$ABCD$ is a parallelogram in which $BC$ is produced to $E$ such that $CE = BC. AE$ intersects $CD$ at $F$. If the area of $\triangle DFB = 3\ cm^2$, find the area of parallelogram $ABCD$.


Given:

$ABCD$ is a parallelogram in which $BC$ is produced to $E$ such that $CE = BC. AE$ intersects $CD$ at $F$.

To do:

We have to find the area of parallelogram $ABCD$.

Solution:

In $\triangle \mathrm{ADF}$ and $\triangle \mathrm{ECF}$,


$\mathrm{AD}=\mathrm{CE}$

$\angle \mathrm{AFD}=\angle \mathrm{CFE}$         (vertically opposite angles)

Therefore, by AAS axiom,

$\triangle \mathrm{ADF} \cong \Delta \mathrm{ECF}$

This implies,

$\operatorname{ar}(\Delta \mathrm{ADF})=a r(\Delta \mathrm{CEF})$

$\mathrm{AF}=\mathrm{CF}$            (CPCT)

$\mathrm{AF}=\mathrm{EF}$              (CPCT)

$\mathrm{BF}$ is the median of $\triangle \mathrm{BCD}$.

This implies,

$\operatorname{ar}(\Delta \mathrm{BFD})=\operatorname{ar}(\Delta \mathrm{BFC})$

$=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{BCD})$

$=\frac{1}{2}[\frac{1}{2} a r(parallelogram \mathrm{gm} \mathrm{ABCD})]$      ($\mathrm{BD}$ is the diagonal of parallelogram)

$=\frac{1}{4} a r(parallelogram \mathrm{ABCD})$

$operatorname{ar}(\triangle \mathrm{BFD})=3 \mathrm{~cm}^{2}$

Therefore,

Area of parallelogram $\mathrm{ABCD}=4 \times \operatorname{ar}(\Delta \mathrm{BFD})$

$=4 \times 3$

$=12 \mathrm{~cm}^{2}$. 

Updated on: 10-Oct-2022

55 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements