"
">

Figure below shows a sector of a circle, centre $O$, containing an angle $\theta$. Prove that:Perimeter of the shaded region is $r(\tan \theta+\sec \theta+\frac{\pi \theta}{180}-1)$"


Given:

A sector of a circle with centre $O$, containing an angle $\theta$.

To do:

We have to prove that the perimeter of the shaded region is $r(\tan \theta+\sec \theta+\frac{\pi \theta}{180}-1)$.

Solution:

From the figure,

Radius of the circle $= r$

Arc $AC$ subtends $\theta$ at the centre of the circle.

$\angle OAB$ is a right triangle.

In right angled triangle $OAB$,

$\tan \theta=\frac{\mathrm{AB}}{\mathrm{OA}}$

$\Rightarrow \mathrm{AB}=\mathrm{OA} \times \tan \theta$

$=r \tan \theta$

Area of $\Delta \mathrm{OAB}=\frac{1}{2} \mathrm{OA} \times \mathrm{AB}$

$=\frac{1}{2} \times r \times (r \tan \theta)$

$=\frac{1}{2} r^{2} \tan \theta$

Area of sector $\mathrm{OAC}=\pi r^{2} (\frac{\theta}{360^{\circ}})$

$=\frac{\pi r^{2} \theta}{360}$

The length of the arc $\mathrm{AC}=2 \pi r \times \frac{\theta}{360^{\circ}}$

$=\frac{2 \pi r \theta}{360^{\circ}}$

$=\frac{\pi r \theta}{180^{\circ}}$

Perimeter of the shaded region $=$ Arc $AC+A B+B C$

$=\frac{\pi r \theta}{180}+r \tan \theta+(\mathrm{OB}-\mathrm{OC})$

$=\frac{\pi r \theta}{180}+r \tan \theta+(r \sec \theta-r)$          (Since $\mathrm{OB}=r \sec \theta$)

$=r(\frac{\pi \theta}{180}+\tan \theta+\sec \theta-1)$

$=r(\tan \theta+\sec \theta+\frac{\pi \theta}{180}-1)$

Hence proved.

Updated on: 10-Oct-2022

74 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements