If $AD$ is a median of a triangle $ABC$, then prove that triangles $ADB$ and $ADC$ are equal in area. If $G$ is the mid point of median $AD$, prove that $ar(\triangle BGC) = 2ar(\triangle AGC)$.


Given:

$AD$ is a median of a triangle $ABC$.

$G$ is the mid point of median $AD$.

To do:

We have to prove that triangles $ADB$ and $ADC$ are equal in area and $ar(\triangle BGC) = 2ar(\triangle AGC)$.

Solution:

Join $BG$ and $CF$.
Draw $AL \perp BC$


$\mathrm{AD}$ is the median of $\triangle \mathrm{ABC}$

This implies,

$\mathrm{BD}=\mathrm{DC}$

$\operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2}$ base $\times$ altitude

$=\frac{1}{2} \mathrm{BD} \times \mathrm{AL}$.........(i)

$\operatorname{ar}(\triangle \mathrm{ACD})=\frac{1}{2} \times \mathrm{CD} \times \mathrm{AL}$

$=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AL}$.............(ii)        (Since $\mathrm{BD}=\mathrm{DC}$)

From (i) and (ii),

$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD})$

In $\triangle \mathrm{BGC}, \mathrm{GD}$ is the median.

$\operatorname{ar}(\triangle \mathrm{BGD})=\operatorname{ar}(\triangle \mathrm{CGD})$

Similarly,

In $\triangle \mathrm{ACD}, \mathrm{G}$ is the mid point of $\mathrm{AD}$, $\mathrm{CG}$ is the median.

$\operatorname{ar}(Delta \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{CGD})$

From (i) and (ii),

$\operatorname{ar}(\triangle \mathrm{BGD})=\operatorname{ar}(\triangle \mathrm{AGC})$

$\operatorname{ar}(\triangle \mathrm{BGC})=2 \operatorname{ar}(\Delta \mathrm{BGD})$

This implies,

$\operatorname{ar}(\Delta \mathrm{BGC})=2 \operatorname{ar}(\triangle \mathrm{AGC})$

Hence proved.

Updated on: 10-Oct-2022

30 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements