework

23

 stream: File-like input object for reading the body of the request, if

any. This object provides direct access to the server's data stream

and is non-seekable.

 bounded_stream: file-like wrapper around stream

 headers: Raw HTTP headers from the request

 params: The mapping of request query parameter names to their

values.

 get_cookie_values(name): Return all values provided in the

Cookie header for the named cookie. Alias for the cookies property.

 get_media(): Return a deserialized form of the request stream.

Similar to media property.

 get_param(name): Return the raw value of a query string

parameter as a string. If an HTML form with application/x-www-

form-urlencoded media type is POSTed, Falcon can automatically

parse the parameters from the request body and merge them into

the query string parameters. To enable this functionality, set

auto_parse_form_urlencoded to True via App.req_options.

Response

The Response object represents the server's HTTP response to the client.

Like the Request object, the Response object too is not meant to be directly

instantiated by the responder.

The responder, hook function or middleware method manipulates this

object by accessing following properties and methods:

 status: HTTP status code e.g., '200 OK'. This may be set to a

member of http.HTTPStatus, an HTTP status line string or byte

string, or an int. Falcon provides a number of constants for common

status codes, starting with the HTTP_ prefix, as in:

falcon.HTTP_204.

 media: A serializable object supported by the media handlers

configured via falcon.RequestOptions.

Falcon – Python Web Framework

24

 text: A string representing response content.

 body: Deprecated alias for text.

 data: A Byte string representing response content.

 stream: A file-like object representing response content.

 content_length: Set the Content-Length header. It sets the

content length manually when either text or data property are not

set.

 content_type: Sets the Content-Type header. Falcon's predefined

constants for common media types include falcon.MEDIA_JSON,

falcon.MEDIA_MSGPACK, falcon.MEDIA_YAML, falcon.MEDIA_XML,

falcon.MEDIA_HTML, falcon.MEDIA_JS, falcon.MEDIA_TEXT,

falcon.MEDIA_JPEG, falcon.MEDIA_PNG, and falcon.MEDIA_GIF.

 append_header (name, value): Set or append a header for this

response. Used to set cookies.

 delete_header (name): Delete a header that was previously set

for this response.

 get_header (name): Retrieve the raw string value for the given

header.

 set_cookie (name, value): Set a response cookie. This method

can be called multiple times to add one or more cookies to the

response.

 set_header (name, value): Set a header for this response to a

given value.

 set_stream (stream, content_length): Set both stream and

content_length.

 unset_cookie (name, domain=None, path=None): Unset a

cookie in the response. This method clears the contents of the

cookie, and instructs the user agent to immediately expire its own

copy of the cookie.

Falcon – Python Web Framework

25

Falcon's design borrows several key concepts from the REST architectural

style. REST stands for RElational State Transfer. REST defines how the

architecture of web applications should behave.

REST is a resource-based architecture. Here, everything that the REST

server hosts, be it a file, an image or row in a table of a database, is treated

as a resource, which may have many representations. The REST API

provides a controlled access to these resources so that the client can

retrieve and modify them.

A resource with the server should have only one uniform resource identifier

(URI). It only identifies the resource; it does not specify what action to take

on that resource. Instead, users choose from a set of standard methods.

HTTP verb or method to be used for the operation on the resources. The

POST, GET, PUT and DELETE methods perform CREATE, READ, UPDATE and

DELETE operations respectively.

Falcon uses normal Python classes to represent resources. Such a class acts

as a controller in your application. It converts an incoming request into one

or more internal actions, and then compose a response back to the client

based on the results of those actions.

Each resource class defines various "responder" methods, one for each

HTTP method the resource allows. Responder names start with "on_" and

are named according to which HTTP method they handle, as in on_get(),

on_post(), on_put(), etc.

10. Falcon – Resource Class

Falcon – Python Web Framework

26

In the hellofalcon.py example code used above, HelloResource (the

resource class) has an on_get() responder method. Responders must

always define at least two arguments to receive Request and Response

objects.

import falcon

class HelloResource:

 def on_get(self, req, resp):

 """Handles GET requests"""

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello World'

)

For ASGI apps, the responder must be a coroutine function, i.e. must be

defined with async keyword.

class HelloResource:

 async def on_get(self, req, resp):

 """Handles GET requests"""

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello World'

)

The Request object represents the incoming HTTP request. Request

headers, query string parameters, and other metadata associated with the

request can be accessed through this object.

The Response object represents the application's HTTP response to the

request. Properties and methods of this object set status, header and body

Falcon – Python Web Framework

27

data. It also exposes a dict-like context property for passing arbitrary data

to hooks and other middleware methods.

Note that HelloResource in the above example is just a normal Python

class. It can have any name; however, the convention is to name it as

xxxResource.

Falcon – Python Web Framework

28

This class is the main entry point into a Falcon-based WSGI app. An instance

of this class provides a callable WSGI interface and a routing engine.

import falcon

app = falcon.App()

The __init__() constructor of this class takes the following keyword

arguments:

 media_type: media type to use when initializing RequestOptions

and ResponseOptions. Falcon allows for easy and customizable

internet media type handling. By default, Falcon only enables

handlers for JSON and HTML (URL-encoded and multipart) forms.

Other media types supported by Falcon are represented by the

following constants:

o falcon.MEDIA_JSON

o falcon.MEDIA_MSGPACK

o falcon.MEDIA_MULTIPART

o falcon.MEDIA_URLENCODED

o falcon.MEDIA_YAML

o falcon.MEDIA_XML

o falcon.MEDIA_HTML

o falcon.MEDIA_JS

o falcon.MEDIA_TEXT

o falcon.MEDIA_JPEG

o falcon.MEDIA_PNG

o falcon.MEDIA_GIF

 request_type: Default value of this argument is falcon.Request

class.

 response_type: Default value of this argument is falcon.Response

class.

11. Falcon – App Class

Falcon – Python Web Framework

29

In order to make the App object callable, its class has a __call__() method.

__call__(self, env, start_response)

This is a WSGI app method. The WSGI development server or other

production servers (Waitress/Uvicorn) use this object to launch the server

instance and listen to the requests from the client.

The App class also defines the add_route() method.

add_route(self, uri_template, resource)

This method helps in associating a URI path with an object of resource class.

Incoming requests are routed to resources based on a set of URI templates.

If the path matches the template for a given route, the request is then

passed on to the associated resource for processing. Depending on the

request method, the respective responder methods are called.

Let us add on_post() responder method to HelloResource class and test

the endpoints for GET as well as POST requests.

from waitress import serve

import falcon

import json

class HelloResource:

 def on_get(self, req, resp):

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello World'

)

 def on_post(self, req, resp):

 data=req.media

 nm=data['name']

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

Falcon – Python Web Framework

30

 resp.text = (

 'Hello '+nm

)

app = falcon.App()

hello = HelloResource()

app.add_route('/hello', hello)

if __name__ == '__main__':

 serve(app, host='0.0.0.0', port=8000)

Run the application using Waitress server and check the responses using

Curl. For response to GET request, using following command:

C:\Users\User>curl localhost:8000/hello

Hello World

We send some data to the /hello URL by POST method as follows:

C:\Users\User>curl -i -H "Content-Type:application/json" -X

POST -d "{"""name""":"""John"""}" http://localhost:8000/hello

HTTP/1.1 200 OK

Content-Length: 10

Content-Type: text/plain; charset=utf-8

Date: Sun, 17 Apr 2022 07:06:20 GMT

Server: waitress

Hello John

To add a route to a directory of static files, Falcon has add_static_route()

method.

Falcon – Python Web Framework

31

add_static_route(self, prefix, directory, downloadable=False,

fallback_filename=None)

The prefix argument is the path prefix to match for this route. The directory

argument is the source directory from which to serve files. The

downloadable argument is set to True if you want to include a Content-

Disposition header in the response. The fallback_filename is by default

None but can be specified when the requested file is not found.

The add_error_handler() method is used to register a handler for one or

more exception types.

add_error_handler(self, exception, handler=None)

The ASGI callable App class possesses the same methods. It is defined in

falcon.asgi module.

import falcon.asgi

app=falcon.asgi.App()

Note that the responders of the resource class in an ASGI application must

be coroutines (defined with async keyword) instead of normal methods.

class HelloResource:

 async def on_get(self, req, resp):

 """Handles GET requests"""

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello World'

)

Falcon – Python Web Framework

32

Falcon adopts RESTful architectural style. Hence it uses resource based

routing. A resource class is responsible for handling the HTTP methods by

the responders, which are essentially class methods with a name that starts

with on_ and ends in the lowercased HTTP method name (e.g., on_get(),

on_patch(), on_delete(), etc.). The add_route() method of the Falcon

Application object associates its router with an instance of resource class.

In the Hellofalcon.py example used above, the on_get() and on_post()

responders are invoked when the /hello route is requested by the client by

GET and POST method respectively.

If no route matches the request, an instance of HTTPRouteNotFound is

raised. On the other hand, if a route is matched but the resource does not

implement a responder for the requested HTTP method, a default responder

raises an instance of HTTPMethodNotAllowed.

Field Converters

Falcon's routing mechanism allows URLs to pass parameters to the

responders. The URL comprises of three parts: The protocol (such as

http:// or https://) followed by the IP address or hostname. The

remaining part of the URL after first / after the hostname is called as the

path or endpoint. Parameters to be passed are after the endpoint.

This acts as a resource identifier such as a unique ID or primary key. The

parameter names are enclosed in curly brackets. Value of a path parameter

goes to the argument defined in the responder method in addition to

request and response.

12. Falcon – Routing

Falcon – Python Web Framework

33

In the following example, the router associates the resource class object

with a URL consisting of a parameter after the endpoint.

from waitress import serve

import falcon

import json

class HelloResource:

 def on_get(self, req, resp, nm):

 """Handles GET requests"""

 resp.status = falcon.HTTP_200

 resp.content_type = falcon.MEDIA_TEXT

 resp.text = (

 'Hello '+nm

)

app = falcon.App()

hello = HelloResource()

app.add_route('/hello/{nm}', hello)

if __name__ == '__main__':

 serve(app, host='0.0.0.0', port=8000)

We can see that the on_get() responder method has an additional

parameter nm to accept the data parsed from the URL route. Let us test

http://localhost:8000/hello/Priya with HTTPie tool.

>http GET localhost:8000/hello/Priya

HTTP/1.1 200 OK

http://localhost:8000/hello/Priya

Falcon – Python Web Framework

34

Content-Length: 11

Content-Type: text/plain; charset=utf-8

Date: Mon, 18 Apr 2022 12:27:35 GMT

Server: waitress

Hello Priya

The default data type to which the path parameters are parsed to is str (i.e.

string). However, Falcon's router engine has the following built-in field

converters using which they can be read into other data types as well.

 IntConverter: This class is defined in falcon.routing module. The
constructor uses the following arguments:

IntConverter(num_digits=None, min=None, max=None)

Where,
o num_digits: The value must have given number of digits.

o min: minimum required value of the parameter

o max: maximum allowed value of the parameter.

For example, the following add_route() function accepts an integer

between 1 to 100 as rollno.

app.add_route('/student/{rollno:int(1,1,100}',

StudentResource())

 UUIDConverter: This class in the falcon.routing module gives

converts a string of 32 hexadecimal digits into a UUID (Universal

Unique Identifier).

 DateTimeConverter: Coverts the parameter string to a dattime

variable. The parameter must be a string in any format recognized

by strptime() function, the default being '%Y-%m-
%dT%H:%M:%SZ'.

Format string uses the following format codes:

%a Abbreviated weekday name Sun, Mon

%A Full weekday name Sunday, Monday

Falcon – Python Web Framework

35

%d
Day of the month as a zero-padded

decimal
01, 02

%-d
day of the month as decimal

number
1, 2..

%b Abbreviated month name Jan, Feb

%m
month as a zero padded decimal

number
01, 02

%B Full month name January, February

%-y
year without century as a decimal

number
0, 99

%Y
year with century as a decimal

number
2000, 1999

%H
hour(24 hour clock) as a zero

padded decimal number
01, 23

%p locale's AM or PM AM, PM

%-M Minute as a decimal number 1, 59

%-S Second as a decimal number 1, 59

In the following example, the add_route() function associates a URL with

two parameters with the Resource object. First parameter nm is a string by

default. The second parameter age uses IntConverter.

from waitress import serve

import falcon

import json

class HelloResource:

 def on_get(self, req, resp, nm,age):

 """Handles GET requests"""

 retvalue={"name":nm, "age":age}

 resp.body=json.dumps(retvalue)

 resp.status = falcon.HTTP_200

Falcon – Python Web Framework

36

 resp.content_type = falcon.MEDIA_JSON

app = falcon.App()

hello = HelloResource()

app.add_route('/hello/{nm}/{age:int}', hello)

if __name__ == '__main__':

 serve(app, host='0.0.0.0', port=8000)

Note that the on_get() responder uses the path parameters to form a dict

object – retvalue. Its JSON representation is then assigned as the value of

response body and returned to the client. As mentioned earlier, JSON is the

default content type of Falcon's response object.

Start the Waitress server and check the response for the URL

http://localhost:8000/hello/Priya/21 with the help of HTTPie.

http GET localhost:8000/hello/Priya/21

HTTP/1.1 200 OK

Content-Length: 28

Content-Type: application/json

Date: Fri, 22 Apr 2022 14:22:47 GMT

Server: waitress

{

 "age": 21,

 "name": "Priya"

}

You can also check the response in a browser as follows:

http://localhost:8000/hello/Priya/21

Falcon – Python Web Framework

37

Falcon – Python Web Framework

38

To understand the concept and the need of suffixed responders, let us

define a StudentResource class. It consists of an on_get() responder

that converts the students a list of dict objects to JSON and returns as its

response.

Let us also add on_post() responder that reads the data from the incoming

request and adds a new dict object in the list.

import falcon

import json

from waitress import serve

students = [

 {"id": 1, "name": "Ravi", "percent": 75.50},

 {"id": 2, "name": "Mona", "percent": 80.00},

 {"id": 3, "name": "Mathews", "percent": 65.25},

]

class StudentResource:

 def on_get(self, req, resp):

 resp.text = json.dumps(students)

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

 def on_post(self, req, resp):

 student = json.load(req.bounded_stream)

 students.append(student)

 resp.text = "Student added successfully."

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_TEXT

13. Falcon – Suffixed Responders

Falcon – Python Web Framework

39

Using add_route() function of the Falcon's App object, we add /students

route.

app = falcon.App()

app.add_route("/students", StudentResource())

After starting the server, we can test the GET and POST requests from

HTTPie command line:

http GET localhost:8000/students

HTTP/1.1 200 OK

Content-Length: 187

Content-Type: application/json

Date: Mon, 18 Apr 2022 06:21:02 GMT

Server: waitress

[

 {

 "id": 1,

 "name": "Ravi",

 "percent": 75.5

 },

 {

 "id": 2,

 "name": "Mona",

 "percent": 80.0

 },

 {

 "id": 3,

 "name": "Mathews",

 "percent": 65.25

 }

]

Falcon – Python Web Framework

40

http POST localhost:8000/students id=4 name="Prachi"
percent=59.90

HTTP/1.1 200 OK

Content-Length: 27

Content-Type: text/plain; charset=utf-8

Date: Mon, 18 Apr 2022 06:20:51 GMT

Server: waitress

Student added successfully.

Invoking on_get() again confirms the addition of new students resource.

http GET localhost:8000/students

HTTP/1.1 200 OK

Content-Length: 187

Content-Type: application/json

Date: Mon, 18 Apr 2022 06:21:02 GMT

Server: waitress

[

 {

 "id": 1,

 "name": "Ravi",

 "percent": 75.5

 },

 {

 "id": 2,

 "name": "Mona",

 "percent": 80.0

 },

 {

 "id": 3,

 "name": "Mathews",

Falcon – Python Web Framework

41

 "percent": 65.25

 },

 {

 "id": "4",

 "name": "Prachi",

 "percent": "59.90"

 }

]

At this stage, we would like to have a GET responder method in

StudentResource class that reads the id parameter from the URL and

retrieves a corresponding dict object of from the list.

In other words, the URL of the format /student/{id} should be associated

to the GET method in the resource class. But obviously, a class cannot have

two methods of same name. Hence, we define to use suffix parameter for

the add_route() method to distinguish between the two definitions of

on_get() responders.

A route with id parameter is added to the Application object by specifying

suffix ='student'.

app.add_route("/students/{id:int}", StudentResource(),

suffix='student')

We can now add another definition of on_get() method with this suffix, so

that the name of this responder is on_get_student(), as follows:

def on_get_student(self, req, resp, id):

resp.text = json.dumps(students[id-1])

resp.status = falcon.HTTP_OK

resp.content_type = falcon.MEDIA_JSON

Start the Waitress server after adding the new route and

on_get_student() responder and test this URL as follows:

http GET localhost:8000/students/2

HTTP/1.1 200 OK

Falcon – Python Web Framework

42

Content-Length: 42

Content-Type: application/json

Date: Mon, 18 Apr 2022 06:21:05 GMT

Server: waitress

{

 "id": 2,

 "name": "Mona",

 "percent": 80.0

}

Note that the on_put() responder (to update a resource) and on_delete()

responder (to delete a resource) will also get invoked when the URL route

/students/{id:int} is requested by the client with appropriate request

header.

We have already added this route with student as the suffix. Hence,

on_put_student() method parses the path parameter in an integer

variable. The JSON representation of the item with given id is fetched and

updated with the data provided in the PUT request.

def on_put_student(self, req, resp, id):

student=students[id-1]

data = json.load(req.bounded_stream)

student.update(data)

resp.text = json.dumps(student)

resp.status = falcon.HTTP_OK

resp.content_type = falcon.MEDIA_JSON

The on_delete_student() responder simply deletes the item with the id

specified in the DELETE request. The list of remaining resources is returned.

def on_delete_student(self, req, resp, id):

Falcon – Python Web Framework

43

students.pop(id-1)

resp.text = json.dumps(students)

resp.status = falcon.HTTP_OK

resp.content_type = falcon.MEDIA_JSON

We can test the PUT and DELETE operations of the API with HTTPie

commands:

http PUT localhost:8000/students/2 id=3 name="Mathews"
percent=55

HTTP/1.1 200 OK

Content-Length: 46

Content-Type: application/json

Date: Sat, 18 Apr 2022 10:13:00 GMT

Server: waitress

{

 "id": "3",

 "name": "Mathews",

 "percent": "55"

}

http DELETE localhost:8000/students/2

HTTP/1.1 200 OK

Content-Length: 92

Content-Type: application/json

Date: Sat, 18 Apr 2022 10:18:00 GMT

Server: waitress

[

 {

 "id": 1,

 "name": "Ravi",

 "percent": 75.5

Falcon – Python Web Framework

44

 },

 {

 "id": 3,

 "name": "Mathews",

 "percent": 65.25

 }

]

The complete code of this API (studentapi.py) is as under:

import falcon

import json

from waitress import serve

students = [

 {"id": 1, "name": "Ravi", "percent": 75.50},

 {"id": 2, "name": "Mona", "percent": 80.00},

 {"id": 3, "name": "Mathews", "percent": 65.25},

]

class StudentResource:

 def on_get(self, req, resp):

 resp.text = json.dumps(students)

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

 def on_post(self, req, resp):

 student = json.load(req.bounded_stream)

 students.append(student)

 resp.text = "Student added successfully."

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_TEXT

Falcon – Python Web Framework

45

 def on_get_student(self, req, resp, id):

 resp.text = json.dumps(students[id-1])

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

 def on_put_student(self, req, resp, id):

 student=students[id-1]

 data = json.load(req.bounded_stream)

 student.update(data)

 resp.text = json.dumps(student)

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

 def on_delete_student(self, req, resp, id):

 students.pop(id-1)

 print (students)

 resp.text = json.dumps(students)

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

app = falcon.App()

app.add_route("/students", StudentResource())

app.add_route("/students/{id:int}", StudentResource(), suffix='student')

if __name__ == '__main__':

 serve(app, host='0.0.0.0', port=8000)

Falcon – Python Web Framework

46

The inspect module is a handy tool that provides information about

registered routes and other components of a Falcon application such as

middleware, sinks etc.

The inspection of an application can be done by two ways – CLI tool and

programmatically. The falcon-inspect-tool CLI script is executed from the

command line giving the name of Python script in which Falcon application

object is declared.

For example, to inspect application object in studentapi.py:

falcon-inspect-app studentapi:app

Falcon App (WSGI)

• Routes:

 ⇒ /students - StudentResource:

 ├── GET - on_get

 └── POST - on_post

 ⇒ /students/{id:int} - StudentResource:

 ├── DELETE - on_delete_student

 ├── GET - on_get_student

 └── PUT - on_put_student

The output shows registered routes and the responder methods in the

resource class. To perform the inspection programmatically, use the

application object as argument to inspect_app() function in the inspect

module.

from falcon import inspect

from studentapi import app

app_info = inspect.inspect_app(app)

print(app_info)

14. Falcon – Inspect Module

Falcon – Python Web Framework

47

Save the above script as inspectapi.py and run it from the command line.

python inspectapi.py

Falcon App (WSGI)

• Routes:

 ⇒ /students - StudentResource:

 ├── GET - on_get

 └── POST - on_post

 ⇒ /students/{id:int} - StudentResource:

 ├── DELETE - on_delete_student

 ├── GET - on_get_student

 └── PUT - on_put_student

Falcon – Python Web Framework

48

The Falcon library is primarily used to build APIs and microservices. Hence,

by default, a Falcon responder returns a JSON response. However, if the

content type is changed to falcon.MEDIA_HTML, it is possible to render HTML

output.

Rendering a HTML content with variable data is very tedious. For this

purpose, web templating libraries are used. Many Python web frameworks

are bundled with specific template library. But Falcon being a minimalist

micro framework doesn't come pre-bundled with anyone.

Jinja2 is one of the most popular template libraries used by many python

frameworks. In this section, we shall see how to use inja2 with Falcon

application. The jinja2 is a fast and designer-friendly templating language

that is easy to configure and debug. Its sandboxed environment makes it

easy to prevent the execution of untrusted code, prohibit potentially unsafe

data, and prevent cross-site scripting attacks (called XSS attacks).

Another very powerful feature of jinja2 is the template inheritance,

wherein You can define a base template having common design features

which child templates can override.

First of all, install jinja2 in the current Python environment with the use of

PIP utility.

pip3 install jinja2

Hello World Template

The jinja2 module defines a Template class. A Template object is obtained

by reading the contents of a file containing HTML script (one with .html

extension). By invoking the render() method of this Template object, HTML

response can be rendered to the client browser. The content_type property

of Response object must be set to falcon.MEDIA_HTML.

15. Falcon – Jinja2 Template

Falcon – Python Web Framework

49

Let us save the following HTML script as hello.py in the application folder.

<html>

<body>

<h2>Hello World</h2>

</body>

</html>

The on_get() responder in the resource class below reads this file and

renders it as HTML response.

import uvicorn

import falcon

import falcon.asgi

from jinja2 import Template

class HelloResource:

 async def on_get(self, req, resp):

 resp.status = falcon.HTTP_200

 resp.content_type = 'text/html'

 fp=open("hello.html","r")

 tempobj=Template(fp.read())

 resp.body=tempobj.render()

app = falcon.asgi.App()

hello = HelloResource()

app.add_route('/hello', hello)

if __name__ == "__main__":

uvicorn.run("hello:app", host="0.0.0.0", port=8000, reload=True)

Falcon – Python Web Framework

50

Run the above Python code and visit http://localhost:8000/hello link in the

browser.

Template Variable

jinja2 is a server-side templating library. The web page is constructed as

a template by putting various elements of jinja2 templating language as

place-holders within appropriate delimiters inside the HTML script. The

template engine reads the HTML script, substitutes the place-holders with

context data on the server, reassembles the HTML, and renders it to the

client.

The Template.render() function has an optional context dictionary

parameter. The key attributes of this dictionary become the template

variables. This helps in rendering the data passed by the responders in the

web page.

In the following example, the route /hello/nm is registered with the

resource object, where nm is the path parameter. The on_get() responder

passes it as a context to the template object obtained from a web page.

import uvicorn

import falcon

import falcon.asgi

from jinja2 import Template

class HelloResource:

 async def on_get(self, req, resp, nm):

 resp.status = falcon.HTTP_200

 resp.content_type = 'text/html'

http://localhost:8000/hello

Falcon – Python Web Framework

51

 fp=open("hello.html","r")

 tempobj=Template(fp.read())

 resp.body=tempobj.render({'name':nm})

app = falcon.asgi.App()

hello = HelloResource()

app.add_route('/hello/{nm}', hello)

if __name__ == "__main__":

 uvicorn.run("hello:app", host="0.0.0.0", port=8000, reload=True)

The hello.html reads the path parameter in a template variable name. It

acts as a place holder in the HTML script. It is put in {{ and }} symbols so

that its value appears as a HTML response.

<html>

<body>

<h2>Hello {{ name }}</h2>

</body>

</html>

Run the Python code and enter http://localhost:8000/hello/Priya as the

URL. The browser displays the following output:

http://localhost:8000/hello/Priya

Falcon – Python Web Framework

52

Loop in jinja2 Template

If the responder passes any Python iterable object such as a list, tuple or a

dictionary, its elements can be traversed inside the jinja2 template using

its looping construct syntax.

{% for item in collection %}

HTML block

{% endfor %}

In the following example, the on_get() responder sends students object

which is a list of dict objects, to the template list.html. It in turn traverses
the data and renders it as a HTML table.

import falcon

import json

from waitress import serve

from jinja2 import Template

students = [

 {"id": 1, "name": "Ravi", "percent": 75.50},

 {"id": 2, "name": "Mona", "percent": 80.00},

 {"id": 3, "name": "Mathews", "percent": 65.25},

]

class StudentResource:

 def on_get(self, req, resp):

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_HTML

 fp=open("list.html","r")

 tempobj=Template(fp.read())

 resp.body=tempobj.render({'students':students})

list.html is a jinja2 template. It receives the students object as list of

dictionary objects and puts the value of each key inside <td>..<.td>

element of a table.

Falcon – Python Web Framework

53

<html>

<body>

<table border=1>

 <thead> <tr>

 <th>Student ID</th> <th>Student Name</th>

 <th>percentage</th>

 <th>Actions</th>

 </tr> </thead>

 <tbody>

{% for Student in students %}

 <tr> <td>{{ Student.id }}</td> <td>{{ Student.name }}</td>

 <td>{{ Student.percent }}</td>

 <td>

 Edit

 Delete

 </td> </tr>

{% endfor %}

 </tbody>

</table>

</body>

</html>

Visit the /students route in the browser's address bar. The list of students
is rendered in the browser.

Falcon – Python Web Framework

54

HTML Form Template

In this section, we shall see how Falcon reads the data from HTML form. Let

us save the following HTML script as myform.html. We shall use it for

obtaining Template object and render it.

<html>

<body>

<form method="POST" action="http://localhost:8000/students">

<p>Student Id: <input type="text" name="id"/> </p>

<p>student Name: <input type="text" name="name"/> </p>

<p>Percentage: <input type="text" name="percent"/> </p>

<p><input type="submit"> </p>

</body>

</html>

The Falcon App object is declared in Hello.py file which also has a resource

class mapped to /adddnew route. The on_get() responder reads the

myform.html and renders the same. The HTML form will be displayed. The

form is submitted to /students route by POST method.

To be able to read the form data, the auto_parse_form_urlencoded

property of falcon.RequestOptions class must be set to True.

app = falcon.App()

app.req_options.auto_parse_form_urlencoded = True

Here, we also import StudentResource class from student.py. The

on_get() responder renders the list of students.

The on_post() responder will be called when the user fills and submits the

form. This method collects the form data in the req.params property,

which is nothing but a dictionary of form elements and their values. The

students dictionary is then appended.

def on_post(self, req, resp):

student=req.params

students.append(student)

Falcon – Python Web Framework

55

The complete code of hello.py is as follows:

import falcon

import json

from waitress import serve

from jinja2 import Template

from student import StudentResource

class MyResource:

 def on_get(self, req, resp):

 resp.status = falcon.HTTP_200

 resp.content_type = 'text/html'

 fp=open("myform.html","r")

 tempobj=Template(fp.read())

 resp.body=tempobj.render()

app = falcon.App()

app.req_options.auto_parse_form_urlencoded = True

form = MyResource()

app.add_route('/addnew', form)

app.add_route("/students", StudentResource())

if __name__ == '__main__':

 serve(app, host='0.0.0.0', port=8000)

The student.py having StudentResource class and on_get() and

on_post() responders is as follows:

import falcon

import json

from waitress import serve

from jinja2 import Template

Falcon – Python Web Framework

56

students = [

 {"id": 1, "name": "Ravi", "percent": 75.50},

 {"id": 2, "name": "Mona", "percent": 80.00},

 {"id": 3, "name": "Mathews", "percent": 65.25},

]

class StudentResource:

 def on_get(self, req, resp):

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_HTML

 fp=open("list.html","r")

 tempobj=Template(fp.read())

 resp.body=tempobj.render({'students':students})

 def on_post(self, req, resp):

 student = req.params

 students.append(student)

 resp.text = "Student added successfully."

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

Run hello.py from the command line. Open the HTML form in the browser

by entering http://locLhost:8000/addnew.

http://loclhost:8000/addnew

Falcon – Python Web Framework

57

The students database dictionary will be appended. Visit /students route.
You will find a new row appended.

Multipart Forms

In order to let the user select files from the local filesystem, the enctype

attribute of HTML form must be set to multipart/form-data. Falcon uses

MultipartFormHandler to handle the multipart/form-data media type,

allowing it to iterate over the body parts in the form.

The BodyPart class has the following properties:

 stream – stream wrapper just for the current body part

Falcon – Python Web Framework

58

 data – body part content bytes

 content_type would default to text/plain if not specified, as per RFC

 text – the current body part decoded as text string (only provided

it is of type text/plain, None otherwise)

 media – automatically parsed by media handlers in the same way

as req.media

 name, filename – relevant parts from the Content-Disposition header

 secure_filename – sanitized filename that could safely be used on

the server filesystem.

The following HTML script (index.html) is a multi-part form.

<html>

 <body>

 <form action="http://localhost:8000/hello" method="POST"
enctype="multipart/form-data">

 <h3>Enter User name</h3>

 <p><input type='text' name='name'/></p>

 <h3>Enter address</h3>

 <p><input type='text' name='addr'/></p>

 <p><input type="file" name="file" /></p>

 <p><input type='submit' value='submit'/></p>

 </form>

 </body>

</html>

This form is rendered by the on_get() responder of the HelloResource

class in the code below. The form data is submitted to on_post() method

which iterates over the parts and sends a JSON response of the form data.

import waitress

import falcon

import json

from jinja2 import Template

Falcon – Python Web Framework

59

class HelloResource:

 def on_get(self, req, resp):

 resp.status = falcon.HTTP_200

 resp.content_type = 'text/html'

 fp=open("index.html","r")

 tempobj=Template(fp.read())

 resp.body=tempobj.render()

 def on_post(self, req, resp):

 result=[]

 for part in req.media:

 data={"name" :part.name,

 "content type":part.content_type,

 "value":part.text, "file":part.filename}

 result.append(data)

 resp.text = json.dumps(result)

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

app = falcon.App()

hello = HelloResource()

app.add_route('/hello', hello)

if __name__ == '__main__':

 waitress.serve(app, host='0.0.0.0', port=8000)

Run the above program and visit http://localhost:8000/hello link to render

the form as shown below:

http://localhost:8000/hello

Falcon – Python Web Framework

60

When the form is submitted after filling the data, the JSON response is

rendered in the browser as shown below:

[

 {

 "name": "name",

 "content type": "text/plain",

 "value": "SuyashKumar Khanna",

 "file": null

 },

 {

 "name": "addr",

 "content type": "text/plain",

 "value": "New Delhi",

 "file": null

 },

 {

 "name": "file",

 "content type": "image/png",

 "value": null,

 "file": "hello.png"

 }

Falcon – Python Web Framework

61

]

Falcon – Python Web Framework

62

A cookie is stored on a client's computer in the form of a text file. Its

purpose is to remember and track data pertaining to a client's usage for

better visitor experience and site statistics.

A Request object contains a cookie's attribute. It is a dictionary object of all

the cookie variables and their corresponding values, a client has

transmitted. In addition to it, a cookie also stores its expiry time, path and

domain name of the site.

In Falcon, cookies are set on response object using set_cookie() method.

resp.set_cookie('cookiename', 'cookievalue')

Additionally, the arguments max_age of cookie in seconds and domain

name can also be given.

import falcon

import json

from waitress import serve

class resource1:

 def on_post(self, req, resp):

 resp.set_cookie("user", 'admin')

 resp.text = "cookie set successfully."

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_TEXT

From the command line, invoke the responder method as:

http POST localhost:8000/cookie

HTTP/1.1 200 OK

Content-Length: 24

Content-Type: text/plain; charset=utf-8

Date: Tue, 26 Apr 2022 06:56:30 GMT

16. Falcon – Cookies

Falcon – Python Web Framework

63

Server: waitress

Set-Cookie: user=admin; HttpOnly; Secure

cookie set successfully.

The cookie Set-cookie header can also be set using append_header()

method of response object.

To retrieve the cookies, the request object has request.cookies property

as well as get_cookie_values() method.

def on_get(self, req, resp):

cookies=req.cookies

values = req.get_cookie_values('user')

if values:

 v = values[0]

 resp.body={"user":v}

resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

The unset_cookie method of response object clears the cookie for the

current request.

resp.unset_cookie('user')

For ASGI applications, falcon.asgi.Request implements the same cookie

methods and properties as falcon.Request. The ASGI versions of

set_cookie() and append_header() are synchronous, so they do not need

to be awaited.

Falcon – Python Web Framework

64

By default, the HTTP server's response to a client's request is having 200

OK status. Falcon provides its own list of status constant for more

convenience and readability.

For example, 200 OK status code is represented by,

resp.status = falcon.HTTP_OK

These predefined Falcon constants avoid typos and cuts down on the number

of string objects that must be created when preparing responses. However,

starting with Falcon version 3.0, using bare int codes is allowed as well.

resp.status = 200

For ASGI application, same status codes are applicable.

Some of the status codes defined in Falcon library are listed below:

Informational Codes

 HTTP_CONTINUE = HTTP_100

 HTTP_SWITCHING_PROTOCOLS = HTTP_101

 HTTP_PROCESSING = HTTP_102

Success Status Codes

 HTTP_OK = HTTP_200

 HTTP_CREATED = HTTP_201

 HTTP_ACCEPTED = HTTP_202

 HTTP_NON_AUTHORITATIVE_INFORMATION = HTTP_203

 HTTP_NO_CONTENT = HTTP_204

 HTTP_RESET_CONTENT = HTTP_205

 HTTP_PARTIAL_CONTENT = HTTP_206

 HTTP_MULTI_STATUS = HTTP_207

 HTTP_ALREADY_REPORTED = HTTP_208

 HTTP_IM_USED = HTTP_226

17. Falcon – Status Codes

Falcon – Python Web Framework

65

Redirection Error Codes

 HTTP_MULTIPLE_CHOICES = HTTP_300

 HTTP_MOVED_PERMANENTLY = HTTP_301

 HTTP_FOUND = HTTP_302

 HTTP_SEE_OTHER = HTTP_303

 HTTP_NOT_MODIFIED = HTTP_304

 HTTP_USE_PROXY = HTTP_305

 HTTP_TEMPORARY_REDIRECT = HTTP_307

 HTTP_PERMANENT_REDIRECT = HTTP_308

Client Error Codes

 HTTP_BAD_REQUEST = HTTP_400

 HTTP_UNAUTHORIZED = HTTP_401 # "unauthenticated"

 HTTP_PAYMENT_REQUIRED = HTTP_402

 HTTP_FORBIDDEN = HTTP_403 # "unauthorized"

 HTTP_NOT_FOUND = HTTP_404

 HTTP_METHOD_NOT_ALLOWED = HTTP_405

 HTTP_NOT_ACCEPTABLE = HTTP_406

 HTTP_PROXY_AUTHENTICATION_REQUIRED = HTTP_407

 HTTP_REQUEST_TIMEOUT = HTTP_408

 HTTP_CONFLICT = HTTP_409

Server Error Codes

 HTTP_INTERNAL_SERVER_ERROR = HTTP_500

 HTTP_NOT_IMPLEMENTED = HTTP_501

 HTTP_BAD_GATEWAY = HTTP_502

 HTTP_SERVICE_UNAVAILABLE = HTTP_503

 HTTP_GATEWAY_TIMEOUT = HTTP_504

 HTTP_HTTP_VERSION_NOT_SUPPORTED = HTTP_505

 HTTP_INSUFFICIENT_STORAGE = HTTP_507

 HTTP_LOOP_DETECTED = HTTP_508

 HTTP_NETWORK_AUTHENTICATION_REQUIRED = HTTP_511

Falcon – Python Web Framework

66

To handle various error situations, the above status codes can be used for

the response object. Falcon also provides set of error classes. Their object

can be raised when corresponding runtime error situation arises.

These error classes are derived from HTTPError class as their base class.

The error object is raised as shown in the following example:

import falcon

class MyResource:

 def on_get(self, req, resp):

 # some Python code

 raise falcon.HTTPBadRequest(

 title="Value Out of Range",

 description="The value is not between permissible range"

)

Predefined Error Classes

Some of the predefined error classes provided by Falcon are as follows:

 HTTPBadRequest: 400 Bad Request. The server is unable to

process the request due to a client error such as malformed request

syntax, invalid request message framing etc.

 HTTPInvalidHeader: Results in 400 Bad Request because one of

the headers in the request is invalid.

 HTTPInvalidParam: Represents 400 Bad Request. This error may

refer to an invalid parameter in a query string, form, or document

that was submitted with the request.

 HTTPMissingParam: 00 Bad Request is raised when a parameter

is missing from the request.

18. Falcon – Error Handling

Falcon – Python Web Framework

67

 HTTPForbidden: The server understood the request but refuses to

authorize it. The status code is 403 Forbidden.

 HTTPNotFound: When the server did not find a current

representation for the target resource, a 404 status code is raised.

It does not indicate whether this lack of representation is temporary

or permanent.

 HTTPMethodNotAllowed: 405 Method Not Allowed. The method

received in the request-line is not supported by the target resource.

 HTTPLengthRequired: When The server refuses to accept the

request without a defined Content- Length. 411 Length Required.

Error code.

 HTTPUnsupportedMediaType: If the origin server is refusing to

service the request because the payload is in a format not supported

by this method on the target resource. Equivalent status code is 415

Unsupported Media Type.

 HTTPUnprocessableEntity: If the server understands the content

type of the request entity and the syntax of the request entity is

correct but was unable to process the contained instructions, the

error status code raised is 422 Unprocessable Entity. For example,

if an XML request body contains well-formed, but semantically

erroneous, XML instructions.

 HTTPTooManyRequests: A 429 Too Many Requests status code is

raised when the user has sent too many requests in a given amount

of time (“rate limiting”).

 HTTPInternalServerError: A very common error situation

resulting in 500 Internal Server Error. The server encountered an

unexpected condition that prevented it from fulfilling the request.

 HTTPNotImplemented: The 501 (Not Implemented) status code

indicates that the server does not support the functionality required

to fulfill the request. This is the appropriate response when the

server does not recognize the request method and is not capable of

supporting it for any resource.

 HTTPServiceUnavailable: 503 Service Unavailable means that the

server is currently unable to handle the request due to a temporary

overload or scheduled maintenance.

 MediaNotFoundError: 400 Bad Request. This Exception is raised

by a media handler when trying to parse an empty body.

Falcon – Python Web Framework

68

 MediaMalformedError: 400 Bad Request. This Exception is raised

by a media handler when trying to parse a malformed body.

Redirection

There are also a set of exceptions, which when raised, trigger a redirection

response to the client. The status codes are of the type 3xx. These

exceptions, represented by following classes, shot-circuit the request

processing as a subclass of HttpError.

 HTTPMovedPermanently: 301 Moved Permanently. This status

code indicates that the target resource has been assigned a new

permanent URI.

 HTTPFound: 302 Found status code meaning that the target

resource resides temporarily under a different URI.

 HTTPTemporaryRedirect: This class raises the 307 (Temporary

Redirect) status code, which means that the target resource resides

temporarily under a different URI and the user agent MUST NOT

change the request method if it performs an automatic redirection

to that URI.

 HTTPPermanentRedirect: Results ib 308 Permanent Redirect,

indicating that the target resource has been assigned a new

permanent URI.

Falcon – Python Web Framework

69

Hooks are the user defined functions that are executed automatically when

a specific responder method in the resource class is invoked in response to

the client request. Falcon supports before and after hooks.

A function to be used as a hook is defined with the request, response and

resource class as parameters, in additional to any optional parameters as
may be necessary.

def hookfunction(req, resp, resource):

Such a function is attached to either an individual responder or the entire

resource class by applying one of the following decorators:

 @falcon.before(hookfunction)

 @falcon.after(hookfunction)

To apply the before hook to the on_post() responder:

@falcon.before(hookfunction)

def on_post(self, req, resp):

 . . .

 . . .

To apply an after hook:

@falcon.after(hookfunction)

def on_get(self, req, resp):

 . . .

 . . .

To decorate the entire resource class, use the decorator above the

declaration of the class:

19. Falcon – Hooks

Falcon – Python Web Framework

70

@falcon.after(hookfunction)

class SomeResource:

 def on_get(self, req, resp):

 . . .

 . . .

 def on_post(self, req, resp):

 . . .

 . . .

In the following example, we have the StudentResource class in which

on_get() and on_post() responders have been defined. The on_post()

responder is invoked when a POST request sends some data and a new dict
object created with it is added in the Students list.

The data received needs to be validated before processing. For this purpose,

the following function has been defined. It checks whether value of percent

parameter is between 0 and 100. Only if the data passes this condition, it

is passed to the responder.

def checkinput(req, resp, resource,params):

 student = json.load(req.bounded_stream)

 if "name" not in student:

 raise falcon.HTTPBadRequest(

 title="Bad request", description="Bad input, name
must be provided."

)

 per=int(student['percent'])

 if per<0 or per>100:

 raise falcon.HTTPBadRequest(

 title="Bad request", description="Bad input,
invalid percentage"

)

 req.context.data = student

Falcon – Python Web Framework

71

This function is applied as a hook on the on_post() responder of the
StudentResource class.

import falcon

import json

from waitress import serve

students = [

 {"id": 1, "name": "Ravi", "percent": 75.50},

 {"id": 2, "name": "Mona", "percent": 80.00},

 {"id": 3, "name": "Mathews", "percent": 65.25},

]

class StudentResource:

 def on_get(self, req, resp):

 resp.text = json.dumps(students)

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

 @falcon.before(checkinput)

 def on_post(self, req, resp):

 student = json.load(req.context.data)

 students.append(student)

 resp.text = "Student added successfully."

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_TEXT

 def on_get_student(self, req, resp, id):

 resp.text = json.dumps(students[id-1])

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

app = falcon.App()

app.add_route("/students", StudentResource())

Falcon – Python Web Framework

72

if __name__ == '__main__':

 serve(app, host='0.0.0.0', port=8000)

Let us run the Waitress server and initiate the POST request.

http POST localhost:8000/students id=4 percent=50

HTTP/1.1 400 Bad Request

Content-Length: 76

Content-Type: application/json

Date: Tue, 26 Apr 2022 14:49:07 GMT

Server: waitress

Vary: Accept

{

 "description": "Bad input, name must be provided.",

 "title": "Bad request"

}

Since the data doesn't contain value of name parameter, the exception is

raised.

In another POST request as shown below, the value of percent parameter

fails to meet the required criteria, hence the exception.

http POST localhost:8000/students id=4 name="aaa" percent=500

HTTP/1.1 400 Bad Request

Content-Length: 72

Content-Type: application/json

Date: Tue, 26 Apr 2022 15:01:20 GMT

Server: waitress

Vary: Accept

{

 "description": "Bad input, invalid percentage",

 "title": "Bad request"

}

Falcon – Python Web Framework

73

A "middleware" is a function that is processed with every request (before

being processed by any specific responder) as well as with every response

before returning it. This function takes each request that comes to your

application.

A middleware works similar to hooks. However, unlike hooks, middleware

methods apply globally to the entire App. It may perform some process with

the request by running a code defined in it, and then passes the request to

be processed the corresponding operation function. It can also process the

response generated by the operation function before returning it.

A middleware is a class that implements one or more of the following even

handler methods. For a WSGI app, the methods are:

 process_request (self, req, resp): This method processes the

request before routing it.

 process_resource (self, req, resp, resource, params):

processes the request after routing. A dict object representing any

additional params derived from the route's URI template fields may

be passed.

 process_response (self, req, resp, resource, req_succeeded):

This method is for post-processing of the response (after routing).

The req_succeeded parameter is True if no exceptions were raised
otherwise False.

In case of the ASGI app, in addition to the above methods, the middleware

class may define some more methods.

To account for lifespan events, an optional part of ASGI specification, the

startup and shutdown event handlers may be included.

 process_startup (self, scope, event): This method processes the

ASGI lifespan startup event. It is invoked when the server is ready

to start up and receive connections, but before it has started to do

so.

 process_shutdown(self, scope, event): This method processes

the ASGI lifespan shutdown event. It is invoked when the server has

stopped accepting connections and closed all active connections.

20. Falcon – Middleware

Falcon – Python Web Framework

74

Since the ASGI application also responds to the requests under Websocket

protocol, the middleware may define following coroutine methods:

 process_request_ws (self, req, ws): This method processes a

WebSocket handshake request before routing it.

 process_resource_ws (self, req, ws, resource, params): This

method processes a WebSocket handshake request after routing. A

dict object derived from the route's URI template fields may be

passed to the resource's responder.

An instance of the middleware class has to be added to the Falcon

application object at the time of initialization. For a WSGI Falcon app:

class MyMiddleware:

 def process_request(self, req, resp):

 pass

 def process_resource(self, req, resp, resource, params):

 pass

 def process_response(self, req, resp, resource, req_succeeded):

 pass

from falcon import App

app=App(middleware=[MyMiddleware()])

For the ASGI app:

class MyMiddleware:

 async def process_startup(self, scope, event):

 pass

 async def process_shutdown(self, scope, event):

 pass

 async def process_request(self, req, resp):

 pass

 async def process_resource(self, req, resp, resource, params):

 pass

Falcon – Python Web Framework

75

 async def process_response(self, req, resp, resource,
req_succeeded):

 pass

 async def process_request_ws(self, req, ws):

 pass

 async def process_resource_ws(self, req, ws, resource, params):

 pass

from falcon.asgi import App

app=App(middleware=[MyMiddleware()])

Falcon – Python Web Framework

76

"Cross-Origin Resource Sharing" (CORS) is a situation when a frontend

application that is running on one client browser tries to communicate with

a backend through JavaScript code, and the backend is in a different "origin"

than the frontend. The origin here is a combination of protocol, domain

name and port numbers. As a result, http://localhost and https://localhost

have different origins.

If the browser with URL of one origin sends request for execution of

JavaScript code from another origin, the browser sends OPTIONS http

request. If the backend authorizes the communication from this different

origin by sending the appropriate headers it will let the JavaScript in the

frontend send its request to the backend.

To enable the CORS policy for all responses, the Falcon app is configured

as follows:

from falcon import App

app=App(cors_enable=True)

To specify explicitly the allowed origins, import CORSMiddleware and add

the list of origins to the app's middleware, along with respective credentials.

from falcon import App

app =

falcon.App(middleware=falcon.CORSMiddleware(allow_origins='exa

mple.com', allow_credentials='*')

21. Falcon – CORS

Falcon – Python Web Framework

77

A WebSocket is a persistent connection between a client and server to

provide a bidirectional, full-duplex communication between the two. The

communication takes place over HTTP through a single TCP/IP socket

connection. It can be seen as an upgrade of HTTP instead of a protocol

itself.

One of the limitations of HTTP is that it is a strictly half-duplex or

unidirectional protocol. With WebSockets, on the other hand, we can send

message-based data, similar to UDP, but with the reliability of TCP.

WebSocket uses HTTP as the initial transport mechanism, but keeps the

TCP connection alive the connection after the HTTP response is received.

Same connection object it can be used two-way communication between

client and server. Thus, real-time applications can be built using WebSocket

APIs.

Falcon's Websocket support is available only for ASGI applications. To

provide Websocket capability, the resource class should have

on_websocket() responder coroutine.

async def on_websocket(self, req, ws):

 . . .

Websocket requests can also be intercepted by hooks and middleware.

Instead of the Response object, a falcon.asgi.WebSocket object is

passed.

How Does a WebSocket Function in Falcon?

The following example demonstrates the functioning of WebSocket in Falcon

application. First we have an on_get() responder that renders a template.

The client browser displays a form with a text field and a button, When the

button is clicked, a websocket object is created, and the on_websocket()

responder is fired. It accepts the message input by the user and echoes it

back to the client with a prefix “The message text was”.

22. Falcon – WebSocket

Falcon – Python Web Framework

78

import falcon

import falcon.asgi

import jinja2

html = """

<!DOCTYPE html>

<html>

 <head>

 <title>Chat</title>

 </head>

 <body>

 <script>

 var ws = new WebSocket("ws://localhost:8000/hello");

 ws.onmessage = function(event) {

 var messages =document.getElementById('messages')

 var message = document.createElement('li')

 var content = document.createTextNode(event.data)

 message.appendChild(content)

 messages.appendChild(message)

 };

 function sendMessage(event) {

 var input = document.getElementById("messageText")

 ws.send(input.value)

 input.value = ''

 event.preventDefault()

 }

 </script>

 <h1>WebSocket Chat</h1>

 <form action="" onsubmit="sendMessage(event)">

 <input type="text" id="messageText"
autocomplete="off"/>

 <button>Send</button>

Falcon – Python Web Framework

79

 </form>

 <ul id='messages'>

 </body>

</html>

"""

class HelloResource:

 async def on_get(self, req, resp):

 """Handles GET requests"""

 resp.status = falcon.HTTP_200

 resp.content_type = 'text/html'

 template=jinja2.Template(html)

 resp.body=template.render()

 async def on_websocket(self, req, websocket):

 await websocket.accept()

 while True:

 data = await websocket.receive_text()

 await websocket.send_text(f"Message text was: {data}")

app = falcon.asgi.App()

hello = HelloResource()

app.add_route('/hello', hello)

import uvicorn

if __name__ == "__main__":

 uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)

Falcon – Python Web Framework

80

Start the Uvicorn server and visit http://localhost:8000/ws URL to display

the chat form.

Enter some text and press the Send button.

http://localhost:8000/ws

Falcon – Python Web Framework

81

To demonstrate how the Falcon's responder functions (on_post(),

on_get(), on_put() and on_delete()), we had done CRUD (which stands

for Create, Retrieve, Update and Delete) operations on an in-memory

database in the form of a Python list of dictionary objects. Instead, we can

use any relational database (such as MySQL, Oracle etc.) to perform store,

retrieve, update and delete operations.

Instead of using a DB-API compliant database driver, we shall use

SQLAlchemy as an interface between Python code and a database (we are

going to use SQLite database as Python has in-built support for it).

SQLAlchemy is a popular SQL toolkit and Object Relational Mapper.

Object Relational Mapping is a programming technique for converting data

between incompatible type systems in object-oriented programming

languages. Usually, the type system used in an Object Oriented language

like Python contains non-scalar types. However, data types in most of the

database products such as Oracle, MySQL, etc., are of primitive types such

as integers and strings.

In an ORM system, each class maps to a table in the underlying database.

Instead of writing tedious database interfacing code yourself, an ORM takes

care of these issues for you while you can focus on programming the logics

of the system.

In order to use SQLALchemy, we need to first install the library using PIP

installer.

pip install sqlalchemy

SQLAlchemy is designed to operate with a DBAPI implementation built for

a particular database. It uses dialect system to communicate with various

types of DBAPI implementations and databases. All dialects require that an

appropriate DBAPI driver is installed.

The following are the dialects included −

 Firebird

 Microsoft SQL Server

 MySQL

 Oracle

23. Falcon – SQLAlchemy Models

Falcon – Python Web Framework

82

 PostgreSQL

 SQLite

 Sybase

Database Engine

Since we are going to use SQLite database, we need to create a database

engine for our database called test.db. Import create_engine() function
from sqlalchemy module.

from sqlalchemy import create_engine

from sqlalchemy.dialects.sqlite import *

SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(SQLALCHEMY_DATABASE_URL, connect_args =
{"check_same_thread": False})

In order to interact with the database, we need to obtain its handle. A

session object is the handle to database. Session class is defined using

sessionmaker() – a configurable session factory method which is bound
to the engine object.

from sqlalchemy.orm import sessionmaker, Session

session = sessionmaker(autocommit=False, autoflush=False, bind=engine)

Next, we need a declarative base class that stores a catalog of classes and

mapped tables in the Declarative system.

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

Model class

Students, a subclass of Base is mapped to a students table in the

database. Attributes in the Books class correspond to the data types of the

columns in the target table. Note that the id attribute corresponds to the
primary key in the book table.

class Students(Base):

 __tablename__ = 'student'

Falcon – Python Web Framework

83

 id = Column(Integer, primary_key=True, nullable=False)

 name = Column(String(63), unique=True)

 marks = Column(Integer)

Base.metadata.create_all(bind=engine)

The create_all() method creates the corresponding tables in the database.
It can be confirmed by using a SQLite Visual tool such as SQLiteStudio.

We now need to declare a StudentResource class in which the HTTP

responder methods are defined to perform CRUD operations on students

table. The object of this class is associated to routes as shown in the
following snippet:

import falcon

import json

from waitress import serve

class StudentResource:

 def on_get(self, req, resp):

 pass

 def on_post(self, req, resp):

Falcon – Python Web Framework

84

 pass

 def on_put_student(self, req, resp, id):

 pass

 def on_delete_student(self, req, resp, id):

 pass

app = falcon.App()

app.add_route("/students", StudentResource())

app.add_route("/students/{id:int}", StudentResource(),
suffix='student')

on_post()

Rest of the code is just similar to in-memory CRUD operations, with the

difference being the operation functions interact with the database through

SQLalchemy interface.

The on_post() responder method first constructs an object of Students

class from the request parameters and adds it the Students model. Since

this model is mapped to the students table in the database, corresponding

row is added. The on_post() method is as follows:

def on_post(self, req, resp):

data = json.load(req.bounded_stream)

student=Students(id=data['id'], name=data['name'],
marks=data['marks'])

session.add(student)

session.commit()

resp.text = "Student added successfully."

resp.status = falcon.HTTP_OK

resp.content_type = falcon.MEDIA_TEXT

As mentioned earlier, the on_post() responder is invoked when a POST

request is received. We shall use Postman app to pass the POST request.

Falcon – Python Web Framework

85

Start Postman, select POST method and pass the values (id=1,

name="Manan" and marks=760 as the body parameters. The request is

processed successfully and a row is added to the students table.

Go ahead and send multiple POST requests to add records.

on_get()

This responder is meant to retrieve all the objects in the Students model.

query() method on Session object retrieves the objects.

rows = session.query(Students).all()

Since the default response of Falcon responder is in JSON format, we have

to convert the result of above query in a list of dict objects.

data=[]

for row in rows:

data.append({"id":row.id, "name":row.name, "marks":row.marks})

In the StudentResource class, let us add the on_get() method that

performs this operation and sends its JSON response as follows:

Falcon – Python Web Framework

86

def on_get(self, req, resp):

rows = session.query(Students).all()

data=[]

for row in rows:

 data.append({"id":row.id, "name":row.name, "marks":row.marks})

 resp.text = json.dumps(data)

 resp.status = falcon.HTTP_OK

 resp.content_type = falcon.MEDIA_JSON

The GET request operation can be tested in the Postman app. The

/students URL will result in displaying JSON response showing data of all

objects in the students model.

The two records shown in the result pane of Postman app can also be

verified in the data view of SQLiteStudio.

Falcon – Python Web Framework

87

on_put()

The on_put() responder performs the UPDATE operation. It responds to

the URL /students/id. To fetch the object with given id from the Students

model, we apply the filter to the query result, and update the values of its
attributes with the data received from the client.

student = session.query(Students).filter(Students.id ==

id).first()

The on_put() method's code is as follows:

def on_put_student(self, req, resp, id):

student = session.query(Students).filter(Students.id ==
id).first()

data = json.load(req.bounded_stream)

student.name=data['name']

student.marks=data['marks']

session.commit()

resp.text = "Student updated successfully."

resp.status = falcon.HTTP_OK

resp.content_type = falcon.MEDIA_TEXT

Falcon – Python Web Framework

88

Let us update the object with id=2 in the Students model with the help of

Postman and change the name and marks. Note that the values are passed

as body parameters.

The data view in SQLiteStudio shows that the modifications have been

effected.

Falcon – Python Web Framework

89

on_delete()

Lastly, the DELETE operation is easy. We need to fetch the object of the

given id and call the delete() method.

def on_delete_student(self, req, resp, id):

try:

 session.query(Students).filter(Students.id == id).delete()

 session.commit()

except Exception as e:

 raise Exception(e)

resp.text = "deleted successfully"

resp.status = falcon.HTTP_OK

resp.content_type = falcon.MEDIA_TEXT

As a test of the on_delete() responder, let us delete the object with id=2

with the help of Postman as shown below:

Falcon – Python Web Framework

90

Falcon's testing module is a Functional testing framework for Falcon apps.

It contains various test classes and utility functions to support functional

testing. The testing framework supports both unittest and pytest.

We shall use following the script (myapp.py) to demonstrate testing

functionality. It contains a HelloResource class with an on_get()

responder that renders a JSON response of Hello World. The create()

function returns Falcon's Application object added with a route registered

with '/' URL.

from waitress import serve

import falcon

import json

class HelloResource:

 def on_get(self, req, resp):

 """Handles GET requests"""

 resp.text=json.dumps({"message":"Hello World"})

 # This is the default status

 resp.status = falcon.HTTP_200

 # Default is JSON, so override

 resp.content_type = falcon.MEDIA_JSON

def create():

 app = falcon.App()

 hello = HelloResource()

 app.add_route('/', hello)

 return app

24. Falcon – Testing

Falcon – Python Web Framework

91

app=create()

if __name__ == '__main__':

 serve(app, host='0.0.0.0', port=8000)

Using unittest

The testing.TestCase extends unittest to facilitate functional testing of

WSGI/ASGI applications written with Falcon. We need to inherit from this
base class and write the tests.

The test functions in the TestCase subclass are of the name simulate_*()

where '*' stands for HTTP methods like GET, POST etc. It means, we have

to fetch the result of simulate_get() function and compare it with the
expected result by assertion functions.

The simulate_*() functions receive two arguments.

simulate_*(app, route)

Following is the code for test-myapp.py. It executes simulate_get()

function and asserts its result with the anticipated result and indicates
whether the test has failed or passed.

from falcon import testing

import myapp

class MyTestCase(testing.TestCase):

 def setUp(self):

 super(MyTestCase, self).setUp()

 self.app = myapp.create()

class TestMyApp(MyTestCase):

 def test_get_message(self):

 doc = {'message': 'Hello world!'}

 result = self.simulate_get('/')

Falcon – Python Web Framework

92

 self.assertEqual(result.json, doc)

if '__name__'=='__main__':

 unittest.main()

Run the above test with the help of the following command:

python -m unittest test-myapp.py

F

==

FAIL: test_get_message (test-myapp.TestMyApp)

--

Traceback (most recent call last):

 File "E:\falconenv\test-myapp.py", line 17, in test_get_message

 self.assertEqual(result.json, doc)

AssertionError: {'message': 'Hello World'} != {'message':
'Hello world!'}

- {'message': 'Hello World'}

? ^

+ {'message': 'Hello world!'}

? ^ +

--

Ran 1 test in 0.019s

FAILED (failures=1)

Using Pytest

To perform testing using PyTest framework, you need to install it using PIP
utility.

pip3 install pytest

Falcon – Python Web Framework

93

To run a test function, we need an object of testing.TestClient class. It

simulates the requests for WSGI and ASGI applications. This object is first

obtained by giving Falcon application object as the argument.

We run the simulate_*() functions and assert its result with the

anticipated output to decide whether the test has failed or passed. In both

the examples, the test fails because of difference in case of 'W' in Hello

World message. The responder returns it with uppercase 'W' whereas the

test function has it in lowercase.

from falcon import testing

import pytest

import myapp

@pytest.fixture()

def client():

 return testing.TestClient(myapp.create())

def test_get_message(client):

 doc = {'message': 'Hello world!'}

 result = client.simulate_get('/')

 assert result.json == doc

Run the above test using the following command:

pytest test-myapp.py –v

=========== test session starts ==========================

platform win32 -- Python 3.8.6, pytest-7.1.2, pluggy-1.0.0 --
e:\falconenv\scripts\python.exe

cachedir: .pytest_cache

rootdir: E:\falconenv

plugins: anyio-3.5.0

collected 1 item

test-myapp.py::test_get_message FAILED
[100%]

Falcon – Python Web Framework

94

==================== FAILURES =======================

test_get_message

client = <falcon.testing.client.TestClient object at 0x0000000003EAA6A0>

 def test_get_message(client):

 doc = {'message': 'Hello world!'}

 result = client.simulate_get('/')

> assert result.json == doc

E AssertionError: assert {'message': 'Hello World'} ==

{'message': 'Hello world!'}

E Differing items:

E {'message': 'Hello World'} != {'message': 'Hello world!'}

E Full diff:

E - {'message': 'Hello world!'}

E ? ^ -

E + {'message': 'Hello World'}

E ? ^

test-myapp.py:42: AssertionError

============ short test summary info ==================

FAILED test-myapp.py::test_get_message - AssertionError:

assert {'message': 'Hello World'} == {'message': 'Hello

world!'}

============ 1 failed in 4.11s ========================

Falcon – Python Web Framework

95

It is possible to use Apache server enabled with the mod_wsgi module to

deploy a Falcon web app, just as any WSGI app. Another alternative is to

use uWSGI or gunicorn for deployment.

The uWSGI is a fast and highly configurable WSGI server. If used along with

NGNIX, it gives better performance in the form of speed in the production
ready environment.

First, install Falcon and uWSGI in a Python virtual environment with PIP

installer and expose the Falcon's application object to uWSGI it with wsgi.py

as below:

import os

import myapp

config = myproject.get_config(os.environ['MYAPP_CONFIG'])

application = myapp.create(config)

To configure uWSGI, prepare a uwsgi.ini script as below:

[uwsgi]

master = 1

vacuum = true

socket = 127.0.0.1:8080

enable-threads = true

thunder-lock = true

threads = 2

processes = 2

virtualenv = /path/to/venv

wsgi-file = venv/src/wsgi.py

chdir = venv/src

uid = myapp-runner

gid = myapp-runner

25. Falcon – Deployment

Falcon – Python Web Framework

96

You can now start the uWSGI like this:

venv/bin/uwsgi -c uwsgi.ini

Although uWSGI may serve HTTP requests directly, it can be helpful to use

a reverse proxy such as NGINX. NGINX natively supports the uwsgi

protocol, for efficiently proxying requests to uWSGI.

Install Ngnix and then create an NGINX conf file that looks something like

this:

server {

 listen 80;

 server_name myproject.com;

 access_log /var/log/nginx/myproject-access.log;

 error_log /var/log/nginx/myproject-error.log warn;

 location / {

 uwsgi_pass 127.0.0.1:8080

 include uwsgi_params;

 }

}

Finally start the Ngnix server. You should have a working application

running.

