"
">

Figure below shows a sector of a circle, centre $O$, containing an angle $\theta$. Prove that:Area of the shaded region is $\frac{r^{2}}{2}(\tan \theta-\frac{\pi \theta}{180})$"


Given:

A sector of a circle with centre $O$, containing an angle $\theta$.

To do:

We have to prove that the area of the shaded region is $\frac{r^{2}}{2}(\tan \theta-\frac{\pi \theta}{180})$.

Solution:

From the figure,

Radius of the circle $= r$

Arc $AC$ subtends $\theta$ at the centre of the circle.

$\angle OAB$ is a right triangle.

In right angled triangle $OAB$,

$\tan \theta=\frac{\mathrm{AB}}{\mathrm{OA}}$

$\Rightarrow \mathrm{AB}=\mathrm{OA} \times \tan \theta$

$=r \tan \theta$

Area of $\Delta \mathrm{OAB}=\frac{1}{2} \mathrm{OA} \times \mathrm{AB}$

$=\frac{1}{2} \times r \times (r \tan \theta)$

$=\frac{1}{2} r^{2} \tan \theta$

Area of sector $\mathrm{OAC}=\pi r^{2} (\frac{\theta}{360^{\circ}})$

$=\frac{\pi r^{2} \theta}{360}$

Therefore,

Area of the shaded portion $=$ Area of $\Delta \mathrm{OAB}-$ Area of sector $OAC$

$=\frac{1}{2} r^{2} \tan \theta-\frac{\pi r^{2} \theta}{360}$

$=\frac{1}{2} r^{2}(\tan \theta-\frac{2 \pi \theta}{360})$

$=\frac{1}{2} r^{2}(\tan \theta-\frac{\pi \theta}{180})$

$=\frac{r^{2}}{2}(\tan \theta-\frac{\pi \theta}{180})$

Hence proved.

Updated on: 10-Oct-2022

34 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements