If the point $P( x,\ y)$ is equidistant from the points $A( a\ +\ b,\ b\ –\ a)$ and $B( a\ –\ b,\ a\ +\ b)$. Prove that $bx=ay$.


Given: Point $P( x,\ y)$ is equidistant from the points $A( a\ +\ b,\ b\ –\ a)$ and $B( a\ –\ b,\ a\ +\ b)$

To do: To Prove that $bx=ay$.

Solution:

$P( x,\ y)$ is equidistant from the points $A( a\ +\ b,\ b\ –\ a)$ and $B( a\ –\ b,\ a\ +\ b)$.

we know if there two points $( x_{1} ,\ y_{1})$ and $( x_{2} ,\ y_{2})$,

Distance between the two points,$=\sqrt{( x_{2} -x_{1})^{2} +( y_{2} -y_{1})^{2}}$

By using the distance formula,

$PA=\sqrt{( a+b-x)^{2} +( b-a-y)^{2}}$

Similarly, $PB=\sqrt{( a-b-x)^{2} +( a+b-y)^{2}}$

Because, $PA=PB$

$\Rightarrow \sqrt{( a+b-x)^{2} +( b-a-y)^{2}} =\sqrt{( a-b-x)^{2} +( a+b-y)^{2}}$

$\Rightarrow ( a+b-x)^{2} +( b-a-y)^{2} =( a-b-x)^{2} +( a+b-y)^{2}$

$\Rightarrow ( a+b)^{2} +x^{2} -2( a+b) x+( b-a)^{2} +y^{2} -2( b-a) y=( a-b)^{2} +x^{2} -2( a-b) x+( a+b)^{2} +y^{2} -2( a+b) y$

$\Rightarrow -2( a+b) x-2( b-a) y=-2( a-b) x-2( a+b) y$

$\Rightarrow -2ax-2bx-2by+2ay=-2ax+2bx-2ay-2by$

$\Rightarrow -2bx+2ay=2bx-2ay$

$\Rightarrow 4bx=4ay$

$\Rightarrow bx=ay$

$\therefore bx=ay ....( proved)$

β€Š

Updated on: 10-Oct-2022

52 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements