

PySimpleGUI – Python GUIs for Humans

i

About the Tutorial

PySimpleGui is an open source, cross-platform GUI library for Python. It

aims to provide a uniform API for creating desktop GUIs based on Python’s

Tkinter, PySide and WxPython toolkits.

PySimpleGUI also has a port for Remi which is useful for building GUIs for

the web. PySimpleGui lets you build GUIs quicker than by directly using the

libraries it uses.

Audience

This tutorial is designed for Python developers who want to learn how to

build cross-platform desktop as well as web based GUI designs using

PySimpleGui library.

Prerequisites

Before you proceed, make sure that you understand the basics of procedural

and object-oriented programming in Python. For understanding the

advanced topics such as integration of PySimpleGui with Matplotlib and

OpenCV packages, their understanding is essential.

Disclaimer & Copyright

 Copyright 2022 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse,

retain, copy, distribute or republish any contents or a part of contents of

this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and

as precisely as possible, however, the contents may contain inaccuracies or

errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the

accuracy, timeliness or completeness of our website or its contents

including this tutorial. If you discover any errors on our website or in this

tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

PySimpleGUI – Python GUIs for Humans

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. PYSIMPLEGUI – INTRODUCTION ..1

Python GUIs for Humans ... 1

Comparison with other GUI Frameworks .. 1

2. PYSIMPLEGUI – ENVIRONMENT SETUP ..3

3. PYSIMPLEGUI – HELLO WORLD ..5

First Window using PySimpleGUI .. 5

Equivalent Tkinter Code .. 6

PySimpleGUIQt ... 7

Equivalent PySide2 Code ... 9

PySimpleGUIWx .. 10

PySimpleGUIWeb .. 12

4. PYSIMPLEGUI – POPUP WINDOWS ..15

Scrolled Popup .. 19

Progress Meter .. 20

Debug Popup... 21

PySimpleGUI – Python GUIs for Humans

iii

5. PYSIMPLEGUI – WINDOW CLASS ...23

Layout Structure.. 23

Persistent Window .. 25

Window Methods ... 26

Update Window with Key ... 27

Borderless Window ... 31

Window with Disabled Close ... 32

Transparent Window .. 32

Multiple Windows ... 32

Asynchronous Window ... 35

6. PYSIMPLEGUI – ELEMENT CLASS ...37

Properties of Element Class ... 38

Methods of Element Class ... 38

7. PYSIMPLEGUI – EVENTS ...39

Window Closed Event ... 39

Button Events .. 41

Events of Other Elements .. 42

8. PYSIMPLEGUI – TEXT ELEMENT ...44

9. PYSIMPLEGUI – INPUT ELEMENT ...46

Multiline Element.. 48

10. PYSIMPLEGUI – BUTTON ELEMENT ...51

FileBrowse .. 52

PySimpleGUI – Python GUIs for Humans

iv

FilesBrowse ... 53

FolderBrowse .. 55

FileSaveAs ... 56

ColorChooserButton .. 58

CalendarButton ... 60

Image Button .. 61

11. PYSIMPLEGUI – LISTBOX ELEMENT ..63

12. PYSIMPLEGUI – COMBO ELEMENT ..66

13. PYSIMPLEGUI – RADIO ELEMENT ...69

14. PYSIMPLEGUI – CHECKBOX ELEMENT ..72

15. PYSIMPLEGUI – SLIDER ELEMENT ..76

16. PYSIMPLEGUI – SPIN ELEMENT ..79

17. PYSIMPLEGUI – PROGRESSBAR ELEMENT ..82

18. PYSIMPLEGUI – FRAME ELEMENT ..84

19. PYSIMPLEGUI – COLUMN ELEMENT ..86

20. PYSIMPLEGUI – TAB ELEMENT ...89

21. PYSIMPLEGUI – CANVAS ELEMENT ..92

22. PYSIMPLEGUI – GRAPH ELEMENT ..95

PySimpleGUI – Python GUIs for Humans

v

23. PYSIMPLEGUI – MENUBAR ..99

Menu button with Hot Key .. 101

Right-click Menu ... 102

ButtonMenu .. 103

24. PYSIMPLEGUI – TABLE ELEMENT ... 105

25. PYSIMPLEGUI – TREE ELEMENT ... 108

26. PYSIMPLEGUI – IMAGE ELEMENT .. 111

Using Graph Element... 112

27. PYSIMPLEGUI – MATPLOTLIB INTEGRATION .. 114

Example: Draw a Sinewave Line graph .. 115

28. PYSIMPLEGUI – WORKING WITH PIL .. 117

29. PYSIMPLEGUI – DEBUGGER ... 119

30. PYSIMPLEGUI – SETTINGS .. 122

Global Settings .. 122

User Settings ... 122

PySimpleGUI – Python GUIs for Humans

1

Python GUIs for Humans

The PySimpleGui project started as a wrapper around TKinter package,

which is bundled with Python’s standard library, with the objective to

simplify the GUI building process.

PySimpleGui subsequently added the ability to design desktop GUIs based

on PySide library (which itself ports Qt GUI toolkit, originally written in C++,

to Python) and WxPython (which ports another popular GUI toolkit called

WxWidgets). These libraries are called PySimpleGUIQt and

PySimpleGUIWx respectively.

The latest addition to the PySimpleGui family is the PySimpleGUIWeb

package which uses the Remi (REMote Interface Library) to construct GUI

design that is rendered in a web page.

All the packages in the PySimpleGui group follow the similar API, which

means the names of GUI elements, their properties and methods are same

in all the four packages. As a result, just by replacing the import statement

(and keeping the rest of the code unchanged), one can get the

corresponding GUI design rendered. This is in fact the most important

feature of PySimpleGui. That’s why, it is known as Python GUIs for

Humans.

Comparison with other GUI Frameworks

A Python programmer has a variety of GUI frameworks to choose from, to

develop a GUI application. TKinter is the one which is officially included in

Python’s standard library. Others, most of them are open source, have to

be explicitly installed.

TkInter Included in Python standard library

PyQt Python 3 bindings for the Qt application framework.

PySide
Qt for Python (formerly known as PySide) offers the

official Python bindings for the Qt cross-platform

application and UI framework.

1. PySimpleGUI – Introduction

PySimpleGUI – Python GUIs for Humans

2

PySimpleGUI
Wraps tkinter, Qt (pyside2), wxPython and Remi

(for browser support) in a non-OOP API

wxPython
Supports Windows/Unix/Mac. Supports Python 2.7

and >=3.4. Wraps & extends the wxWidgets

toolchain.

PyGObject
PyGObject is a Python package which provides

bindings for GObject based libraries such as GTK

Replacement for PyGtk.

PyForms
A Python framework to develop GUI application,

which promotes modular software design and code

reusability with minimal effort.

PySimpleGUI – Python GUIs for Humans

3

PySimpleGui supports both Python 3.x versions as well as Python 2.7

version. The main port, PySimpleGui doesn’t have any external

dependencies, as Tkinter – on which it is based – is a part of Python’s

standard library, and hence it needn’t be installed separately. Install it in

the current Python3 environment by the PIP installer as follows

pip3 install PySimpleGUI

To verify if the library is correctly installed, enter the following statement:

>>> import PySimpleGUI

>>> PySimpleGUI.version

'4.60.1 Released 22-May-2022'

In case, the PIP installation doesn’t work, you can download

"pysimplegui.py" from the Github repository

(https://github.com/PySimpleGUI/PySimpleGUI) and place it in your folder

along with the application that is importing it.

The pysimplegui.py file has the "main()" function. When called from

Python prompt, it generates the following window to affirm that the package

is correctly installed.

>>> import PySimpleGUI as psg

>>> psg.main()

Starting up PySimpleGUI Diagnostic & Help System

PySimpleGUI long version = 4.60.1 Released 22-May-2022

PySimpleGUI Version 4.60.1

tcl ver = 8.6 tkinter version = 8.6

Python Version 3.6.8 (tags/v3.6.8:3c6b436a57, Dec 24 2018,

00:16:47) [MSC v.1916 64 bit (AMD64)]

tcl detailed version = 8.6.6

PySimpleGUI.py location F:\python36\lib\site-

packages\PySimpleGUI\PySimpleGUI.py

2. PySimpleGUI – Environment Setup

https://github.com/PySimpleGUI/PySimpleGUI

PySimpleGUI – Python GUIs for Humans

4

The GUI window appears as below:

If you are using Python3 version earlier than 3.4, you may need to install the

"typing" module since it is not shipped in the corresponding standard library

pip3 install typing

For Python 2.7, change the name to PySimpleGUI27.

pip3 install PySimpleGUI27

You may need to also install "future" for version 2.7

pip install future

However, it is important to note that Python Software Foundation doesn’t
officially support Python 2.x branches.

PySimpleGUI – Python GUIs for Humans

5

First Window using PySimpleGUI

To check whether PySimpleGUI along with its dependencies are properly

installed, enter the following code and save it as "hello.py", using any

Python-aware editor.

import PySimpleGUI as psg

layout = [[psg.Text(text='Hello World',

 font=('Arial Bold', 20),

 size=20,

 expand_x=True,

 justification='center')],

]

window = psg.Window('HelloWorld', layout, size=(715,250))

while True:

 event, values = window.read()

 print(event, values)

 if event in (None, 'Exit'):

 break

window.close()

The above code constructs a window with a Text element (equivalent of a

Label in TKinter) and displays the "Hello World" message placed centrally

across the width of the window.

Run this program from the command terminal as:

Python hello.py

3. PySimpleGUI – Hello World

PySimpleGUI – Python GUIs for Humans

6

The output generated by the program should be similar to the one

displayed below:

Equivalent Tkinter Code

To obtain similar output using pure Tkinter code, we would require the

following Python script:

from tkinter import *

window=Tk()

lbl=Label(window, text="Hello World",

 fg='white', bg='#64778D',

 font=("Arial Bold", 20))

lbl.place(x=300, y=15)

window.title('HelloWorld Tk')

window['bg']='#64778D'

window.geometry("715x250+10+10")

window.mainloop()

All other functionalities remain same, except we use the serve() function

off waitress module to start the WSGI server. On visiting the '/' route in

PySimpleGUI – Python GUIs for Humans

7

the browser after running the program, the Hello World message is

displayed as before.

Instead of a function, a callable class can also be used as a View. A callable

class is the one which overrides the __call__() method.

from pyramid.response import Response

class MyView(object):

 def __init__(self, request):

 self.request = request

 def __call__(self):

 return Response('hello world')

PySimpleGUIQt

The object model of PySimpleGUI API has been made compatible with the

widgets as defined in PySide2 package (which is the Python port for Qt

graphics toolkit). The Qt version of PySimpleGui is called PySimpleGUIQt.

It can be similarly installed with following PIP command:

pip3 install PySimpleGUIQt

Since this package depends on PySide2, the same will also be installed.

>>> import PySide2

>>> PySide2.__version__

'5.15.2.1'

>>> import PySimpleGUIQt

>>> PySimpleGUIQt.version

'0.35.0 Released 6-Jun-2020'

As mentioned earlier, the most important feature of PySimpleGui projects

is that the code written for one package is completely compatible with the

other. Hence, the hello.py program used earlier can be used as it is for the

PySimpleGUI – Python GUIs for Humans

8

Qt version. The only change needed is import PySimpleGUIQt instead of

PySimpleGui.

import PySimpleGUIQt as psg

layout = [[psg.Text(text='Hello World',

 font=('Arial Bold', 20),

 justification='center')],

]

window = psg.Window('HelloWorldQt', layout, size=(715,250))

while True:

 event, values = window.read()

 print(event, values)

 if event in (None, 'Exit'):

 break

window.close()

The output is fairly similar.

PySimpleGUI – Python GUIs for Humans

9

Equivalent PySide2 Code

The pure PySide2 code to achieve the same result is as follows:

import sys

from PySide2.QtCore import *

from PySide2.QtGui import *

from PySide2.QtWidgets import *

def window():

 app = QApplication(sys.argv)

 w = QWidget()

 w.setStyleSheet("background-color: #64778D;")

 b = QLabel(w)

 b.setText("Hello World!")

 b.setFont(QFont('Arial Bold', 20))

 b.setAlignment(Qt.AlignCenter)

 b.setStyleSheet("color: white;")

 b.setGeometry(100, 100, 715, 250)

 b.move(50, 20)

 w.setWindowTitle("HelloWorldQt")

 w.show()

 sys.exit(app.exec_())

if __name__ == '__main__':

 window()

It will produce the same output window.

PySimpleGUI – Python GUIs for Humans

10

PySimpleGUIWx

This module encapsulates the functionality of GUI widgets as defined in

WxPython toolkit. WxPython is a Python port for the widely used WxWidgets

library originally written in C++. Obviously, PySimpleGUIWx depends on

WxPython package, and hence the latter will get automatically installed by

the following PIP command:

pip3 install PySimpleGUIWx

To confirm that both PySimpleGUIWx and WxPython are properly installed,

enter following statements in Python terminal.

>>> import PySimpleGUIWx

>>> PySimpleGUIWx.version

'0.17.1 Released 7-Jun-2020'

>>> import wx

>>> wx.__version__

'4.0.7'

Not much of change is required in the "hello.py" script. We need to just

replace PySimpleGUI with PySimpleGUIWx module in the "import"

statement.

import PySimpleGUIWx as psg

layout = [[psg.Text(text='Hello World',

 font=('Arial Bold', 20),

 size=(500, 5),

 justification='center')],

]

window = psg.Window('HelloWorldWx', layout,

 size=(715, 250))

while True:

PySimpleGUI – Python GUIs for Humans

11

 event, values = window.read()

 print(event, values)

 if event in (None, 'Exit'):

 break

window.close()

It will produce the following output:

Note that you’ll need a little more complex code to obtain the similar output

with pure WxPython code as follows:

import wx

app = wx.App()

window = wx.Frame(None, title="WxPython", size=(715, 250))

panel = wx.Panel(window)

panel.SetBackgroundColour((100, 119, 141))

label = wx.StaticText(panel, -1, style=wx.ALIGN_CENTER)

label.SetLabel("Hello World")

label.SetForegroundColour((255, 255, 255))

font = wx.Font()

PySimpleGUI – Python GUIs for Humans

12

font.SetFaceName("Arial Bold")

font.SetPointSize(30)

label.SetFont(font)

window.Show(True)

app.MainLoop()

It will display a top level window with a text label having Hello World as the

caption.

 PySimpleGUIWeb

Remi (REMote Interface) is a GUI library for Python applications that are

rendered in a web browser. PySimpleGUIWeb package ports the original

PySimpleGui library to Remi so that its apps can be run in a browser.

Following PIP command installs both PySimpleGUIWeb and Remi in the

current Python environment:

pip3 install PySimpleGUIWeb

Check for their proper installation before writing an app.

>>> import PySimpleGUIWeb

>>> PySimpleGUIWeb.version

'0.39.0 Released 6-Jun-2020'

Following script is the PySimpleGUIWeb version of the original Hello World

program.

import PySimpleGUIWeb as psg

layout = [[psg.Text(text='Hello World',

 font=('Arial Bold', 20),

 justification='center')]]

window = psg.Window('HelloWorldWeb', layout)

PySimpleGUI – Python GUIs for Humans

13

while True:

 event, values = window.read()

 print(event, values)

 if event in (None, 'Exit'):

 break

window.close()

To obtain similar output using pure Remi library’s functionality is a little

complex, as the following code shows:

import remi.gui as gui

from remi import start, App

class HelloWeb(App):

 def __init__(self, *args):

 super(HelloWeb, self).__init__(*args)

 def main(self):

 wid = gui.VBox(style={"background-color": "#64778D"})

 self.lbl = gui.Label('Hello World',

 width='100%',

 height='100%',

 style={ "color":"white",

 "text-align": "center",

 "font-family": "Arial Bold",

 "font-size": "20px"}

)

 wid.append(self.lbl)

 return wid

PySimpleGUI – Python GUIs for Humans

14

if __name__ == "__main__":

 start(HelloWeb, debug=True, address='0.0.0.0', port=0)

When we run these programs, the Remi server starts, a browser window

automatically opens and the Hello World message is displayed.

Here we have seen the Hello World program written in the PySimpleGUI,

PySimpleGUIQt, PySimpleGUIWx and PySimpleGUIWeb libraries. We can

see that the widget library remains the same. Moreover, the same Hello

world program, when written in pure Tkinter, PySide, WxPython and Remi

respectively, becomes far more complex and tedious than the PySimpleGUI

versions.

PySimpleGUI – Python GUIs for Humans

15

A function in PySimpleGUI module that start with the prefix popup*

generates window of a predefined appearance. The name of the popup

function indicates is purpose and configuration of buttons present on it.

These popups are created with just one line of code. Each popup serves a

certain purpose, and then closes immediately.

A most basic popup is created by the popup() function. It can be used like

a print() function to display more than one parameters on the window, and

an OK button. It acts like a message box, that disappears immediately on

pressing the OK button

>>> import PySimpleGUI as psg

>>> psg.popup("Hello World")

It displays a popup window with Hello World text and OK button. Note that

more than one strings can be displayed. Following popups with different

button configurations are available:

 popup_ok: Display Popup with OK button only

 popup_ok_cancel: Display popup with OK and Cancel buttons

 popup_cancel: Display Popup with "cancelled" button text

 popup_yes_no: Display Popup with Yes and No buttons

 popup_error: Popup with colored button and 'Error' as button text

These functions return the text of the button pressed by the user. For

example, if the user presses OK button of the ok-cancel popup, it returns

Ok which can be used in further programming logic.

Following popups accept input from the user in the form of text or let the

user select file/folder/date from the selectors.

 popup_get_text: Display Popup with text entry field. Returns the

text entered or None if closed / cancelled

 popup_get_file: Display popup window with text entry field and

browse button so that a file can be chosen by user.

4. PySimpleGUI – Popup Windows

PySimpleGUI – Python GUIs for Humans

16

 popup_get_folder: Display popup with text entry field and browse

button so that a folder can be chosen.

 popup_get_date: Display a calendar window, get the user's choice,

return as a tuple (mon, day, year)

When user has made the selection and Ok button is pressed, the return

value of the popup is the text, which can be used further in the program.

Following script shows the use of some of the above popups:

import PySimpleGUI as psg

text = psg.popup_get_text('Enter your name',

 title="Textbox")

print ("You entered: ", text)

file=psg.popup_get_file('Select a file',

 title="File selector")

print ("File selected", file)

folder=psg.popup_get_folder('Get folder',

 title="Folder selector")

print ("Folder selected",folder)

ch = psg.popup_yes_no("Do you want to Continue?",

 title="YesNo")

print ("You clicked", ch)

ch = psg.popup_ok_cancel("Press Ok to proceed",

 "Press cancel to stop",

 title="OkCancel")

if ch=="OK":

 print ("You pressed OK")

PySimpleGUI – Python GUIs for Humans

17

if ch=="Cancel":

 print ("You pressed Cancel")

psg.popup_no_buttons('You pressed', ch, non_blocking=True)

psg.popup_auto_close('This window will Autoclose')

Output: The popups generated by the above code are shown below:

The following output is displayed on the Python console:

You entered: Tutorialspoint

File selected F:/python36/hello.png

Folder selected F:/python36/Scripts

You clicked Yes

You pressed Cancel

All types of popups are objects of respective classes inherited from popup

class. All of them have a common set of properties. These properties have

a certain default value, and can be used to customize the appearance and

PySimpleGUI – Python GUIs for Humans

18

behaviour of the popup objects. Following table lists the common

parameters:

Type Parameter Description

Any *args
Values to be displayed on the

popup

Str title Optional title for the window.

(str, str) or None button_color
Color of the buttons shown

(text color, button color)

Str background_color Window's background color

Str text_color text color

Bool auto_close
If True the window will

automatically close

Int auto_close_duration

time in seconds to keep

window open before closing it

automatically

Bool non_blocking

If True then will immediately

return from the function

without waiting for the user's

input.

Tuple[font_name,

size, modifiers]
font

specifies the font family, size,

etc. Tuple or Single string

format 'name size styles'.

Bool grab_anywhere
If True can grab anywhere to

move the window.

(int, int) Location

Location on screen to display

the top left corner of window.

Defaults to window centered

on screen

Bool keep_on_top

If True the window will

remain above all current

windows

Bool modal

If True, then makes the

popup will behave like a

Modal window. Default =

True

PySimpleGUI – Python GUIs for Humans

19

Scrolled Popup

The popup_scrolled() function generates a popup with a scrollable text

box in it. Use this to display a large amount of text, consisting of many lines

with number of characters more than the width.

The size property is a tuple (w, h) with "w" being the number of characters

in one line, and "h" being the lines displayed at a time. The

horizontal/vertical scrollbar to the text box will become active if the number

of characters/no of lines of text are more than "w" or "h".

In the following example, a big file zen.txt is displayed in a popup with

scrollable text box. The file contains the design principles of Python called

the "Zen of Python".

import PySimpleGUI as psg

file=open("zen.txt")

text=file.read()

psg.popup_scrolled(text, title="Scrolled Popup",

 font=("Arial Bold", 16), size=(50,10))

It will produce the following output:

PySimpleGUI – Python GUIs for Humans

20

Progress Meter

The "one_line_progress_meter" is a popup that displays the visual

representation of an ongoing long process, such as a loop. It shows the

instantaneous value of a certain parameter, estimated time to complete the

process, and the elapsed time.

In the following example, a text file is read character by character. The

Progress meter shows the progress of the process in the form of a progress

bar, estimated time required for completion, and the instantaneous value

of the count.

import PySimpleGUI as psg

import os

size = os.path.getsize('zen.txt')

file=open("zen.txt")

i=0

while True:

 text=file.read(1)

 i=i+1

 if text=="":

 file.close()

 break

 print (text,end='')

 psg.one_line_progress_meter(

 'Progress Meter', i, size,

 'Character Counter'

)

It will produce the following output window:

PySimpleGUI – Python GUIs for Humans

21

Debug Popup

During the execution of a program, it is usually required to keep track of

intermediate values of certain variables, although not required in the

following output. This can be achieved by the Print() function in

PySimpleGUI library.

Note: Unlike Python’s built-in print() function, this function has "P" in

uppercase).

As the program encounters this function for the first time, the debug window

appears and all the subsequent Prints are echoed in it. Moreover, we can

use EasyPrint or eprint that also have same effect.

The following program computes the factorial value of the number input by

the user. Inside the for loop, we want to keep track of the values of f (for

factorial) on each iteration. That is done by the Print function and displayed

in the debug window.

PySimpleGUI – Python GUIs for Humans

22

import PySimpleGUI as psg

f=1

num=int(psg.popup_get_text("enter a number: "))

for x in range(1, num+1):

 f=f*x

 psg.Print (f,x)

print ("factorial of {} = {}".format(x,f))

Assuming that the user inputs 5, the debug window shows the following

output:

PySimpleGUI – Python GUIs for Humans

23

Popups have a predefined configuration of buttons, text labels and text

input fields. The Window class allows you to design a GUI of more flexible

design. In addition to these elements, other elements like listbox, checkbox,

radio buttons, etc., are available. You can also provide a menu system to

the GUI. Certain specialized widgets such as spinner, sliders, etc., can also

be used to make the design more effective.

A window can be a non-persistent window, similar to the popups. It blocks

the program flow till the user closes it by clicking a button on the client area
or the close (X) button in the title bar.

A persistent window on the other hand continues to be visible till the event

causing it to be closed occurs. The asynchronous window is the one whose

contents are periodically updated.

Layout Structure

The placement of elements or widgets in the window’s client area is

controlled by list of list objects. Each list element corresponds to one row

on the window surface, and may contain one or more GUI elements

available in PySimpleGUI library.

The first step is to visualize the placement of elements by making a drawing

as follows:

The elements on the window are placed in four rows. First three rows have

a Text element (displays a static text) and an InputText element (in which

user can enter). Last row has two buttons, Ok and Cancel.

This is represented in the list of lists as below:

import PySimpleGUI as psg

5. PySimpleGUI – Window Class

PySimpleGUI – Python GUIs for Humans

24

layout = [

 [psg.Text('Name '),psg.Input()],

 [psg.Text('Address '), psg.Input()],

 [psg.Text('Email ID '), psg.Input()],

 [psg.OK(), psg.Cancel()]

]

This list object is used as the value of layout parameter for the constructor
of the Window class.

window = psg.Window('Form', layout)

This will display the desired window. The user inputs are stored in a

dictionary named as values. The read() method of Window class is called
as the user presses the Ok button, and the window closes immediately.

The complete code to render the window is as follows:

import PySimpleGUI as psg

psg.set_options(font=('Arial Bold', 16))

layout = [

 [psg.Text('Name ', size=(15,1)),psg.Input(expand_x=True)],

 [psg.Text('Address ', size=(15,1)), psg.Input(expand_x=True)],

 [psg.Text('Email ID ', size=(15,1)), psg.Input(expand_x=True)],

 [psg.OK(), psg.Cancel()]

]

window = psg.Window('Form', layout, size=(715,207))

event, values = window.read()

print (event, values)

window.close()

PySimpleGUI – Python GUIs for Humans

25

Here is the output as displayed:

Enter the data as shown and press the "OK" button. The values will be

printed as below:

OK {0: 'Kiran Gupta', 1: 'Mumbai', 2: 'kiran@gmail.com'}

If, after filling the data, you press the "Cancel" button, the result printed

will be:

Cancel {0: 'Kiran Gupta', 1: 'Mumbai', 2: 'kiran@gmail.com'}

Persistent Window

Note that this window gets closed as soon as any button (or the "X" button

in the title bar) is clicked. To keep the window alive till a special type of

button called Exit is pressed or if the window is closed by pressing "X", the

read() method is placed in an infinite loop with provision to break when

WIN_CLOSED event occurs (when Exit button is pressed) or Exit event

occurs (when "X" button is pressed).

Let us change the Cancel button in the above code with Exit button.

import PySimpleGUI as psg

layout = [

 [psg.Text('Name '), psg.Input()],

 [psg.Text('Address '), psg.Input()],

 [psg.Text('Email ID '), psg.Input()],

 [psg.OK(), psg.Exit()]

]

PySimpleGUI – Python GUIs for Humans

26

window = psg.Window('Form', layout)

while True:

 event, values = window.read()

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

 print (event, values)

window.close()

The appearance of the window will be similar as before, except that instead

of Cancel, it has Exit button.

The entered data will be printed in the form of a tuple. First element is the

event, i.e., the caption of button, and second is a dictionary whose key is

incrementing number and value is the text entered.

OK {0: 'kiran', 1: 'Mumbai', 2: 'kiran@gmail.com'}

OK {0: 'kirti', 1: 'Hyderabad', 2: 'kirti@gmail.com'}

OK {0: 'karim', 1: 'Chennai', 2: 'karim@gmail.com'}

Window Methods

The important method defined in the Window class is the read() method,

to collect the values entered in all input elements. The Window class has

other methods to customize the appearance and behaviour. They are listed

below:

PySimpleGUI – Python GUIs for Humans

27

AddRow
Adds a single row of elements to a window's

"self.Rows" variable

AddRows
Loops through a list of lists of elements and

adds each row, list, to the layout.

close
Closes the window so that resources are

properly freed up.

disable
Disables window from taking any input from

the user

disappear
Causes a window to "disappear" from the

screen, but remain on the taskbar.

enable Re-enables window to take user input

fill
Fill in elements that are input fields with data

provided as dictionary.

find_element

Find element object associated with the

provided key. It is equivalent to "element =

window[key]"

get_screen_dimensions Get the screen dimensions.

hide
Hides the window from the screen and the

task bar

load_from_disk
Restore values from a Pickle file created by

the "SaveToDisk" function

layout
Populates the window with a list of widget

lists.

read
Get all of your data from your Window. Pass in

a timeout (in milliseconds) to wait.

reappear
Causes a disappeared window to display

again.

save_to_disk
Saves the values contained in each of the

input elements to a pickle file.

set_title Change the title of the window in taskbar

Update Window with Key

The data entered by the user in different input elements on the window

layout is stored in the dictionary format. The dictionary keys are numbered

(starting from 0) corresponding to input elements from left to right and top

to bottom. We can refer to the input data by dictionary operator. That

means, the data in the first element is returned by "values[0]".

PySimpleGUI – Python GUIs for Humans

28

values = {0: 'kiran', 1: 'Mumbai', 2: 'kiran@gmail.com'}

data = [values[k] for k in values.keys()]

print (data)

It will print the following on the console:

['kiran', 'Mumbai', 'kiran@gmail.com']

However, if you want to manipulate the value of an element

programmatically, the element must be initialized by assigning a unique

string value to its key parameter. The key of an element is like the name of

the variable or identifier, which makes it convenient to handle reading or

assigning a value to it programmatically.

The key parameter should be a string. The convention is that it should be

an uppercase string preceded and followed by a "-" character (Example: "-

NAME-"). However, any string can be used.

Let us assign keys to the Input elements in the above example as shown

below:

layout = [

 [psg.Text('Name '),psg.Input(key='-NM-')],

 [psg.Text('Address '), psg.Input(key='-AD-')],

 [psg.Text('Email ID '), psg.Input(key='-ID-')],

 [psg.OK(), psg.Exit()],

]

As a result, the values dictionary returned after the read() method will

contain the key identifiers instead of integers previously.

OK {'-NM-': 'Kiran', '-AD-': 'Mumbai', '-ID-': 'kiran@gmail.com'}

Now, values[-NM-'] will fetch 'Kiran'. The key can be assigned to any

element and not just the input element. You can use the same key to call

Update on an element. We can use "find_element(key)" of the Window

object, or use window['key'] to refer to the element.

PySimpleGUI – Python GUIs for Humans

29

Let us extend our previous example to add a row before the Ok and Cancel

buttons and have an empty Text element with "-OUT-" key. On the OK

event, this Text label shows the concatenation of data entered in three input

elements having keys "-NM-", "-AD-" and "-ID-".

import PySimpleGUI as psg

psg.set_options(font=('Arial Bold', 16))

layout = [

 [psg.Text('Name ', size=(15, 1)),

 psg.Input(key='-NM-', expand_x=True)],

 [psg.Text('Address ', size=(15, 1)),

 psg.Input(key='-AD-', expand_x=True)],

 [psg.Text('Email ID ', size=(15, 1)),

 psg.Input(key='-ID-', expand_x=True)],

 [psg.Text('You Entered '), psg.Text(key='-OUT-')],

 [psg.OK(), psg.Exit()],

]

window = psg.Window('Form', layout, size=(715, 200))

while True:

 event, values = window.read()

 print(event, values)

 out = values['-NM-'] + ' ' + values['-AD-'] + ' ' + values['-ID-']

 window['-OUT-'].update(out)

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

PySimpleGUI – Python GUIs for Humans

30

window.close()

Run the above code, enter text in three input elements and press OK. The

-OUT- text label will be updated as shown here:

Another example of use of key attribute is given below. To Input elements

are assigned key parameters -FIRST- and -SECOND-. There are two buttons

captioned Add and Sub. The Text element displays addition or subtraction

of two numbers depending on the button pressed.

import PySimpleGUI as psg

import PySimpleGUI as psg

psg.set_options(font=('Arial Bold', 16))

layout = [

 [psg.Text('Enter a num: '), psg.Input(key='-FIRST-')],

 [psg.Text('Enter a num: '), psg.Input(key='-SECOND-')],

 [psg.Text('Result : '), psg.Text(key='-OUT-')],

 [psg.Button("Add"), psg.Button("Sub"), psg.Exit()],

]

window = psg.Window('Calculator', layout, size=(715, 180))

while True:

 event, values = window.read()

 print(event, values)

PySimpleGUI – Python GUIs for Humans

31

 if event == "Add":

 result = int(values['-FIRST-']) + int(values['-SECOND-'])

 if event == "Sub":

 result = int(values['-FIRST-']) - int(values['-SECOND-'])

 window['-OUT-'].update(result)

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

The following screenshot shows the result when the "Add" button is pressed.

Borderless Window

By default, the application window is created with a title bar above the client

area wherein all other elements are placed in the layout. The titlebar

consists of a window title on the left, and the control buttons (minimize,

restore/maxmimize and close) on the right. However, particularly for a

kiosk-like application, there is no need of a title bar. You can get rid of the

title bar by setting the "no_titlebar" property of the Window object to

"True".

PySimpleGUI – Python GUIs for Humans

32

To terminate such an application, the event loop must be terminated on the

occurrence of Exit button event.

Window with Disabled Close

If you wish to prevent the user to minimize the application window, the

"disable_minimize" property of the Window object should be set to True.

Similarly, the True value to "disable_close" property the Close button is

displayed but it doesn’t create the WINDOW_CLOSED event.

Transparent Window

The "alpha_channel" property of the Window object decides the

transparency of the window. Its value is between 0 to 1. By default, it is 0,

which means that the window appears as opaque. Set it to 1 to make it

completely transparent. Any float value between 0 to 1 makes the

transparency proportional.

Multiple Windows

PySimpleGUI allows more than one windows to be displayed

simultaneously. The static function in PySimpleGUI module reads all the

active windows when called. To make the window active, it must be

finalized. The function returns a tuple of (window, event, values) structure.

window, event, values = PySimpleGUI.read_all_windows()

If no window is open, its return value is (None, WIN_CLOSED, None)

PySimpleGUI – Python GUIs for Humans

33

In the following code, two functions "win1()" and "win2()" create a window

each when called. Starting with the first window, the button captioned

Window-2 opens another window, so that both are active. When CLOSED

event on first window takes place, both are closed and the program ends.

If the "X" button on second window is pressed, it is marked as closed,

leaving the first open.

import PySimpleGUI as psg

def win1():

 layout = [

 [psg.Text('This is the FIRST WINDOW'), psg.Text('

', key='-OUTPUT-')],

 [psg.Text('popup one')],

 [psg.Button('Window-2'), psg.Button('Popup'),

psg.Button('Exit')]

]

 return psg.Window('Window Title', layout, finalize=True)

def win2():

 layout = [

 [psg.Text('The second window')],

 [psg.Input(key='-IN-', enable_events=True)],

 [psg.Text(size=(25, 1), key='-OUTPUT-')],

 [psg.Button('Erase'), psg.popup('Popup two'),

psg.Button('Exit')]]

 return psg.Window('Second Window', layout, finalize=True)

window1 = win1()

window2 = None

while True:

PySimpleGUI – Python GUIs for Humans

34

 window, event, values = psg.read_all_windows()

 print(window.Title, event, values)

 if event == psg.WIN_CLOSED or event == 'Exit':

 window.close()

 if window == window2:

 window2 = None

 elif window == window1:

 break

 elif event == 'Popup':

 psg.popup('Hello Popup')

 elif event == 'Window-2' and not window2:

 window2 = win2()

 elif event == '-IN-':

 window['-OUTPUT-'].update('You entered
{}'.format(values["-IN-"]))

 elif event == 'Erase':

 window['-OUTPUT-'].update('')

 window['-IN-'].update('')

window.close()

It will produce the following output windows:

PySimpleGUI – Python GUIs for Humans

35

Asynchronous Window

The read() method of the Window class has the following additional
parameters:

window.read(timeout = t, timeout_key=TIMEOUT_KEY, close=False)

The timeout parameter lets your GUIs to use in a non-blocking read

situation. It is the miliseconds your device can wait before returning. It

makes a window that runs on a periodic basis.

The longer you're able to add to the timeout value, the less CPU time you'll

be taking. During the timeout time, you are "yielding" the processor to do

other tasks. your GUI will be more responsive than if you used a non-
blocking read.

The timeout_key parameter helps in deciding whether there has been any

user action within the stipulated time. The default value of "timeout_key"
is "__timeout__".

while True:

 event, value = window.read(timeout=10)

 if event == sg.WIN_CLOSED:

 break

 if event == sg.TIMEOUT_KEY:

 print("Nothing happened")

PySimpleGUI – Python GUIs for Humans

36

To make the window movable, set the "grab_anywhere" property of the

Window object to true. If the "keep_on_top" property is set to True, the

window will remain above the current windows.

PySimpleGUI – Python GUIs for Humans

37

The PySimpleGUI library consists of a number of GUI widgets that can be

placed on top of the Window object. For instance, the buttons or the

textboxes that we have used in the above examples. All these widgets are

in fact objects of classes defined in this library, in which Element class acts
as the base for all other widget classes.

An object of this Element class is never declared explicitly. It defines the

common properties like size, color, etc. Here is the list of the available

widgets (also called elements)

Text element
Display some text in the window. Usually this means

a single line of text.

Input element Display a single text input field.

Multiline

element

Display and/or read multiple lines of text. This is both

an input and output element.

Combo element
A combination of a single-line input and a drop-down

menu.

OptionMenu

element
Similar to Combo. Only on TKinter port

Checkbox

element
Displays a checkbox and text next to it.

Radio element
Used in a group of other Radio Elements to provide user

with ability to select only one choice in a list of choices.

Spin element A spinner with up/down buttons and a single line of text.

Button element
Defines all possible buttons. The shortcuts such as

Submit, FileBrowse, ... each create a Button

ButtonMenu

element

Creates a button that when clicked will show a menu

similar to right click menu.

Slider element
Horizontal or vertical slider to increment/decrement a

value.

Listbox element

Provide a list of values for the user to choose one or

more of. Returns a list of selected rows when a

window.read() is executed.

Image element
Show an image in the window. Should be a GIF or a

PNG only.

6. PySimpleGUI – Element Class

PySimpleGUI – Python GUIs for Humans

38

Graph element Creates area to draw graph

Canvas

element
An area to draw shapes

ProgressBar

element

Displays a colored bar that is shaded as progress of

some operation is made.

Table element Display data in rows and columns

Tree element
Presents data in a tree-like manner, much like a

file/folder browser.

Sizer element This element is used to add more space.

StatusBar

element

A StatusBar Element creates the sunken text-filled

strip at the bottom.

Properties of Element Class

Following are the properties of the Element Class:

 size: (w=characters-wide, h=rows-high)

 font: specifies the font family, size.

 background_color: color of background.

 text_color: element's text color.

 key: Identifies an Element.

 visible: set visibility state of the element (Default = True)

Methods of Element Class

Following are the methods of the Element Class:

 set_tooltip(): Called by application to change the tooltip text for an

Element.

 set_focus(): Sets the current focus to be on this element

 set_size(): Changes the size of an element to a specific size.

 get_size(): Return the size of an element in Pixels.

 expand(): Causes the Element to expand to fill available space in the

X and Y directions.

 set_cursor(): Sets the cursor for the current Element.

 set_right_click_menu(): Sets right click menu to be invoked when

clicked.

PySimpleGUI – Python GUIs for Humans

39

Any GUI application is event driven, having the ability to respond to the

various possible events occurring on the GUI elements. In PySimpleGUI,

the event handling is done inside an infinite loop below the constitution of

GUI design, continuously checking whether an event occurs and perform
the actions based on the event.

There are two types of events:

 Window events, and

 Element events.

The window events are enabled by default, and include the button events

(occur when any button is clicked) and the event of the "X" button on the
titlebar clicked.

The element events are not enabled by default. Element-specific events can

be detected only when the "enable_events" parameter is set to True when

an element is created.

Window Closed Event

The infinite event loop that makes the PySimpleGUI window persistent, is

terminated when the user presses the "X" button, or the close() method

of Window class is executed. The standard way of terminating the loop is
as follows:

import PySimpleGUI as psg

...

while True:

 ...

 if event == psg.WIN_CLOSED:

 break

 ...

window.close()

7. PySimpleGUI – Events

PySimpleGUI – Python GUIs for Humans

40

The Widow class also emits an "enable_close_attempted_event" if this

parameter is set to True. It is a good practice to call yes-no popup when it

is detected inside the loop.

window = psg.Window('Calculator', layout,

 enable_close_attempted_event=True)

while True:

 event, values = window.read()

 print(event, values)

 if event == "Add":

 result = int(values['-FIRST-']) + int(values['-SECOND-'])

 if event == "Sub":

 result = int(values['-FIRST-']) - int(values['-SECOND-'])

 window['-OUT-'].update(result)

 if event == psg.WINDOW_CLOSE_ATTEMPTED_EVENT and

psg.popup_yes_no('Do you really want to exit?') == 'Yes':

 break

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

In this case, as the "X" button is pressed, the Popup with Yes/No button

appears and the program exits when the "Yes" button is clicked.

It will produce the following output window:

PySimpleGUI – Python GUIs for Humans

41

The event value also returns the "-WINDOW CLOSE ATTEMPTED-" value.

-WINDOW CLOSE ATTEMPTED- {'-FIRST-': '200', '-SECOND-': '300'}

Button Events

The button click event is enabled by default. To disable, use

"Button.update(disabled=True)". You can also set "enable_events=True" in

Button’s constructor, it will enable the Button Modified event. This event is

triggered when something 'writes' to a button.

When we read the contents of the window (using "window.read()"), the

button value will be either its caption (if key is not set) or key if it is set.

In the above example, since the key parameter is not set on the Add and

Sub buttons, their captions are returned when the window is read.

Add {'-FIRST-': '200', '-SECOND-': '300'}

Add key parameters to Add and Sub buttons in the program.

import PySimpleGUI as psg

layout = [

 [psg.Text('Enter a num: '), psg.Input(key='-FIRST-')],

 [psg.Text('Enter a num: '), psg.Input(key='-SECOND-')],

 [psg.Text('Result : '), psg.Text(key='-OUT-')],

 [psg.Button("Add", key='-ADD-'), psg.Button("Sub", key='-
SUB-'), psg.Exit()],

]

PySimpleGUI – Python GUIs for Humans

42

window = psg.Window('Calculator', layout)

while True:

 event, values = window.read()

 print(event, values)

 if event == "-ADD-":

 result = int(values['-FIRST-']) + int(values['-SECOND-'])

 if event == "-SUB-":

 result = int(values['-FIRST-']) - int(values['-SECOND-'])

 window['-OUT-'].update(result)

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

The tuple returned by the read() method will now show the key of button
pressed.

-ADD- {'-FIRST-': '200', '-SECOND-': '300'}

Events of Other Elements

Many of the elements emit events when some type of user interaction takes

place. For example, when a slider is moved, or an item from the list is
selected on or a radio button is clicked on.

Unlike Button or Window, these events are not enabled by default. To
enable events for an Element, set the parameter "enable_events=True".

The following table shows the elements and the events generated by them.

Name Events

InputText any key pressed

PySimpleGUI – Python GUIs for Humans

43

Combo item selected

Listbox selection changed

Radio selection changed

Checkbox selection changed

Spinner new item selected

Multiline any key pressed

Text Clicked

Status Bar Clicked

Graph Clicked

Graph Dragged

Graph drag ended (mouse up)

TabGroup tab clicked

Slider slider moved

Table row selected

Tree node selected

ButtonMenu menu item chosen

Right click menu menu item chosen

PySimpleGUI – Python GUIs for Humans

44

The Text element is one of the basic and most commonly used elements.

An object of the Text class displays a non-editable, single line of text

containing Unicode characters. Although most of the times, it is not used to
respond to events, it can emit the event having its key as the name.

The Text element has the following properties in addition to those derived
from the Element class:

text
The text to display. Can include /n to achieve multiple

lines.

justification
How string should be aligned within space provided by

size. Valid choices = "left", "right", "center"

pad Amount of padding to put around element in pixels

expand_x
If True the element will automatically expand in the "X"

direction to fill available space

expand_y
If True the element will automatically expand in the "Y"

direction to fill available space

tooltip
Text that will appear when mouse hovers over the

element

The most important method defined in the Text class is the get() method

that retrieves the current value of the displayed text, to be used

programmatically elsewhere. You can also change the displayed text

programmatically by capturing the click event, which should be enabled in

the constructor.

The following example initially displays "Hello World" on the Text element,

which changes to "Hello Python", when clicked.

import PySimpleGUI as psg

layout = [[psg.Text('Hello World', enable_events=True,

 key='-TEXT-', font=('Arial Bold', 20),

 expand_x=True, justification='center')],

]

window = psg.Window('Hello', layout, size=(715, 100))

8. PySimpleGUI – Text Element

PySimpleGUI – Python GUIs for Humans

45

while True:

 event, values = window.read()

 print(event, values)

 if event == '-TEXT-':

 window['-TEXT-'].update("Hello Python")

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

Run the above program. Click the label to change its text as shown below:

PySimpleGUI – Python GUIs for Humans

46

This type of widget is most popular in any GUI toolkit. The Input element is

based on the Entry widget in TKinter. The object of this class gives a input

text field of single line.

In addition to the common properties, those specific to the Input element
are as follows:

default_text
Text initially shown in the input box as a

default value

disabled Set disable state for element

use_readonly_for_disable
If True (the default) tkinter state set to

'readonly'. Otherwise state set to 'disabled'

password_char
Password character if this is a password

field

The Input class defines the get() method which returns the text entered by

the user. The update() method changes some of the settings for the Input
Element. Following properties are defined:

value new text to display as default text in Input field

disabled disable or enable state of the element

select if True, then the text will be selected

visible change visibility of element

move_cursor_to
Moves the cursor to a particular offset. Defaults to

'end'

password_char Password character if this is a password field

paste

If True "Pastes" the value into the element rather

than replacing the entire element. If anything is

selected it is replaced. The text is inserted at the

current cursor location.

In the example give below, the window has an Input element to accept user

input. It is programmed to accept only digits. If any non-digit key is

pressed, a message pops up informing that it is not allowed. For that, the

last character from the Input is compared with a string made of digit

9. PySimpleGUI – Input Element

PySimpleGUI – Python GUIs for Humans

47

characters. If the last key pressed is not a digit, it is removed from the
Input box.

import PySimpleGUI as psg

l1 = psg.Text('Type here', key='-OUT-', font=('Arial Bold', 20),

 expand_x=True, justification='center')

t1 = psg.Input('', enable_events=True, key='-INPUT-',

 font=('Arial Bold', 20), expand_x=True,

 justification='left')

b1 = psg.Button('Ok', key='-OK-', font=('Arial Bold', 20))

b2 = psg.Button('Exit', font=('Arial Bold', 20))

layout = [[l1], [t1], [b1, b2]]

window = psg.Window('Input Demo', layout, size=(750, 150))

while True:

 event, values = window.read()

 print(event, values)

 if event == '-INPUT-':

 if values['-INPUT-'][-1] not in ('0123456789'):

 psg.popup("Only digits allowed")

 window['-INPUT-'].update(values['-INPUT-'][:-1])

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

PySimpleGUI – Python GUIs for Humans

48

It will produce the following output window:

Multiline Element

If you wish to input a text consisting of mor than one lines, you can use

Multiline element instead of Input element. In fact, it is used as an input as

well as output element. If the length of the text is more than the

height/width of the text entered/displayed, the scroll bars appear to the

element.

Following properties are specific to Multiline element:

default_text Initial text to show

autoscroll
If True the contents of the element will

automatically scroll as more data added to the end

auto_size_text
If True will size the element to match the length of

the text

horizontal_scroll

Controls if a horizontal scrollbar should be shown. If

True a horizontal scrollbar will be shown in addition

to vertical

reroute_stdout
If True, then all output to stdout will be output to

this element

reroute_cprint If True, your cprint calls will output to this element.

no_scrollbar
If False, then a vertical scrollbar will be shown (the

default)

PySimpleGUI – Python GUIs for Humans

49

Like the Input element, the Multiline class also has a get() method to

retrieve its text content. The Update() method changes the values of some

properties of this element. For example:

 value: new text to display

 append: If True, then the new value will be added onto the end of
the current value. if False then contents will be replaced.

In the following example, a Multiline textbox is used to display the contents

of a text file:

import PySimpleGUI as psg

file = open("zen.txt")

text = file.read()

l1 = psg.Text('Multiline Input/Output', font=('Arial Bold', 20),

 expand_x=True, justification='center')

t1 = psg.Multiline(text, enable_events=True, key='-INPUT-',

 expand_x=True, expand_y=True,

 justification='left')

b1 = psg.Button('Ok', key='-OK-', font=('Arial Bold', 20))

b2 = psg.Button('Exit', font=('Arial Bold', 20))

layout = [[l1], [t1], [b1, b2]]

window = psg.Window('Multiline Demo', layout, size=(715, 250))

while True:

 event, values = window.read()

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

PySimpleGUI – Python GUIs for Humans

50

The program will produce the following output window:

PySimpleGUI – Python GUIs for Humans

51

Almost every GUI window will have at least one button. When a button

element is clicked, it initiates a certain action. PySimpleGUI has some

button types with predefined caption. They are defined to perform a specific

task. Ohers with a user defined caption are capable of doing any required

task.

The buttons with predefined caption have a shortcut name. So that a button

with OK as a caption can be created in two ways:

>>> b1=psg.Button("OK")

OR

>>> b1=psg.OK()

Other such predefined captions are:

 OK

 Ok

 Submit

 Cancel

 Yes

 No

 Exit

 Quit

 Help

 Save

 SaveAs

 Open

In PySimpleGUI, the button event is automatically enabled by default. When
clicked, these predefined captions become the name of the event generated.

There are some chooser buttons in PysimpleGUI. When clicked these
buttons open a dialog box to let the user choose from it.

 FileBrowse

 FilesBrowse

 FileSaveAs

 FolderBrowse

 CalendarButton

 ColorChooserButton

10. PySimpleGUI – Button Element

PySimpleGUI – Python GUIs for Humans

52

These special buttons return a string representation of selected object and

that value is filled in any other element (such as Input or Multiline) on the

window. This element is pointed by the target property.

The value of the target property is represented using (row, col) tuple. The

default target is the element in the same row and to the left of this button,

represented by (ThisRow, -1) value. ThisRow means the same row, "-1"

means the element to the button’s immediate left. If a value of target is set

to (None, None), then the button itself will hold the information. The value

can be accessed by using the button's key.

The target property can also be the key property of target element.

FileBrowse

The FileBrowse button opens a file dialog from which a single file can be

selected. In the following code, the path string of the selected file is

displayed in the target Input bow in the same row.

import PySimpleGUI as psg

layout = [[psg.Text('Select a file',font=('Arial Bold', 20),

 expand_x=True, justification='center')],

 [psg.Input(enable_events=True, key='-IN-',font=('Arial

Bold', 12),expand_x=True),

 psg.FileBrowse()]]

window = psg.Window('FileChooser Demo', layout,

size=(715,100))

while True:

 event, values = window.read()

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

PySimpleGUI – Python GUIs for Humans

53

This code renders the following window:

Click on the Browse button to display the file dialog:

 The selected file name along with its path is displayed in the Input box.

FilesBrowse

This element allows the user to select multiple files. The return string is the

concatenation of files, separated by ";" character. We shall populate a list

box with the selected files by the following code.

PySimpleGUI – Python GUIs for Humans

54

import PySimpleGUI as psg

layout = [[psg.Text('Select a file', font=('Arial Bold', 20),

 expand_x=True, justification='center')],

 [psg.LBox([], size=(20, 10), expand_x=True,

 expand_y=True, key='-LIST-'),

 psg.Input(visible=False, enable_events=True, key='-IN-',

 font=('Arial Bold', 10), expand_x=True),

 psg.FilesBrowse()]

]

window = psg.Window('FileChooser Demo', layout, size=(715, 200))

while True:

 event, values = window.read()

 if event == '-IN-':

 window['-LIST-'].Update(values['-IN-'].split(';'))

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

Here, the Input element with "-IN-" key is hidden by setting the "visible"

property to False. Still, it contains the ";" separated list of selected files.

The string is split at occurrence of ";" character and the list below is file

with the file names.

PySimpleGUI – Python GUIs for Humans

55

FolderBrowse

This element works similar to the FileBrowse element. It is used to select

the current folder. It may be used to set the selected folder as default for

subsequent file related operations.

You can set the "initial_folder" property of this element to a folder name

(along with its path) to open the folder dialog with that folder opened to

start with.

import PySimpleGUI as psg

layout = [

 [psg.Text('Select a folder', font=('Arial Bold', 20),

 expand_x=True, justification='center')],

 [psg.Input(enable_events=True, key='-IN-',

 font=('Arial Bold', 12), expand_x=True),

 psg.FolderBrowse(initial_folder="c:/Python310")]

]

window = psg.Window('FolderChooser Demo', layout, size=(715,

100))

while True:

 event, values = window.read()

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

A window with Browse button is displayed.

PySimpleGUI – Python GUIs for Humans

56

The folder dialog opens when it is clicked.

The path of the selected folder is displayed in the Input text field.

FileSaveAs

This button also opens a file dialog, but provides a save button so that

information on the PySimpleGUI window can be saved by the name given

by the user. The SaveAs dialog can be customized by the following

properties. We can apply filter on file types to be selected, and set the initial

folder for browsing action.

file_types Default value = (("ALL Files", "*.* *"),)

default_extension
If no extension entered by user, add this to

filename

initial_folder Starting path for folders and files

PySimpleGUI – Python GUIs for Humans

57

In the following example, a FileBrowse button allows you to read the

contents of a file and display in a Multiline text box. Click on the SaveAS

button to save the displayed text as a new file name.

import PySimpleGUI as psg

t1 = psg.Input(visible=False, enable_events=True, key='-T1-',

 font=('Arial Bold', 10), expand_x=True)

t2 = psg.Input(visible=False, enable_events=True, key='-T2-',

 font=('Arial Bold', 10), expand_x=True)

t3 = psg.Multiline("", enable_events=True, key='-INPUT-',

 expand_x=True, expand_y=True,

 justification='left')

layout = [[t1, psg.FilesBrowse()], [t3], [t2, psg.FileSaveAs()]]

window = psg.Window('FileSaveAs Demo', layout, size=(715, 200))

while True:

 event, values = window.read()

 if event == '-T1-':

 file = open(t1.get())

 txt = file.read()

 window['-INPUT-'].Update(value=txt)

 if event == '-T2-':

 file = open(t2.get(), "w")

 file.write(t3.get())

 file.close()

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

PySimpleGUI – Python GUIs for Humans

58

Select a text file. Its contents will be displayed in the textbox.

Choose the name and destination folder to save the text in a new file.

ColorChooserButton

This button brings up a color dialog. You can choose a color from the

swatches, or using the slider, or setting the RGB values from the spinner.

The dialog box returns the Hex string of the RGB value of the selected

colour. It is displayed in the target input control, and it can be further used

to change the color relate property of any element.

In the following example, the chosen color is used to update the "text_color"

property of the Text element displaying Hello World string.

PySimpleGUI – Python GUIs for Humans

59

import PySimpleGUI as psg

layout = [[psg.Text('Hello World', font=('Arial Bold', 20),

 expand_x=True, justification='center',

 key='-T1-')],

 [psg.Input(enable_events=True, key='-IN-',

 font=('Arial Bold', 12), expand_x=True),

 psg.ColorChooserButton("Choose Color")]

]

window = psg.Window('Color Chooser Demo', layout, size=(715, 100))

while True:

 event, values = window.read()

 print(event, values)

 if event == '-IN-':

 window['-T1-'].update(text_color=values['-IN-'])

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

A window with ColorChooserButton with Choose Color caption appears.

Click the button to open the color dialog.

PySimpleGUI – Python GUIs for Humans

60

Choose the desired colour and press OK. The Hex string corresponding to it

will be returned and displayed in the target Input element. The get()

method of the Input element is used to fetch it and update the text_color
property of Hello World text.

CalendarButton

This button shows a calendar chooser window. The target element is filled

with return value as a string. Following important properties are defined in
CalendarButton class:

button_text Text in the button

default_date_m_d_y Beginning date to show

locale Defines the locale used to get day names

month_names Optional list of month names to use (should be 12 items)

day_abbreviations
Optional list of abbreviations to display as the day

of week

title Title shown on the date chooser window

PySimpleGUI – Python GUIs for Humans

61

Here is a simple example demonstrating how to use the CalendarButton:

It initially shows a Calendar Button. Click it to open the calendar dialog:

Using the selector arrows, choose the required date. It will be displayed in
the window.

Image Button

Instead of a text caption, an image can be displayed on the face of a button.

The button class has an "image_filename" property. Assign the name of the
image to be displayed. The image should be PNG or GIF type.

The "image_filename" property of the Button object may be set to an image

file that you want to display on the button.

In the following example, the Add, Subtract and Exit buttons have images

instead of captions. To capture their click event, their key parameter is
used.

import PySimpleGUI as psg

layout = [

 [psg.Text('Enter a num: '), psg.Input(key='-FIRST-')],

 [psg.Text('Enter a num: '), psg.Input(key='-SECOND-')],

PySimpleGUI – Python GUIs for Humans

62

 [psg.Text('Result : '), psg.Text(key='-OUT-')],

 [psg.Button(key="Add", image_filename="plus.png"),

 psg.Button(key="Sub", image_filename="minus.png"),

 psg.Button(key="Exit", image_filename="close.png")],

]

window = psg.Window('Calculator', layout, size=(715, 200),

 enable_close_attempted_event=True)

while True:

 event, values = window.read()

 print(event, values)

 if event == "Add":

 result = int(values['-FIRST-']) + int(values['-SECOND-'])

 if event == "Sub":

 result = int(values['-FIRST-']) - int(values['-SECOND-'])

 window['-OUT-'].update(result)

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

Given below is the result of the above code:

PySimpleGUI – Python GUIs for Humans

63

This GUI element in PySimpleGUI toolkit is a container that can display one

or more items, and select from it. You can specify the number of items that

can be visible at a time. If the number of items or their length becomes

more than the dimensions of the Listbox, a vertical and/or horizontal
scrollbar appears towards the right or bottom of the element.

Important properties of the ListBox class are as follows:

Values
List of values to display. Can be any type including

mixed types

default_values Which values should be initially selected

select_mode

Select modes are used to determine if only 1 item

can be selected or multiple and how they can be

selected.

no_scrollbar
Controls if a scrollbar should be shown. If True, no

scrollbar will be shown

horizontal_scroll

Controls if a horizontal scrollbar should be shown. If

True a horizontal scrollbar will be shown in addition

to vertical

The "select_mode" property can have one of the following enumerated

values:

 LISTBOX_SELECT_MODE_SINGLE (default)

 LISTBOX_SELECT_MODE_MULTIPLE

 LISTBOX_SELECT_MODE_BROWSE

 LISTBOX_SELECT_MODE_EXTENDED

The Listbox class inherits the update() method from the Element class. It

effects changes in some of the properties when the window gets updated.

The parameters to the update() method are:

Values New list of choices to be shown to user

Disabled Disable or enable state of the element

set_to_index
Highlights the item(s) indicated. If parm is an int,

one entry will be set. If is a list, then each entry in

the list is highlighted

11. PySimpleGUI – ListBox Element

PySimpleGUI – Python GUIs for Humans

64

scroll_to_index Scroll the listbox so that this index is the first shown

select_mode Changes the select mode

Visible Control visibility of element

The Listbox element is in action in the following program. The PySimpleGUI

window shows an Input element, a Listbox and the buttons with captions
Add, Remove and Exit.

import PySimpleGUI as psg

names = []

lst = psg.Listbox(names, size=(20, 4),

 font=('Arial Bold', 14), expand_y=True,

 enable_events=True, key='-LIST-')

layout = [[psg.Input(size=(20, 1), font=('Arial Bold', 14),

 expand_x=True, key='-INPUT-'),

 psg.Button('Add'),

 psg.Button('Remove'),

 psg.Button('Exit')],

 [lst],

 [psg.Text("", key='-MSG-',

 font=('Arial Bold', 14),

 justification='center')]

]

window = psg.Window('Listbox Example', layout, size=(600, 200))

while True:

 event, values = window.read()

 print(event, values)

 if event in (psg.WIN_CLOSED, 'Exit'):

PySimpleGUI – Python GUIs for Humans

65

 break

 if event == 'Add':

 names.append(values['-INPUT-'])

 window['-LIST-'].update(names)

 msg = "A new item added : {}".format(values['-INPUT-'])

 window['-MSG-'].update(msg)

 if event == 'Remove':

 val = lst.get()[0]

 names.remove(val)

 window['-LIST-'].update(names)

 msg = "A new item removed : {}".format(val)

 window['-MSG-'].update(msg)

window.close()

Run the above code, type some text in the Input box and press Add button.

The text will be added in the listbox below it.

The get() method of the Listbox class returns the list of selected items. By

default, a single item is selectable. The remove button gets the value of the

selected item and removes it from the collection.

PySimpleGUI – Python GUIs for Humans

66

The Combo element is a drop down list. It initially shows an Input element

with an arrow towards its right hand side. When the arrow is clicked, the

list box pulls down. So, you can enter text in the Input text box, or select

an item from the drop down list, so that the selected item shows up in the

Input box.

The Combo element functions more or less similarly to Listbox. It is

populated by a collection of string items in a list. You can also specify the

default value to be displayed on top.

Following are the important properties of the Combo class:

values list of values to be displayed and to choose.

default_value Choice to be displayed as initial value.

size
width, height. Width = characters-wide, height = the

number of entries to show in the list.

The get() method returns the current (right now) value of the Combo. The

update() method modifies following properties of the Combo object:

value
change which value is current selected based on new list

of previous list of choices

values change list of choices

set_to_index
change selection to a particular choice starting with index

= 0

readonly
if True make element readonly (user cannot change any

choices).

In the following example, we use the selection changed event of the Combo

element. The selected element in the dropdown is removed if the user
responds by pressing Yes on the Popup dialog.

import PySimpleGUI as psg

names = []

12. PySimpleGUI – Combo Element

PySimpleGUI – Python GUIs for Humans

67

lst = psg.Combo(names, font=('Arial Bold', 14),

 expand_x=True, enable_events=True,

 readonly=False, key='-COMBO-')

layout = [[lst,

 psg.Button('Add',),

 psg.Button('Remove'),

 psg.Button('Exit')],

 [psg.Text("", key='-MSG-',

 font=('Arial Bold', 14),

 justification='center')]

]

window = psg.Window('Combobox Example',

 layout, size=(715, 200))

while True:

 event, values = window.read()

 print(event, values)

 if event in (psg.WIN_CLOSED, 'Exit'):

 break

 if event == 'Add':

 names.append(values['-COMBO-'])

 print(names)

 window['-COMBO-'].update(values=names, value=values['-COMBO-'])

 msg = "A new item added : {}".format(values['-COMBO-'])

 window['-MSG-'].update(msg)

 if event == '-COMBO-':

 ch = psg.popup_yes_no("Do you want to Continue?",

title="YesNo")

PySimpleGUI – Python GUIs for Humans

68

 if ch == 'Yes':

 val = values['-COMBO-']

 names.remove(val)

 window['-COMBO-'].update(values=names, value=' ')

 msg = "A new item removed : {}".format(val)

 window['-MSG-'].update(msg)

window.close()

When the Combo object emits the event (identified by its key "-COMBO-")

as an item in the dropdown is clicked. A Yes-No popup is displayed asking

for the confirmation. If the Yes button is clicked, the item corresponding to

the text box of the Combo element is removed from the list and the element

is repopulated by the remaining items.

A screenshot of the window is shown below:

PySimpleGUI – Python GUIs for Humans

69

A Radio button is a type of toggle button. Its state changes to True to False

and vice versa on every click. A caption appears to the right of a circular

clickable region the dot selection indicator in it.

When more than one radio buttons are added as members of a group, they

are mutually exclusive, in the sense only one of the buttons can have True

state and others become False.

Apart from the common properties inherited from the Element class, the

Radio object has following properties important in the context of a Radio

button:

 text: Text to display next to button

 group_id: Groups together multiple Radio Buttons.

 default: Set to True for the one element of the group you want

initially selected

If the "enable_events" property is set to True for all the buttons having

same group_id, the selection changed event is transmitted.

The "get()" method returns True if it is selected, false otherwise. The

"update()" method is overridden to modify the properties of the Radio

element. These properties are:

 value: if True change to selected and set others in group to

unselected

 text: Text to display next to radio button

 disabled: disable or enable state of the element

In the following example, three groups of radio buttons are used. The code

computes interest on a loan amount. The interest rate depends on the

gender (less by 0.25% for female), period and the type of loan (personal or

business – 3% more for business loan) selected by the user.

import PySimpleGUI as psg

psg.set_options(font=("Arial Bold", 14))

l1 = psg.Text("Enter amount")

13. PySimpleGUI – Radio Element

PySimpleGUI – Python GUIs for Humans

70

l2 = psg.Text("Gender")

l3 = psg.Text("Period")

l4 = psg.Text("Category")

l5 = psg.Text(" ", expand_x=True,

 key='-OUT-', justification='center')

t1 = psg.Input("", key='-AMT-')

r11 = psg.Radio("Male", "gen", key='male', default=True)

r12 = psg.Radio("Female", "gen", key='female')

r21 = psg.Radio("1 Yr", "per", key='one')

r22 = psg.Radio("5 Yr", "per", key='five', default=True)

r23 = psg.Radio("10 Yr", "per", key='ten')

r31 = psg.Radio("Personal", "ctg", key='per', default=True)

r32 = psg.Radio("Business", "ctg", key='bus')

b1 = psg.Button("OK")

b2 = psg.Button("Exit")

layout = [[l1, t1], [l2, r11, r12],

 [l3, r21, r22, r23], [l4, r31, r32],

 [b1, l5, b2]

]

window = psg.Window('Radio button Example', layout, size=(715, 200))

while True:

 rate = 12

 period = 5

 event, values = window.read()

 print(event, values)

PySimpleGUI – Python GUIs for Humans

71

 if event in (psg.WIN_CLOSED, 'Exit'):

 break

 if event == 'OK':

 if values['female'] == True: rate = rate - 0.25

 if values['one'] == True:

 rate = rate + 1

 period = 1

 if values['ten'] == True:

 rate = rate - 1

 period = 10

 if values['bus'] == True: rate = rate + 3

 amt = int(values['-AMT-'])

 print(amt, rate, period)

 interest = amt * period * rate / 100

 window['-OUT-'].update("Interest={}".format(interest))

window.close()

It will produce the following output window:

PySimpleGUI – Python GUIs for Humans

72

The Checkbox is also a toggle button having two states: checked and

unchecked. It presents a rectangular box which when clicked displays a

check mark (or removes it when it already has one) and a caption next to

it.

Usually, checkbox controls are provided to let the user select one or more

items from the available options. Unlike the Radio button, the Checkboxes

on the GUI window do not belong to any group. Hence, user can make

multiple selections.

The object of Checkbox class is declared with following specific parameters

PySimpleGUI.Checkbox(text, default, checkbox_color)

These are the properties specific to Checkbox class:

 text: This is a string, representing the text to display next to

checkbox

 default: Set to True if you want this checkbox initially checked

 checkbox_color: You can specify the color of background of the
box that has the check mark in it.

Apart from these, other common keyword arguments to set the properties

inherited from the Element class can be given to the constructor.

The two important methods inherited but overridden in the Checkbox class
are:

 get(): It return the current state of this checkbox

 update(): The Checkbox emits the selection changed event. One or

more properties of the Checkbox element are updated in response

to an event on the window. These properties are:

 value: if True checks the checkbox, False clears it

 text: Text to display next to checkbox

In the following example, a group of three radio buttons represent the

faculty streams available in a college. Depending on the faculty chosen,

three subjects of that faculty are made available for the user to select one

or more from the available options.

14. PySimpleGUI – Checkbox Element

PySimpleGUI – Python GUIs for Humans

73

import PySimpleGUI as psg

psg.set_options(font=("Arial Bold",14))

l1=psg.Text("Enter Name")

l2=psg.Text("Faculty")

l3=psg.Text("Subjects")

l4=psg.Text("Category")

l5=psg.Multiline(" ", expand_x=True, key='-OUT-',

 expand_y=True,justification='left')

t1=psg.Input("", key='-NM-')

rb=[]

rb.append(psg.Radio("Arts", "faculty", key='arts',

enable_events=True,default=True))

rb.append(psg.Radio("Commerce", "faculty", key='comm',

enable_events=True))

rb.append(psg.Radio("Science", "faculty",

key='sci',enable_events=True))

cb=[]

cb.append(psg.Checkbox("History", key='s1'))

cb.append(psg.Checkbox("Sociology", key='s2'))

cb.append(psg.Checkbox("Economics", key='s3'))

b1=psg.Button("OK")

b2=psg.Button("Exit")

layout=[[l1, t1],[rb],[cb],[b1, l5, b2]]

window = psg.Window('Checkbox Example', layout, size=(715,250))

PySimpleGUI – Python GUIs for Humans

74

while True:

 event, values = window.read()

 print (event, values)

 if event in (psg.WIN_CLOSED, 'Exit'): break

 if values['comm']==True:

 window['s1'].update(text="Accounting")

 window['s2'].update(text="Business Studies")

 window['s3'].update(text="Statistics")

 if values['sci']==True:

 window['s1'].update(text="Physics")

 window['s2'].update(text="Mathematics")

 window['s3'].update(text="Biology")

 if values['arts']==True:

 window['s1'].update(text="History")

 window['s2'].update(text="Sociology")

 window['s3'].update(text="Economics")

 if event=='OK':

 subs=[x.Text for x in cb if x.get()==True]

 fac=[x.Text for x in rb if x.get()==True]

 out="""

Name={}

Faculty: {}

Subjects: {}

""".format(values['-NM-'], fac[0], " ".join(subs))

 window['-OUT-'].update(out)

window.close()

PySimpleGUI – Python GUIs for Humans

75

Run the above code. Select a faculty name and mark checks in the

corresponding check buttons to register the selection. Note that the

subjects change as the faculty option is changed.

Press the OK button so that the choices are printed in the Multiline box, as

shown below:

PySimpleGUI – Python GUIs for Humans

76

The Slider widget comprises of a horizontal or vertical bar over which a

slider button can be moved across with the help of mouse. The length of

the bar indicates a range of a numerical parameter (such as font size,

length/width of a rectangle etc.). The manual movement of the slider button

changes the instantaneous value of the parameter, which can be further

used in the program.

The object of Slider class is declared as follows:

PySimpleGUI.Slider(range, default_value, resolution,

orientation, tick_interval)

These parameters are specific to the Slider control. The description of these

parameters is given below:

 range: The slider's bar represents this range (min value, max
value)

 default_value: starting value to which the slider button is set in the

beginning

 resolution: the smallest amount by which the value changes when
the slider is moved

 tick_interval: The frequency of a visible tick should be shown next
to slider

 orientation: either 'horizontal' or 'vertical'

 disable_number_display: if True no number will be displayed by
the Slider Element

Other attributes inherited from the Element class, such as color, size, font

etc can be used to further customize the Slider object.

The update() method of the Slider class helps in refreshing the following

parameters of the Slider object:

 value: sets current slider value

 range: Sets a new range for slider

the following code generates a PysimpleGUI window showing a Text Label

with Hello World caption. There is a horizontal slider whose value changes

from 10 to 30. Its key parameter is "-SL-".

15. PySimpleGUI – Slider Element

PySimpleGUI – Python GUIs for Humans

77

Whenever the slider button is moved across, the "-SL-" event occurs. The

instantaneous value of the slider button is used as the font size and the

Text caption is refreshed.

import PySimpleGUI as psg

layout = [

 [psg.Text('Hello World', enable_events=True,

 key='-TEXT-', font=('Arial Bold', 20),

 size=(50, 2), relief="raised", border_width=5,

 expand_x=True, justification='center')],

 [psg.Slider(range=(10, 30), default_value=12,

 expand_x=True, enable_events=True,

 orientation='horizontal', key='-SL-')]

]

window = psg.Window('Hello', layout, size=(715, 150))

while True:

 event, values = window.read()

 print(event, values)

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

 if event == '-SL-':

 window['-TEXT-'].update(font=('Arial Bold', int(values['-SL-'])))

window.close()

PySimpleGUI – Python GUIs for Humans

78

Save and run the above code. As you move the slider button, the font size

of the Hello World text keeps changing. The output window will appear as

follows:

PySimpleGUI – Python GUIs for Humans

79

The object of Spin class in PysimpleGUI library is also a selection widget.

Its visual appearance shows a non-editable text box with up/down buttons

to the right side. It is capable of displaying any one item from a list of

numbers or strings.

As the up or down button is pressed, the index of the item to be displayed

increments or decrements and the next or previous item in the list is

displayed in the control’s text box. The displayed value may be used as

required in the program logic.

The parameters to the Spin() constructor are:

PySimpleGUI.Spin(values, initial_value, disabled, readonly, size)

Where,

 values: List or tuple of valid values - numeric or string

 initial_value: Any one item from the supplied list to be initially

displayed

 disabled: set disable state

 readonly: Turns on the Spin element events when up/down button

is clicked

 size: (w, h) w=characters-wide, h=rows-high.

The get() method of the Spin class returns the current item displayed in its

text box. On the other hand, the update() method is used to dynamically

change following properties of the Spin element:

 value: Set the current value from list of choices

 values: Set new list object as available choices

The Spin element generates the selection changed event identified by the

key parameter when the up/down button is clicked.

In the following example, we construct a simple date selector with the help

of three Spin elements – for date, name of month and year between 2000

to 2025. Ranges for date and year elements are numeric whereas for the

month spin element, the range is of strings.

16. PySimpleGUI – Spin Element

PySimpleGUI – Python GUIs for Humans

80

import PySimpleGUI as psg

import calendar

from datetime import datetime

dates = [i for i in range(1, 32)]

s1 = psg.Spin(dates, initial_value=1, readonly=True,

 size=3, enable_events=True, key='-DAY-')

months = calendar.month_abbr[1:]

s2 = psg.Spin(months, initial_value='Jan', readonly=True,

 size=10, enable_events=True, key='-MON-')

yrs = [i for i in range(2000, 2025)]

s3 = psg.Spin(yrs, initial_value=2000, readonly=True,

 size=5, enable_events=True, key='-YR-')

layout = [

 [psg.Text('Date'), s1, psg.Text("Month"), s2, psg.Text("Year"), s3],

 [psg.OK(), psg.Text("", key='-OUT-')]

]

window = psg.Window('Spin Element Example',

 layout, font='_ 18', size=(700, 100))

while True:

 event, values = window.read()

 if event == 'OK':

 datestr = str(values['-DAY-']) + " " \

 + values['-MON-'] + "," \

 + str(values['-YR-'])

 try:

 d = datetime.strptime(datestr, '%d %b,%Y')

 window['-OUT-'].update("Date: {}".format(datestr))

PySimpleGUI – Python GUIs for Humans

81

 except:

 window['-OUT-'].update("")

 psg.Popup("Invalid date")

 if event == psg.WIN_CLOSED:

 break

window.close()

Set the Spin elements to the desired date value and press OK. If the date

string represents a valid date, it is displayed in the Text element in the

bottom row.

If the date string is incorrect (for example, 29-Feb-2022), then a popup

appears indicating that the value is invalid.

PySimpleGUI – Python GUIs for Humans

82

Sometimes, a computer operation may be very lengthy, taking a lot of time

to complete. Therefore, the user may get impatient. Hence it is important

to let him know the state of the application’s progress. The ProgressBar

element gives a visual indication of the amount of the process completed

so far. It is a vertical or horizontal coloured bar that is incrementally shaded

by a contrasting colour to show that the process is in progress.

The ProgressBar constructor has the following parameters, in addition to

those common parameters inherited from the Element class:

PySimpleGUI.ProgressBar(max_value, orientation, size, bar_color)

The max_value parameter is required to calibrate the width or height of

the bar. Orientation is either horizontal or vertical. The size is (chars long,

pixels wide) if horizontal, and (chars high, pixels wide) if vertical. The

bar_color is a tuple of two colors that make up a progress bar.

The update() method modifies one or more of the following properties of

the ProgressBar object:

 current_count: sets the current value

 max: changes the max value

 bar_color: The two colors that make up a progress bar. First color
shows the progress. Second color is the background.

Given below is a simple demonstration of how a ProgressBar control is used.

The layout of the window consists of a progress bar and a Test button. When

it is clicked, a for loop ranging from 1 to 100 starts

import PySimpleGUI as psg

import time

layout = [

 [psg.ProgressBar(100, orientation='h',

 expand_x=True, size=(20, 20),

 key='-PBAR-'), psg.Button('Test')],

 [psg.Text('', key='-OUT-', enable_events=True,

17. PySimpleGUI – ProgressBar element

PySimpleGUI – Python GUIs for Humans

83

 font=('Arial Bold', 16), justification='center',

 expand_x=True)]

]

window = psg.Window('Progress Bar', layout, size=(715, 150))

while True:

 event, values = window.read()

 print(event, values)

 if event == 'Test':

 window['Test'].update(disabled=True)

 for i in range(100):

 window['-PBAR-'].update(current_count=i + 1)

 window['-OUT-'].update(str(i + 1))

 time.sleep(1)

 window['Test'].update(disabled=False)

 if event == 'Cancel':

 window['-PBAR-'].update(max=100)

 if event == psg.WIN_CLOSED or event == 'Exit':

 break

window.close()

It will produce the following output window:

PySimpleGUI – Python GUIs for Humans

84

The Frame element is a container object that holds on or more elements of

other types. It helps in organizing the GUI elements in a logical manner.

For example, multiple radio button elements belonging to same group are

put inside a frame. It forms a rectangular border around the elements. The

frame can have a label and can be placed as per requirement.

PySimpleGUI.Frame(title, layout, title_location)

The title parameter is the text that is displayed as the Frame's "label" or

title. The Frame object can be seen as a child layout of the layout of the

main window. It may also be a list of list of elements.

The "title_location" is an enumerated string that decides the position of the

label to the frame. The predefined values are TOP, BOTTOM, LEFT, RIGHT,
TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, and BOTTOM_RIGHT.

The Frame object is not normally used as an event listener. Still, when

clicked on the area of frame, its title can be updated although this feature

is rarely used.

The following code is the same that was used as the example of checkbox.

Here, the three radio buttons for choosing the Faculty and the subjects in
the chosen faculty as checkboxes are put in separate frames.

import PySimpleGUI as psg

psg.set_options(font=("Arial Bold", 14))

l1 = psg.Text("Enter Name")

l2 = psg.Text("Faculty")

l3 = psg.Text("Subjects")

l4 = psg.Text("Category")

l5 = psg.Multiline(" ", expand_x=True, key='-OUT-',

 expand_y=True, justification='left')

t1 = psg.Input("", key='-NM-')

18. PySimpleGUI – Frame Element

PySimpleGUI – Python GUIs for Humans

85

rb = []

rb.append(psg.Radio("Arts", "faculty", key='arts',

 enable_events=True, default=True))

rb.append(psg.Radio("Commerce", "faculty", key='comm',

 enable_events=True))

rb.append(psg.Radio("Science", "faculty", key='sci',

 enable_events=True))

cb = []

cb.append(psg.Checkbox("History", key='s1'))

cb.append(psg.Checkbox("Sociology", key='s2'))

cb.append(psg.Checkbox("Economics", key='s3'))

b1 = psg.Button("OK")

b2 = psg.Button("Exit")

rlo = psg.Frame("Faculty", [rb], title_color='blue')

clo = psg.Frame("Subjects", [cb], title_color='blue')

layout = [[l1, t1], [rlo], [clo], [b1, l5, b2]]

window = psg.Window('Frame Example', layout, size=(715, 200))

The output of the program is shown below:

PySimpleGUI – Python GUIs for Humans

86

The Column element is also a container widget. It is very useful if you want

to design the GUI window elements represented in one or more vertical

columns. Just as a window, the Column area places the other PySimpleGUI

elements in a layout consisting of list of lists.

A Column layout is similar to a Frame. However, the Column doesn’t have

border or title as the Frame. But it is very effective when you want to place

group of elements side by side.

The mandatory parameter to be passed to the Column constructor is layout

as list of lists, each inner list being a row of elements.

Other parameters may be given as:

PySimpleGUI.Column(layout, size, scrollable,

vertical_scroll_only, element_justification)

Where,

 layout: Layout that will be shown in the Column container

 size: (width, height) size in pixels

 scrollable: if True then scrollbars will be added to the column

 vertical_scroll_only: if True then no horizontal scrollbar will be

shown

 element_justification: All elements inside the Column will have
this justification 'left', 'right', or 'center'

One of the important methods defined in the Column class is

contents_changed(). If the scrollable property is enabled for the Column,

and the layout changes by making some elements visible or invisible, the

new scrollable area is computed when this method is called.

Although the container elements like Column normally are not event

listeners, its visible property may be dynamically updated.

The following code shows how you can use the Column element. The main

layout’s upper row has a Text and Input element. The last row has "Ok" and

"Cancel" buttons. The middle row has two columns, each having input

elements for entering the correspondence and permanent address. Their

19. PySimpleGUI – Column Element

PySimpleGUI – Python GUIs for Humans

87

element layouts are stored as col1 and col2. These are used to declare two

Column objects and placed in the list for middle row of the main layout.

import PySimpleGUI as psg

psg.set_options(font=("Arial Bold",10))

l=psg.Text("Enter Name")

l1=psg.Text("Address for Correspondence")

l2=psg.Text("Permanent Address")

t=psg.Input("", key='-NM-')

a11=psg.Input(key='-a11-')

a12=psg.Input(key='-a12-')

a13=psg.Input(key='-a13-')

col1=[[l1],[a11], [a12], [a13]]

a21=psg.Input(key='-a21-')

a22=psg.Input(key='-a22-')

a23=psg.Input(key='-a23-')

col2=[[l2],[a21], [a22], [a23]]

layout=[[l,t],[psg.Column(col1), psg.Column(col2)],

 [psg.OK(), psg.Cancel()]]

window = psg.Window('Column Example', layout, size=(715,200))

while True:

PySimpleGUI – Python GUIs for Humans

88

 event, values = window.read()

 print (event, values)

 if event in (psg.WIN_CLOSED, 'Exit'):

 break

window.close()

It will produce the following output window:

PySimpleGUI – Python GUIs for Humans

89

Sometimes, the application’s GUI design is too big to fit in a single window,

and even if we try to arrange all the elements in a layout for the main

window, it becomes very clumsy. The use of Tab elements makes the design

very convenient, effective and easy for the user to navigate. Tab element

is also a container element such as Frame or Column.

First divide the elements in logically relevant groups and put them in

separate layouts. Each of them is used to construct a Tab element. These

Tab elements are put in a TabGroup as per the following syntax:

l1 is the layout for tab1

l2 is the layout for tab2

tab1=PySimpleGUI.Tab("title1", l1)

tab2=PySimpleGUI.Tab("title2", l2)

Tg = PySimpleGUI.TabGroup([[tab1, tab2]])

This titlegroup object may be further used

in the row of the main layout.

The advantage of the tabgroup and tab elements is that only one tab of all

the tabs in a group is visible at a time. When you click the title of one tab,

it becomes visible and all others are hidden. So that, the entire available

area can be utilized to display the elements in a single tab. This makes the

GUI design very clean and effective.

Remember that the Tab elements are never placed directly in the main

layout. They are always contained in a TabGroup.

To construct a Tab element, use the following syntax:

PySimpleGUI.Tab(title, layout, title_color)

Here, the title parameter is a string displayed on the tab. The layout refers

to the nested list of elements to be shown on the top and the title_color the

color to be used for displaying the title.

20. PySimpleGUI – Tab Element

PySimpleGUI – Python GUIs for Humans

90

In the following example, a typical registration form is designed as a

tabgroup with two tabs, one called Basic Info and the other Contact details.

Below the tabgroup, two Buttons with OK and Cancel are placed.

import PySimpleGUI as psg

psg.set_options(font=("Arial Bold",14))

l1=psg.Text("Enter Name")

lt1=psg.Text("Address")

t1=psg.Input("", key='-NM-')

a11=psg.Input(key='-a11-')

a12=psg.Input(key='-a12-')

a13=psg.Input(key='-a13-')

tab1=[[l1,t1],[lt1],[a11], [a12], [a13]]

lt2=psg.Text("EmailID:")

lt3=psg.Text("Mob No:")

a21=psg.Input("", key='-ID-')

a22=psg.Input("", key='-MOB-')

tab2=[[lt2, a21], [lt3, a22]]

layout = [[psg.TabGroup([

 [psg.Tab('Basic Info', tab1),

 psg.Tab('Contact Details', tab2)]])],

 [psg.OK(), psg.Cancel()]

]

window = psg.Window('Tab Group Example', layout)

PySimpleGUI – Python GUIs for Humans

91

while True:

 event, values = window.read()

 print (event, values)

 if event in (psg.WIN_CLOSED, 'Exit'):

 break

window.close()

Run the above code. The main window with two tabs is displayed, with the

first tab visible by default.

Click the title of the second tab which will show the two Input controls for

entering the EmailID and the Mobile number.

PySimpleGUI – Python GUIs for Humans

92

The Canvas Element provides a drawable panel on the surface of the

PySimpleGUI application window. It is equivalent to the Canvas widget in

the original TKinter package.

First, declare an object of the Canvas class with following parameters:

can = PySimpleGUI.Canvas(canvas, background_color, size)

Where,

 canvas: Leave blank to create a Canvas

 background_color: color of background

 size: (width in char, height in rows) size in pixels to make canvas

Place this object in the layout for our application window.

We can use the various drawing methods of tkinter’s Canvas by first
obtaining the underlying canvas object with TkCanvas property.

tkc = can.TkCanvas

Now we can call the various draw methods as follows:

create_line

Draws a straight line from (x1,y1) to (x2,y2). Color is

specified with fill parameter and thickness by width

parameter.

create_rectangle

Draws rectangle shape where (x1,y1) denote the

coordinates of top left corner and (x2,y2) are

coordinates of right bottom corner.

The fill parameter is used to display solid rectangle

with specified colour.

create_oval

Displays an ellipse. (x1,y1) represents the

coordinates of center. r1 and r2 stand for "x" radius

and "y" radius. If r1 and r2 same, circle is drawn.

create_text

Displays a string value of text parameter at x1,y1

coordinates. Font parameter decides font name and

size and fill parameter is given to apply font colour.

21. PySimpleGUI – Canvas Element

PySimpleGUI – Python GUIs for Humans

93

Given below is a simple implementation of Canvas element:

import PySimpleGUI as sg

can=sg.Canvas(size=(700,500),

 background_color='grey',

 key='canvas')

layout = [[can]]

window = sg.Window('Canvas Example', layout, finalize=True)

tkc=can.TKCanvas

fig = [tkc.create_rectangle(100, 100, 600, 400, outline='white'),

 tkc.create_line(50, 50, 650, 450, fill='red', width=5),

 tkc.create_oval(150,150,550,350, fill='blue'),

 tkc.create_text(350, 250, text="Hello World",

 fill='white', font=('Arial Bold', 16)),

]

while True:

 event, values = window.read()

 if event == sg.WIN_CLOSED:

 break

When the above code is run, you get the following result:

PySimpleGUI – Python GUIs for Humans

94

PySimpleGUI – Python GUIs for Humans

95

The Graph element is similar to Canvas, but very powerful. You can define

your own coordinate system, working in your own units, and then displaying

them in an area defined in pixels.

You should provide the following values to the Graph object:

 Size of the canvas in pixels

 The lower left (x,y) coordinate of your coordinate system

 The upper right (x,y) coordinate of your coordinate system

Graph Figures are created, and a Figure ID is obtained by calling following
methods which are similar to the Tkinter Canvas:

draw_arc(self, top_left, bottom_right, extent, start_angle,

 style=None, arc_color='black',

 line_width=1, fill_color=None)

draw_circle(self, center_location, radius,

 fill_color=None, line_color='black',

 line_width=1)

draw_image(self, filename=None, data=None,

 location=(None, None))

draw_line(self, point_from, point_to,

 color='black', width=1)

draw_lines(self, points,

 color='black', width=1)

draw_oval(self, top_left, bottom_right,

 fill_color=None, line_color=None,

 line_width=1)

22. PySimpleGUI – Graph Element

PySimpleGUI – Python GUIs for Humans

96

draw_point(self, point,

 size=2, color='black')

draw_polygon(self, points,

 fill_color=None, line_color=None,

 line_width=None)

draw_rectangle(self, top_left, bottom_right,

 fill_color=None, line_color=None,

 line_width=None)

draw_text(self, text, location,

 color='black', font=None, angle=0,

 text_location='center')

Apart from the above draw methods, the Graph class also defines the

move_figure() method by which the image identified by its ID is moved

to its new position by giving new coordinates relative to its previous

coordinates.

move_figure(self, figure, x_direction, y_direction)

The mouse event inside the graph area can be captured if you set

drag_submits property to True. When you click anywhere in the graph area,

the event generated is: Graph_key + '+UP'.

In the following example, we draw a small circle at the center of the graph

element. Below the graph object, there are buttons for moving the circle in

left, right, up and down direction. When clicked, the mov_figure() method

is called.

import PySimpleGUI as psg

graph=psg.Graph(canvas_size=(700,300),

 graph_bottom_left=(0, 0),

 graph_top_right=(700,300),

 background_color='red',

PySimpleGUI – Python GUIs for Humans

97

 enable_events=True,

 drag_submits=True, key='graph')

layout = [[graph], [psg.Button('LEFT'), psg.Button('RIGHT'),

 psg.Button('UP'), psg.Button('DOWN')]]

window = psg.Window('Graph test', layout, finalize=True)

x1,y1 = 350,150

circle = graph.draw_circle((x1,y1), 10,

 fill_color='black',

 line_color='white')

rectangle = graph.draw_rectangle((50,50), (650,250),

 line_color='purple')

while True:

 event, values = window.read()

 if event == psg.WIN_CLOSED:

 break

 if event == 'RIGHT':

 graph.MoveFigure(circle, 10, 0)

 if event == 'LEFT':

 graph.MoveFigure(circle, -10,0)

 if event == 'UP':

 graph.MoveFigure(circle, 0, 10)

 if event == 'DOWN':

 graph.MoveFigure(circle, 0,-10)

 if event=="graph+UP":

 x2,y2= values['graph']

PySimpleGUI – Python GUIs for Humans

98

 graph.MoveFigure(circle, x2-x1, y2-y1)

 x1,y1=x2,y2

window.close()

Run the above program. Use the buttons to move the circle.

PySimpleGUI – Python GUIs for Humans

99

Most of the desktop applications have a menu system to trigger different

operations based on user’s choice of options in the menu. In a typical

application window, the menu bar is placed just below the title bar and

above the client area of the window.

A menubar is a horizontal bar consisting of clickable buttons. When any of

these buttons is clicked it generates a pull down list of option buttons. Such

an option button triggers a click event which can be processed inside an

event loop.

The menu system is designed just as the window layout is specified. It is

also a list of lists. Each list has one or more strings. The starting string of

the list at the first level is the caption for the button appearing in the

horizontal menu bar. It is followed by a list of caption strings for the option

buttons in the drop down menu. These option captions are in a list inside

the first level list.

You may have a sub-menu under an option button, in which case the

captions are put in a third level list. Likewise, the captions can be nested

up to any level.

The general format of a menu definition is as follows:

menu_def = [

 ['Memu1', ['btn1', 'btn2', 'btn3', 'btn4',]],

 ['menu2', ['btn5', 'btn6','btn7', 'btn8'],],

]

To attach the menu system to the main layout of PysimpleGUI window,

place the Menu object in the first row of the layout.

The Menu constructor is given the menu_def list as the argument. Other

rows of the main layout may be given after the row having Menu object.

layout= [[psg.Menu(menu_def),[..], [..]]

In the code given below, we have a menu bar with File, Edit and Help

menus, each having a few menu buttons in respective menu bar.

23. PySimpleGUI – Menubar

PySimpleGUI – Python GUIs for Humans

100

import PySimpleGUI as psg

menu_def = [['File', ['New', 'Open', 'Save', 'Exit',]],

 ['Edit', ['Cut', 'Copy', 'Paste', 'Undo'],],

 ['Help', 'About...'],]

layout = [[psg.Menu(menu_def)],

 [psg.Multiline("", key='-IN-',

 expand_x=True, expand_y=True)],

 [psg.Multiline("", key='-OUT-',

 expand_x=True, expand_y=True)],

 [psg.Text("", key='-TXT-',

 expand_x=True, font=("Arial Bold", 14))]

]

window = psg.Window("Menu", layout, size=(715, 300))

while True:

 event, values = window.read()

 print(event, values)

 if event != psg.WIN_CLOSED:

 window['-TXT-'].update(values[0] + "Menu Button Clicked")

 if event == 'Copy':

 txt = window['-IN-'].get()

 if event == 'Paste':

 window['-OUT-'].update(value=txt)

 if event == psg.WIN_CLOSED:

 break

window.close()

Below the Menubar, two Multiline elements are placed. The last row has a

Text element.

PySimpleGUI – Python GUIs for Humans

101

When any menu option button is clicked, the event so generated is the

caption of the button. This caption is displayed on the Text label in the last

row. Refer to the following figure:

When the Copy event occurs, the text in the upper multiline box with -IN-

key is stored in a txt variable. Afterwards, when Paste button is pressed,

the -OUT- box is updated with the value of txt.

Menu button with Hot Key

To map a menu button with a key on the keyboard, put an ampersand &

character before the desired character. For example, put & before File so

that the string is '&File'. By doing so, the File menu can be accessed by

pressing "Alf+F" key. Here "F" key is said to be a hot key.

PySimpleGUI – Python GUIs for Humans

102

Add hot keys to the menu buttons in our menu definition.

menu_def = [

 ['&File', ['&New', '&Open', '&Save', 'E&xit',]],

 ['&Edit', ['C&ut', '&Copy','&Paste', '&Undo'],],

 ['&Help', '&About...'],

]

When the code is run, the hot keys in the menu are shown as underlined.

Right-click Menu

This menu is detached from the menubar which is at the top of the

application window. Whenever the user presses the right click button of the

mouse, this menu pops up at the same position where the click takes place.

In the menubar defined above, each list is a definition of a single menu.

Such single menu definition can be attached to any element by the

right_click_menu parameter in the constructor. This parameter can also be

passed while constructing the main Window object.

Let us use rightclick as a variable for the list corresponding to the Edit menu.

rightclick=['&Edit', ['C&ut', '&Copy','&Paste', '&Undo']]

menu_def = [

PySimpleGUI – Python GUIs for Humans

103

 ['&File', ['&New', '&Open', '&Save', 'E&xit',]],

 rightclick,

 ['&Help', '&About...'],

]

Use it as the value of right_click_menu parameter in the Window

constructor. See the following snippet:

window=psg.Window("Menu", layout, size=(715, 300),

right_click_menu=rightclick)

Make these changes and run the code. Click anywhere in the window. The

menu pops up as shown:

ButtonMenu

This menu is similar to the right click menu, except that it is attached to a

button and pops up when the button is clicked.

In the last row of the main layout, we add a ButtonMenu element and use

the rightclick list as its layout.

layout= [

 [psg.Menu(menu_def)],

 [psg.Multiline("", key='-IN-', expand_x=True, expand_y=True)],

 [psg.Multiline("", key='-OUT-', expand_x=True, expand_y=True)],

PySimpleGUI – Python GUIs for Humans

104

 [psg.Text("", key='-TXT-', expand_x=True, font=("Arial Bold", 14)),

 psg.ButtonMenu('ButtonMenu', rightclick, key='-BMENU-')]

]

When the button at the lower right is clicked, the menu comes up as can be

seen in the following figure:

PySimpleGUI – Python GUIs for Humans

105

The Table object is a useful GUI widget in any GUI library. Its purpose is to

display a two-dimensional data structure of numbers and strings in a tabular

form having rows and columns.

The important parameters to be passed to the Table class constructor are:

PySimpleGUI.Table(values, headings, col_widths,

 auto_size_columns, select_mode,

 display_row_numbers, num_rows,

 alternating_row_color,

 selected_row_colors,

 header_text_color)

The following table explains the role of each of these parameters:

Values Table data represented as a 2-dimensions table

Headings The headings to show on the top line

col_widths Number of characters that each column will occupy

auto_size_columns If True columns will be sized automatically

select_mode

Select Mode. Valid values:

 TABLE_SELECT_MODE_NONE

 TABLE_SELECT_MODE_BROWSE

 TABLE_SELECT_MODE_EXTENDED

display_row_numbers If True, the first column of the table will be the row

num_rows The number of rows of the table to display at a time

alternating_row_color
If True every other row will have this color in

the background.

selected_row_colors
Sets the text color and background color for a

selected row.

header_text_color sets the text color for the header

24. PySimpleGUI – Table Element

PySimpleGUI – Python GUIs for Humans

106

When any cell in the table is clicked, PySimpleGUI generates a tuple of

CLICKED event having the table key, and the (row,col) of the clicked cell.

event: ('-TABLE-', '+CLICKED+', (0, 1))

Following code displays a list of students in a Table object on the

PySimpleGUI window. A popup window appears when you click in any cell.

The cell coordinates are displayed on the popup.

import PySimpleGUI as psg

psg.set_options(font=("Arial Bold", 14))

toprow = ['S.No.', 'Name', 'Age', 'Marks']

rows = [[1, 'Rajeev', 23, 78],

 [2, 'Rajani', 21, 66],

 [3, 'Rahul', 22, 60],

 [4, 'Robin', 20, 75]]

tbl1 = psg.Table(values=rows, headings=toprow,

 auto_size_columns=True,

 display_row_numbers=False,

 justification='center', key='-TABLE-',

 selected_row_colors='red on yellow',

 enable_events=True,

 expand_x=True,

 expand_y=True,

 enable_click_events=True)

layout = [[tbl1]]

window = psg.Window("Table Demo", layout,

 size=(715, 200), resizable=True)

PySimpleGUI – Python GUIs for Humans

107

while True:

 event, values = window.read()

 print("event:", event, "values:", values)

 if event == psg.WIN_CLOSED:

 break

 if '+CLICKED+' in event:

 psg.popup("You clicked row:{} Column:
{}".format(event[2][0], event[2][1]))

window.close()

It will produce the following output window:

The Table object also has an update() method to dynamically update the

table properties such as values, num_rows, and row_color.

PySimpleGUI – Python GUIs for Humans

108

A Tree is a hierarchical data structure consisting of one or more nodes, and

each node may have one or more children nodes. This arrangement of

nodes is done in an object of TreeData object, which is used as a data

parameter for creating a Table.

First of all, declare a TreeData object.

treedata = psg.TreeData()

Use the insert() method of the TreeData class to construct the hierarchy

of nodes.

TreeData.insert(parent_key, key, display_text, values)

To insert a node at the first level of the tree, use the parant_key as "". So,

every top-level node in the tree will have a parent node = "". To insert a

child node, give the key of the node at the upper level as its parent_key.

For example,

insert("","MH", "Maharashtra", (175, 150, 200))

will insert a node at the root level with MH as the key.

On the other hand, the following command

insert("MH", "MUM", "Mumbai", (100, 100,100))

will insert a child node with its key as MUM.

The TreeData object is used to construct a Tree object with following

parameters:

data The data represented using TreeData class

headings List of individual headings for each column

col_widths List of column widths for individual columns

col0_width Size of Column 0

col0_heading Text to be shown in the header for the left-most column

def_col_width Default column width

25. PySimpleGUI – Tree Element

PySimpleGUI – Python GUIs for Humans

109

auto_size_columns
If True, the size of a column is determined by

contents of the column

select_mode Same as Table Element

show_expanded
If True, the tree will be initially shown with all

nodes completely expanded

In the following example, we display a statewise list of cities in a tree
structure

import PySimpleGUI as psg

psg.set_options(font=("Arial Bold",14))

treedata = psg.TreeData()

rootnodes=[

 ["","MH", "Maharashtra", 175, 150, 200],

 ["MH", "MUM", "Mumbai", 100, 100,100],

 ["MH", "PUN", "Pune", 30, 20, 40],

 ["MH", "NGP", "Nagpur", 45, 30, 60],

 ["","TEL", "Telangana", 120, 80, 125],

 ["TEL", "HYD", "Hyderabad", 75, 55, 80],

 ["TEL", "SEC", "Secunderabad", 25, 15, 30],

 ["TEL", "NZB", "Nizamabad", 20, 10, 15]

]

for row in rootnodes:

 treedata.Insert(row[0], row[1], row[2], row[3:])

tree=psg.Tree(data=treedata,

 headings=['Product A','Product B','Product C'],

 auto_size_columns=True,

 select_mode=psg.TABLE_SELECT_MODE_EXTENDED,

 num_rows=10,

PySimpleGUI – Python GUIs for Humans

110

 col0_width=5,

 key='-TREE-',

 show_expanded=False,

 enable_events=True,

 expand_x=True,

 expand_y=True,

)

layout=[[tree]]

window=psg.Window("Tree Demo", layout,

 size=(715, 200), resizable=True)

while True:

 event, values = window.read()

 print ("event:",event, "values:",values)

 if event == psg.WIN_CLOSED:

 break

It will produce the following output window:

PySimpleGUI – Python GUIs for Humans

111

The PySimpleGUI library contains an Image element, which has the ability

to display images of PNG, GIF, PPM/PGM format. The Image() function

needs one mandatory argument which is the path to the image file.

The following code displays the PySimpleGUI logo on the application

window.

import PySimpleGUI as psg

layout = [[psg.Text(text='Python GUIs for Humans',

 font=('Arial Bold', 16),

 size=20, expand_x=True,

 justification='center')],

 [psg.Image('PySimpleGUI_Logo.png',

 expand_x=True, expand_y=True)]

]

window = psg.Window('HelloWorld', layout, size=(715,350),

 keep_on_top=True)

while True:

 event, values = window.read()

 print(event, values)

 if event in (None, 'Exit'):

 break

window.close()

It will produce the following output window:

26. PySimpleGUI – Image Element

PySimpleGUI – Python GUIs for Humans

112

Using Graph Element

You can also display image on a Graph container element with its

draw_image() method as the following code shows:

import PySimpleGUI as psg

graph = psg.Graph(canvas_size=(700, 300),

 graph_bottom_left=(0, 0),

 graph_top_right=(700, 300),

 background_color='red',

 enable_events=True,

 drag_submits=True, key='graph')

layout = [

 [graph],

 [psg.Button('LEFT'), psg.Button('RIGHT'),

 psg.Button('UP'), psg.Button('DOWN')]

]

window = psg.Window('Graph test', layout, finalize=True)

x1, y1 = 350, 150

PySimpleGUI – Python GUIs for Humans

113

id = graph.draw_image(filename="PySimpleGUI_Logo.png",

 location=(0, 300))

while True:

 event, values = window.read()

 if event == psg.WIN_CLOSED:

 break

 if event == 'RIGHT':

 graph.MoveFigure(id, 10, 0)

 if event == 'LEFT':

 graph.MoveFigure(id, -10, 0)

 if event == 'UP':

 graph.MoveFigure(id, 0, 10)

 if event == 'DOWN':

 graph.MoveFigure(id, 0, -10)

 if event == "graph+UP":

 x2, y2 = values['graph']

 graph.MoveFigure(id, x2 - x1, y2 - y1)

 x1, y1 = x2, y2

window.close()

It will produce the following output window:

PySimpleGUI – Python GUIs for Humans

114

When Matplotlib is used from Python shell, the plots are displayed in a

default window. The backend_tkagg module is useful for embedding plots

in Tkinter.

The Canvas element in PySimpleGUI has TKCanvas method that returns

original TKinter's Canvas object. It is given to the FigureCanvasTkAgg()

function in the backend_tkagg module to draw the figure.

First, we need to create the figure object using the Figure() class and a

plot to it. We shall draw a simple plot showing sine wave.

fig = matplotlib.figure.Figure(figsize=(5, 4), dpi=100)

t = np.arange(0, 3, .01)

fig.add_subplot(111).plot(t, 2 * np.sin(2 * np.pi * t))

Define a function to draw the matplotlib figure object on the canvas

def draw_figure(canvas, figure):

 figure_canvas_agg = FigureCanvasTkAgg(figure, canvas)

 figure_canvas_agg.draw()

 figure_canvas_agg.get_tk_widget().pack(side='top',

 fill='both',

 expand=1)

 return figure_canvas_agg

Obtain the Canvas from PySimpleGUI.Canvas object by calling its TkCanvas

property.

layout = [

 [psg.Text('Plot test')],

 [psg.Canvas(key='-CANVAS-')],

 [psg.Button('Ok')]

]

27. PySimpleGUI – Matplotlib Integration

PySimpleGUI – Python GUIs for Humans

115

Draw the figure by calling the above function. Pass the Canvas object and

fifure object to it.

fig_canvas_agg = draw_figure(window['-CANVAS-'].TKCanvas, fig)

Example: Draw a Sinewave Line graph

The complete code is given below:

import matplotlib.pyplot as plt

import numpy as np

from matplotlib.backends.backend_tkagg import

FigureCanvasTkAgg

import PySimpleGUI as sg

import matplotlib

matplotlib.use('TkAgg')

fig = matplotlib.figure.Figure(figsize=(5, 4), dpi=100)

t = np.arange(0, 3, .01)

fig.add_subplot(111).plot(t, 2 * np.sin(2 * np.pi * t))

def draw_figure(canvas, figure):

 tkcanvas = FigureCanvasTkAgg(figure, canvas)

 tkcanvas.draw()

 tkcanvas.get_tk_widget().pack(side='top', fill='both', expand=1)

 return tkcanvas

layout = [[sg.Text('Plot test')],

 [sg.Canvas(key='-CANVAS-')],

 [sg.Button('Ok')]]

PySimpleGUI – Python GUIs for Humans

116

window = sg.Window('Matplotlib In PySimpleGUI', layout,

 size=(715, 500), finalize=True,

 element_justification='center',

 font='Helvetica 18')

add the plot to the window

tkcanvas = draw_figure(window['-CANVAS-'].TKCanvas, fig)

event, values = window.read()

window.close()

The generated graph is as follows:

PySimpleGUI – Python GUIs for Humans

117

Python Imaging Library is a free, cross-platform and open-source library for

the Python programming language that has the functionality for opening,

manipulating, and saving many different image file formats.

To install it, use the PIP command as follows:

pip3 install pillow

In the following example, we obtain the byte value of the PNG image with PIL
function and display the same in Image element on a PySimpleGUI window.

import PySimpleGUI as sg

import PIL.Image

import io

import base64

def convert_to_bytes(file_or_bytes, resize=None):

 img = PIL.Image.open(file_or_bytes)

 with io.BytesIO() as bio:

 img.save(bio, format="PNG")

 del img

 return bio.getvalue()

imgdata = convert_to_bytes("PySimpleGUI_logo.png")

layout = [[sg.Image(key='-IMAGE-', data=imgdata)]]

window = sg.Window('PIL based Image Viewer', layout,resizable=True)

while True:

 event, values = window.read()

 if event == sg.WIN_CLOSED:

 break

window.close()

28. PySimpleGUI – Working with PIL

PySimpleGUI – Python GUIs for Humans

118

It will produce the following output window:

PySimpleGUI – Python GUIs for Humans

119

In addition to the built-in debugger that most IDEs such as PyCharm or VS

Code have, PySimpleGUI offers its own debugger. This debugger provides

you the ability to "see" and interact with your code, while it is running.

To use the debugger service effectively, the window should be red

asynchronously, i.e., you should provide a timeout to the read() function.

The debugger window is invoked by calling show_debugger_window()

function anywhere inside the program as shown below:

import PySimpleGUI as sg

sg.show_debugger_window(location=(10,10))

window = sg.Window('Debugger Demo',

 [[sg.Text('Debugger'),

 sg.Input('Input here'),

 sg.Button('Push Me')]]

)

while True:

 event, values = window.read(timeout=500)

 if event == sg.TIMEOUT_KEY:

 continue

 if event == sg.WIN_CLOSED:

 break

 print(event, values)

window.close()

The PySimpleGUI debugger window appears at the specified screen location.

29. PySimpleGUI – Debugger

PySimpleGUI – Python GUIs for Humans

120

The window shows two tabs Variables and REPL. Click on the Variables tab.

A list of variables to auto-watch is shown Check the ones that you want to

watch during the execution of the program.

The second tab about REPL gives a Python interactive console to be

executed around your program’s environment so that you can inspect the

values of desired variables in the code.

PySimpleGUI – Python GUIs for Humans

121

PySimpleGUI – Python GUIs for Humans

122

Global Settings

Global settings are the application settings available application wide. These

settings control the various properties of the Element class to be applied to

all the Elements in the application.

These settings work in hierarchical manner. The global settings are

overridden if those settings are given different value for a window. In turn

the settings defined in Window object are given different value for a specific

element.

For example, if the font size is set to 16 globally, the text of all elements is

displayed accordingly. However, if a specific Text or Input element with Font

property with size other than 16 is defined in the layout, it will change the

appearance accordingly.

The function set_options is used to change settings that will apply globally.

If it's a setting that applies to Windows, then that setting will apply not only

to Windows that you create, but also to popup Windows.

import PySimpleGUI as sg

sg.set_options(font=('Arial Bold', 16))

User Settings

"User settings" is a dictionary that is automatically written to your hard

drive. User settings are stored in a Python dictionary which is saved to and

loaded from the disk. Individual settings are thus keys into a dictionary.

List of user setting functions:

Function Description

user_settings Returns settings as a dictionary

user_settings_delete_entry Deletes a setting

user_settings_delete_filename Deletes the settings file

user_settings_file_exists
Returns True if settings file

specified exists

30. PySimpleGUI – Settings

PySimpleGUI – Python GUIs for Humans

123

user_settings_filename
Returns full path and filename of

settings file

user_settings_get_entry

Returns value for a setting. If no

setting found, then specified

default value is returned

user_settings_load
Loads dictionary from the settings

file.

user_settings_save
Saves settings to current or newly

specified file.

user_settings_set_entry Sets an entry to a particular value

user_settings_write_new_dictionary
Writes a specified dictionary to

settings file

Create the User Settings object.

settings = sg.UserSettings()

Use the dictionary-style [] syntax to read a setting. If the item's name is '-

item-', then reading the value is achieved by writing

item_value = settings['-item-']

Following sttement is used to Write the setting.

settings['-item-'] = new_value

To delete an item, again the dictionary style syntax is used.

del settings['-item-']

You can also call the delete_entry method to delete the entry.

settings.delete_entry('-item-')

The following simple program demonstrates load/saving of user settings

import PySimpleGUI as sg

import json

sg.set_options(font=('Arial Bold', 16))

PySimpleGUI – Python GUIs for Humans

124

layout = [

 [sg.Text('Settings', justification='left')],

 [sg.Text('User name', size=(10, 1), expand_x=True),

 sg.Input(key='-USER-')],

 [sg.Text('email ID', size=(10, 1), expand_x=True),

 sg.Input(key='-ID-')],

 [sg.Text('Role', size=(10, 1), expand_x=True),

 sg.Input(key='-ROLE-')],

 [sg.Button("LOAD"), sg.Button('SAVE'), sg.Button('Exit')]

]

window = sg.Window('User Settings Demo',

 layout, size=(715, 200))

Event Loop

while True:

 event, values = window.read()

 if event in (sg.WIN_CLOSED, 'Exit'):

 break

 if event == 'LOAD':

 f = open("settings.txt", 'r')

 settings = json.load(f)

 window['-USER-'].update(value=settings['-USER-'])

 window['-ID-'].update(value=settings['-ID-'])

 window['-ROLE-'].update(value=settings['-ROLE-'])

PySimpleGUI – Python GUIs for Humans

125

 if event == 'SAVE':

 settings = {'-USER-': values['-USER-'],

 '-ID-': values['-ID-'],

 '-ROLE-': values['-ROLE-']}

 f = open("settings.txt", 'w')

 json.dump(settings, f)

 f.close()

window.close()

Enter the data in the input boxes and click the "Save" button.

A JSON file will be saved. To load the previously saved settings, click the

"Load" button.

