"
">

$ A B $ is the diameter of a circle, centre $ O . C $ is a point on the circumference such that $ \angle C O B=\theta . $ The area of the minor segment cut off by $ A C $ is equal to twice the area of the sector $ B O C $. Prove that $ \sin \frac{\theta}{2} \cos \frac{\theta}{2}=\pi\left(\frac{1}{2}-\frac{\theta}{120}\right) $"


Given:

\( A B \) is the diameter of a circle, centre \( O . C \) is a point on the circumference such that \( \angle C O B=\theta . \)

The area of the minor segment cut off by \( A C \) is equal to twice the area of the sector \( B O C \). 

To do:

We have to prove that \( \sin \frac{\theta}{2} \cos \frac{\theta}{2}=\pi\left(\frac{1}{2}-\frac{\theta}{120}\right) \).

Solution:

Let $r$ be the radius of the circle.

From the figure,

$\angle \mathrm{BOC}=\theta$

This implies,

$\mathrm{AOC}=180^{\circ}-\theta$

Area of the sector $\mathrm{BOC}=\pi r^{2} \times \frac{\theta}{360^{\circ}}$

Area of the minor segment $\mathrm{AC}=2$ (Area of sector BOC)

$=2 \times \pi r^{2} \frac{\theta}{360^{\circ}}$

$=\frac{2 \pi r^{2} \theta}{360^{\circ}}$............(i)

Area of segment $=(\frac{\pi(180^{\circ}-\theta)}{360^{\circ}}-\sin \frac{180^{\circ}-\theta}{2} \cos \frac{180^{\circ}-\theta}{2}) r^{2}$.............(ii)

From (i) and (ii), we get,

$\frac{2 \pi r^{2} \theta}{360^{\circ}}=r^{2}(\frac{\pi(180^{\circ}-\theta)}{360^{\circ}}-\sin \frac{180^{\circ}-\theta}{2} \cos \frac{180^{\circ}-\theta}{2})$

$\Rightarrow \frac{2 \pi \theta}{360^{\circ}}=[\frac{\pi(180^{\circ}-\theta)}{360^{\circ}}-\sin (90^{\circ}-\frac{\theta}{2}) \cos (90^{\circ}-\frac{\theta}{2})]$

$\Rightarrow \frac{2 \pi \theta}{360^{\circ}}=\frac{\pi(180^{\circ}-\theta)}{360^{\circ}}-\cos \frac{\theta}{2} \sin \frac{\theta}{2}$

Therefore,

$\sin \frac{\theta}{2} \cos \frac{\theta}{2}=\frac{\pi(180^{\circ}-\theta)}{360^{\circ}}-\frac{2 \pi \theta}{360^{\circ}}$

$\sin \frac{\theta}{2} \cos \frac{\theta}{2}=\pi(\frac{180^{\circ}}{360^{\circ}}-\frac{\theta}{360^{\circ}}-\frac{2 \theta}{360^{\circ}})$

$\sin \frac{\theta}{2} \cos \frac{\theta}{2}=\pi(\frac{1}{2}-\frac{3 \theta}{360^{\circ}})$

$=\pi(\frac{1}{2}-\frac{\theta}{120})$

$\sin \frac{\theta}{2} \cos \frac{\theta}{2}=\pi(\frac{1}{2}-\frac{\theta}{120})$

Hence proved.

Updated on: 10-Oct-2022

51 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements