In a $\triangle ABC, BM$ and $CN$ are perpendiculars from $B$ and $C$ respectively on any line passing through $A$. If $L$ is the mid-point of $BC$, prove that $ML=NL$.


Given:

In a $\triangle ABC, BM$ and $CN$ are perpendiculars from $B$ and $C$ respectively on any line passing through $A$.

$L$ is the mid-point of $BC$.

To do:

We have to prove that $ML=NL$.

Solution:

Join $ML$ and $NL$.


In $\triangle BMP$ and $\triangle CNP$,

$\angle M=\angle N=90^o$

$\angle BPM=\angle CPN$                 (Vertically opposite angles)

Therefore, by AA axiom,

$\Delta \mathrm{BML} \sim \triangle \mathrm{LMC}$

This implies,

$\frac{BM}{CN}=\frac{PM}{PN}$

In $\triangle BML$ and $\triangle CNL$,

$\frac{BM}{CN}=\frac{PM}{PN}$

$\angle B=\angle C$               (Alternate angles)

Therefore,

$\triangle BML \sim \triangle LNC$.

This implies,

$\frac{ML}{LN}=\frac{BL}{LC}$

$\mathrm{BL}=\mathrm{LC}$

This implies,

$\mathrm{CL}$ is the mid point of $\mathrm{BL}$

$\frac{\mathrm{BL}}{\mathrm{LC}}=1$

$\Rightarrow \frac{\mathrm{ML}}{\mathrm{LN}}=1$
Therefore,

$\mathrm{ML}=\mathrm{LN}$.

Hence proved.

Updated on: 10-Oct-2022

27 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements