Show that the points $A (5, 6), B (1, 5), C (2, 1)$ and $D (6, 2)$ are the vertices of a square.


Given:

Given points are $A (5, 6), B (1, 5), C (2, 1)$ and $D (6, 2)$.

To do:

We have to show that the points $A (5, 6), B (1, 5), C (2, 1)$ and $D (6, 2)$ are the vertices of a square.

Solution:

We know that,

The distance between two points \( \mathrm{A}\left(x_{1}, y_{1}\right) \) and \( \mathrm{B}\left(x_{2}, y_{2}\right) \) is \( \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \).

Therefore,

\( A B=\sqrt{(1-5)^{2}+(5-6)^{2}} \)

\( =\sqrt{(-4)^{2}+(-1)^{2}} \)

\( =\sqrt{16+1} \)

\( =\sqrt{17} \)

\( B C=\sqrt{(2-1)^{2}+(1-5)^{2}} \)

\( =\sqrt{(1)^{2}+(-4)^{2}} \)

\( =\sqrt{1+16} \)

\( =\sqrt{17} \)

\( C D=\sqrt{(6-2)^{2}+(2-1)^{2}} \)

\( =\sqrt{16+1} \)

\( =\sqrt{17} \)

\( D A=\sqrt{(5-6)^{2}+(6-2)^{2}} \)

\( =\sqrt{(-1)^{2}+(4)^{2}} \)

\( =\sqrt{1+16} \)

\( =\sqrt{17} \)

\( A C=\sqrt{(2-5)^{2}+(1-6)^{2}} \)

\( =\sqrt{(-3)^{2}+(-5)^{2}} \)

\( =\sqrt{9+25} \)

\( =\sqrt{34} \)

\( B D=\sqrt{(6-1)^{2}+(2-5)^{2}} \)

\( =\sqrt{(5)^{2}+(-3)^{2}} \)

\( =\sqrt{25+9} \)

\( =\sqrt{34} \)

\( \therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA} \) and \( \mathrm{AC}=\mathrm{BD} \)

Here, all the sides are equal and the diagonals are equal to each other. 

Therefore, the given points are the vertices of a square.

Updated on: 10-Oct-2022

41 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements