Prove the following identities:If $ T_{n}=\sin ^{n} \theta+\cos ^{n} \theta $, prove that $ \frac{T_{3}-T_{5}}{T_{1}}=\frac{T_{5}-T_{7}}{T_{3}} $


Given:

\( T_{n}=\sin ^{n} \theta+\cos ^{n} \theta \)

To do:

We have to prove that \( \frac{T_{3}-T_{5}}{T_{1}}=\frac{T_{5}-T_{7}}{T_{3}} \).

Solution:

We know that,

$\sin^2 A+\cos^2 A=1$

$\operatorname{cosec}^2 A-\cot^2 A=1$

$\sec^2 A-\tan^2 A=1$

$\cot A=\frac{\cos A}{\sin A}$

$\tan A=\frac{\sin A}{\cos A}$

$\operatorname{cosec} A=\frac{1}{\sin A}$

$\sec A=\frac{1}{\cos A}$

Therefore,

Let us consider LHS,

$\frac{\mathrm{T}_{3}-\mathrm{T}_{5}}{\mathrm{~T}_{1}}=\frac{\left(\sin ^{3} \theta+\cos ^{3} \theta\right)-\left(\sin ^{5} \theta+\cos ^{5} \theta\right)}{\sin \theta+\cos \theta}$

$=\frac{\sin ^{3} \theta\left(1-\sin ^{2} \theta\right)+\cos ^{3} \theta\left(1-\cos ^{2} \theta\right)}{\sin \theta+\cos \theta}$

$=\frac{\sin ^{3} \theta\cos ^{2} \theta+\cos ^{3} \theta\sin ^{2} \theta}{\sin \theta+\cos \theta}$

$=\frac{\sin ^{2} \theta \cos ^{2} \theta(\sin \theta+\cos \theta)}{\sin \theta+\cos \theta}$

$=\sin ^{2} \theta \cos ^{2} \theta$

Let us consider RHS,

$\frac{T_{5}-T_{7}}{T_{3}}=\frac{\left(\sin ^{5} \theta+\cos ^{5} \theta\right)-\left(\sin ^{7} \theta+\cos ^{7} \theta\right)}{\sin ^{3} \theta+\cos ^{3} \theta}$

$=\frac{\sin ^{5} \theta+\cos ^{5} \theta-\sin ^{7} \theta-\cos ^{7} \theta}{\sin ^{3} \theta+\cos ^{3} \theta}$

$=\frac{\sin ^{5} \theta-\sin ^{7} \theta+\cos ^{5} \theta-\cos ^{7} \theta}{\sin ^{3} \theta+\cos ^{3} \theta}$

$=\frac{\sin ^{5} \theta\left(1-\sin ^{2} \theta\right)+\cos ^{5} \theta\left(1-\cos ^{2} \theta\right)}{\sin ^{3} \theta+\cos ^{3} \theta}$

$=\frac{\sin ^{5} \theta\cos ^{2} \theta+\cos ^{5} \theta\sin ^{2} \theta}{\sin^3 \theta+\cos^3 \theta}$

$=\frac{\sin ^{2} \theta \cos ^{2} \theta(\sin^3 \theta+\cos^3 \theta)}{\sin^3 \theta+\cos^3 \theta}$

$=\sin ^{2} \theta \cos ^{2} \theta$

Here,

LHS $=$ RHS

Hence proved.

Updated on: 10-Oct-2022

41 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements