
MongoEngine

 i

MongoEngine

 ii

About the Tutorial

MongoEngine is a Python library that acts as an Object Document Mapper with MongoDB,

a NOSQL database. It is similar to SQLAlchemy, which is the Object Relation Mapper (ORM)

for SQL based databases.

Audience

In this tutorial, you will learn to perform CRUD operations on a MongoDB database with

the help of MongoEngine and Python.

Prerequisites

This tutorial is useful for Python professionals who intend to use MongoDB database in

their applications. Knowledge of Python and object oriented concepts are essential.

Copyright & Disclaimer

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

MongoEngine

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. MongoEngine ― MongoDB ... 1

2. MongoEngine ― MongoDB Compass .. 3

3. MongoEngine — Object Document Mapper .. 8

4. MongoEngine — Installation ... 9

5. MongoEngine — Connecting to MongoDB Database .. 10

6. MongoEngine — Document Class ... 12

7. MongoEngine — Dynamic Schema .. 13

8. MongoEngine ― Fields ... 15

Numeric Fields ... 15

Text Fields .. 16

ListField .. 17

DictField ... 17

ReferenceField ... 18

DateTimeField ... 21

DynamicField ... 22

ImageField ... 22

9. MongoEngine — Add/Delete document ... 23

10. MongoEngine — Querying database ... 25

11. MongoEngine — Filters ... 27

12. MongoEngine — Query operators ... 28

13. MongoEngine — QuerySet Methods ... 30

MongoEngine

 iv

first(() ... 30

exclude() .. 30

fields() .. 30

only().. 31

sum() .. 31

average() .. 32

14. MongoEngine — Sorting ... 33

15. MongoEngine — Custom Query Sets ... 35

16. MongoEngine — Indexes .. 37

17. MongoEngine — Aggregation ... 42

18. MongoEngine — Advanced Queries .. 45

19. MongoEngine — Document Inheritance ... 46

20. MongoEngine — Atomic updates .. 48

21. MongoEngine — Javascript ... 50

22. MongoEngine — GridFS .. 51

23. MongoEngine — Signals .. 53

24. MongoEngine — Text search ... 56

25. MongoEngine — Extensions .. 58

marshmallow_mongoengine ... 58

Flask-MongoEngine ... 58

extras-mongoengine.. 59

Eve-MongoEngine ... 59

Django-MongoEngine .. 60

MongoEngine

 1

NoSQL databases have seen rise in popularity in the last decade. In today’s world of real

time web applications, huge amount of data is being generated with mobile and embedded

devices. Traditional relational databases (like Oracle, MySQL, etc.) are not suitable for

strings. The processing of such data is also difficult as they have fixed and predefined

schema, and are not scalable. NOSQL databases have flexible schema and are stored in

distributed manner on a large number of community servers.

NOSQL databases are classified on the basis of organization of data. MongoDB is a popular

Document Store NOSQL database. Fundamental constituent of a MongoDB database is

called a document. A document is a collection of key-value pairs stored in JSON format.

More than one documents are stored in a collection. A collection can be considered as

analogous to a table in any relational database, and a Document as row in a table.

However, it should be noted that since MongoDB is schema less, number of key-value

pairs in each document of a Collection need not be the same.

MongoDB is developed by MongoDB Inc. It is a general-purpose, distributed document

based database. It is available in enterprise as well as community edition. Latest version

of Community version for Windows operating system can be downloaded from

https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2012plus-4.2.6-signed.msi.

Install MongoDB in a folder of your choice and start the server with the following

command:

D:\mongodb\bin>mongod

Server is now ready for incoming connection requests at port 27017. MongoDB databases

are stored in bin/data directory. This location can be changed by –dbpath option in above

command.

In another command terminal, start MongoDB console with the following command:

D:\mongodb\bin>mongo

MongoDB prompt is similar to what we normally see in MySQL or SQLite terminal. All

database operations such as creating database, inserting a document, updating and

deleting as well as retrieval of documents can be done from within the console.

E:\mongodb\bin>mongo

MongoDB shell version v4.0.6

connecting to: mongodb://127.0.0.1:27017/?gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("0d848b11-acf7-4d30-83df-242d1d7fa693")

}

MongoDB server version: 4.0.6

1. MongoEngine ― MongoDB

https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2012plus-4.2.6-signed.msi

MongoEngine

 2

>

Default database in use is test.

> db

Test

With 'use' command any other database is set as current. If the named database does not

exist, new one is created.

> use mydb

switched to db mydb

Please refer to our detailed tutorial on MongoDB at

https://www.tutorialspoint.com/mongodb/index.htm.

https://www.tutorialspoint.com/mongodb/index.htm

MongoEngine

 3

MongoDB has also developed a GUI tool for handling MongoDB databases. It is called

MongoDB Compass. It is a convenient tool for performing all CRUD operations without

manually writing queries. It helps in many activities such as indexing, document validation,

etc.

Download community edition of MongoDB Compass from

https://www.mongodb.com/download-center/compass and start

MongoDBCompassCommunity.exe (Ensure that MongoDB server is running before

starting Compass). Connect to the local server by giving correct host and port number.

All the databases currently available will be listed as below:

2. MongoEngine ― MongoDB Compass

https://www.mongodb.com/download-center/compass%20%20and%20start%20MongoDBCompassCommunity.exe

MongoEngine

 4

Click on + button (shown at the bottom of left panel) to create new database.

Choose name of database from list and select a Collection as shown below:

MongoEngine

 5

You can add document directly or import from CSV or JSON file.

Choose Insert Document from Add data drop down.

MongoEngine

 6

Documents added will be displayed in JSON, list or tabular form:

Note that, just as a table in relational database has a primary key, document in MongoDB

database has a special key called "_id" that is automatically generated.

MongoDB Inc. provides a Python driver for connection with MongoDB databases. It is called

PyMongo whose usage is similar to standard SQL queries.

MongoEngine

 7

After installing PyMongo module, we need object of MongoClient class for interacting with

MongoDB server.

>>> from pymongo import MongoClient

>>> client=MongoClient()

New database is created with the following statement:

db=client.mydatabase

CRUD operations on this database are performed with methods such as insert_one() (or

insert_many()), find(), update() and delete() methods. Detailed discussion of PyMongo

library is available at

https://www.tutorialspoint.com/python_data_access/python_mongodb_introduction.htm

.

However, Python’s user defined objects cannot be stored in database unless it is converted

in MongoDB’s data types. This is where we need MongoEngine library.

https://www.tutorialspoint.com/python_data_access/python_mongodb_introduction.htm
https://www.tutorialspoint.com/python_data_access/python_mongodb_introduction.htm

MongoEngine

 8

MongoDB is a document based database. Each document is a JSON like representation of

fields and values. A document in MongoDB is roughly equivalent to a row in RDBMS table

(MongoDB equivalent of table is Collection). Even though MongoDB does not enforce any

predefined schema, the field objects in a document have certain data type. MongoDB data

types are very much similar to Python’s primary data types. If one has to store object of

Python’s user defined class, its attributes have to be manually parsed to equivalent

MongoDB data types.

MongoEngine provides a convenient abstraction layer over PyMongo and maps each object

of Document class to a document in MongoDB database. MongoEngine API has been

developed by Hary Marr in August 2013. Latest version of MongoEngine is 0.19.1.

MongoEngine is to MongoDB what SQLAlchemy is to RDBMS databases. MongoEngine

library provides a Document class that is used as base for defining custom class. Attributes

of this class form the fields of MongoDB document. The Document class defines methods

to perform CRUD operations. In subsequent topics, we shall learn how to use them.

3. MongoEngine — Object Document Mapper

MongoEngine

 9

To use MongoEngine, you need to have already installed MongoDB and MongoDB server

should be running as described earlier.

Easiest way to install MongoEngine is by using PIP installer.

pip install mongoengine

If your Python installation does not have Setuptools installed, you will have to download

MongoEngine from https://github.com/MongoEngine/mongoengine and run the following

command:

python setup.py install

MongoEngine has the following dependencies:

 pymongo>=3.4

 six>=1.10.0

 dateutil>=2.1.0

 pillow>=2.0.0

To verify the correct installation, run import command and check version as follows:

>>> import mongoengine

>>> mongoengine.__version__

'0.19.1'

4. MongoEngine — Installation

https://github.com/MongoEngine/mongoengine

MongoEngine

 10

As mentioned earlier, you should first start MongoDB server using mongod command.

MongoEngine provides connect() function to connect to a running instance of mongodb

server.

from mongoengine import connect

connect(‘mydata.db’)

By default, MongoDB server is running on localhost and on port 27017. To customize, you

should provide the host and port arguments to connect():

connect('mydata.db', host='192.168.1.1', port=12345)

In case the database requires authentication, its credentials such as username, password

and authentication_source arguments should be provided.

connect('mydata.db', username='user1', password='***',

authentication_source='admin')

MongoEngine also supports URI style connections instead of IP address.

connect('mydata.db', host='mongodb://localhost/database_name')

The connect() function has another optional parameter called replicaset. MongoDB is a

distributed database. Data stored in one server is usually replicated in many server

instances in order to ensure high availability. A replica set in MongoDB is a group of

mongod processes on which the same data set is maintained. Replica sets are the basis

for all production deployments.

connect(host='mongodb://localhost/dbname?replicaSet=rs-name')

Following replica set methods are defined as follows:

rs.add() Adds a member to a replica set.

rs.conf() Returns the replica set configuration document.

rs.freeze() Prevents the current member from seeking election as primary for a

period of time.

rs.initiate() Initializes a new replica set.

rs.reconfig() Re-configures a replica set by applying a new replica set configuration

object.

rs.remove() Removes a member from a replica set.

5. MongoEngine — Connecting to MongoDB
Database

MongoEngine

 11

MongoEngine also allows connection with multiple databases. You need to provide unique

alias name for each database. For example, following code connects Python script to two

MongoDB databases.

connect(alias='db1', db='db1.db')

connect(alias='db2', db='db2.db')

MongoEngine

 12

MongoEngine is termed as ODM (Object Document Mapper). MongoEngine defines a

Document class. This is a base class whose inherited class is used to define structure and

properties of collection of documents stored in MongoDB database. Each object of this

subclass forms Document in Collection in database.

Attributes in this Document subclass are objects of various Field classes. Following is an

example of a typical Document class:

from mongoengine import *

class Student(Document):

 studentid = StringField(required=True)

 name = StringField(max_length=50)

 age = IntField()

 def _init__(self, id, name, age):

 self.studentid=id,

 self.name=name

 self.age=age

This appears similar to a model class in SQLAlchemy ORM. By default, name of Collection

in database is the name of Python class with its name converted to lowercase. However,

a different name of collection can be specified in meta attribute of Document class.

meta={collection': 'student_collection'}

Now declare object of this class and call save() method to store the document in a

database.

s1=Student('A001', 'Tara', 20)

s1.save()

6. MongoEngine — Document Class

MongoEngine

 13

One of the advantages of MongoDB database is that it supports dynamic schema. To create

a class that supports dynamic schema, subclass it from DynamicDocument base class.

Following is the Student class with dynamic schema:

>>> class student(DynamicDocument):

... name=StringField()

The first step is to add first Document as before.

>>> s1=student()

>>> s1.name="Tara"

>>> connect('mydb')

>>> s1.save()

Now add another attribute to second document and save.

>>> s2=student()

>>> setattr(s2,'age',20)

>>> s2.name='Lara'

>>> s2.save()

In the database, student collection will show two documents with dynamic schema.

7. MongoEngine — Dynamic Schema

MongoEngine

 14

The meta dictionary of document class can use a Capped Collection by specifying

max_documents and max_size.

max_documents: The maximum number of documents that is allowed to be stored in

the collection.

max_size: The maximum size of the collection in bytes. max_size is rounded up to the

next multiple of 256 by MongoDB internally and mongoengine before.

If max_size is not specified and max_documents is, max_size defaults to 10485760 bytes

(10MB).

Other parameters of Document class are listed below:

objects A QuerySet object that is created lazily on access.

cascade_save() Recursively save any references and generic references on the

document.

clean() Hook for doing document level data cleaning before validation is

run.

create_index() Creates the given indexes if required.

drop_collection() Drops the entire collection associated with this Document type

from the database.

from_json() Converts json data to a Document instance.

modify() Perform an atomic update of the document in the database and

reload the document object using updated version.

pk Get the primary key.

save() Save the Document to the database. If the document already

exists, it will be updated, otherwise it will be created. Returns the

saved object instance.

delete() Delete current document from database.

insert() Performs bulk insert operation.

MongoEngine

 15

A MongoEngine document class has one or more attributes. Each attribute is an object of

Field class. BaseField is the base class or all field types. The BaseField class constructor

has the following arguments:

BaseField(db_field, required, default, unique, primary_key)

The db_field represents name of database field.

The required parameter decides whether value for this field is required, default is false.

The default parameter contains default value of this field

The unique parameter is false by default. Set to true if you want this field to have unique

value for each document.

The primary_key parameter defaults to false. True makes this field primary key.

There are a number of Field classes derived from BaseField.

Numeric Fields

IntField (32bit integer), LongField (64 bit integer), FloatField (floating point number)

field constructors have min_value and max_value parameters.

There is also DecimalField class. Value of this field’s object is a float whose precision can

be specified. Following arguments are defined for DecimalField class:

DecimalField(min_value, max_value, force_string, precision, rounding)

min_value specifies minimum acceptable value

max_value specifies maximum value the field can have

force_string If True, value of this field is stored as a string

precision limits the floating representation to number of digits

rounding Number is rounded as per following predefined constants

decimal.ROUND_CEILING (towards Infinity)

decimal.ROUND_DOWN (towards zero)

decimal.ROUND_FLOOR (towards -Infinity)

decimal.ROUND_HALF_DOWN (to nearest with ties going towards zero)

decimal.ROUND_HALF_EVEN (to nearest with ties going to nearest

even integer)

decimal.ROUND_HALF_UP (to nearest with ties going away from zero)

8. MongoEngine ― Fields

MongoEngine

 16

decimal.ROUND_UP (away from zero)

decimal.ROUND_05UP (away from zero if last digit after rounding

towards zero would have been 0 or 5; otherwise towards zero)

Text Fields

StringField object can store any Unicode value. You can specify min_length and

max_length of the string in the constructor. URLField object is a StringField with capability

to validate input as a URL. EmailField validates the string as a valid email representation.

StringField(max-length, min_length)

URLField(url_regex)

EmailField(domain_whiltelist, allow_utf8_user, allow_ip_domain)

The domain_whitelist argument contains list of invalid domains which you would not

support. If set to True, allow_utf8_user parameter allows the string to contain UTF8

characters as a part of email. The allow_ip_domain parameter is false by default, but if

true, it can be a valid IPV4 or IPV6 address.

Following example uses numeric and string fields:

from mongoengine import *

connect('studentDB')

class Student(Document):

 studentid = StringField(required=True)

 name = StringField()

 age=IntField(min_value=6, max-value=20)

 percent=DecimalField(precision=2)

 email=EmailField()

s1=Student()

s1.studentid='001'

s1.name='Mohan Lal'

s1.age=20

s1.percent=75

s1.email='mohanlal@gmail.com'

s1.save()

When above code is executed, the student collection shows a document as below:

MongoEngine

 17

ListField

This type of field wraps any standard field, thus allowing multiple objects to be used as a

list object in a database. This field can be used with ReferenceField to implement one to

many relationships.

The student document class from above example is modified as below:

from mongoengine import *

connect('studentDB')

class Student(Document):

 studentid = StringField(required=True)

 name = StringField(max_length=50)

 subjects = ListField(StringField())

s1=Student()

s1.studentid='A001'

s1.name='Mohan Lal'

s1.subjects=['phy', 'che', 'maths']

s1.save()

The document added is shown in JSON format as follows:

{

"_id":{"$oid":"5ea6a1f4d8d48409f9640319"},

"studentid":"A001",

"name":"Mohan Lal",

"subjects":["phy","che","maths"]

}

DictField

An object of DictField class stores a Python dictionary object. In the corresponding

database field as well, this will be stored.

In place of ListField in the above example, we change its type to DictField.

from mongoengine import *

MongoEngine

 18

connect('studentDB')

class Student(Document):

 studentid = StringField(required=True)

 name = StringField(max_length=50)

 subjects = DictField()

s1=Student()

s1.studentid='A001'

s1.name='Mohan Lal'

s1.subjects['phy']=60

s1.subjects['che']=70

s1.subjects['maths']=80

s1.save()

Document in the database appears as follows:

{

"_id":{"$oid":"5ea6cfbe1788374c81ccaacb"},

"studentid":"A001",

"name":"Mohan Lal",

"subjects":{"phy":{"$numberInt":"60"},

 "che":{"$numberInt":"70"},

 "maths":{"$numberInt":"80"}

 }

}

ReferenceField

A MongoDB document can store reference to another document using this type of field.

This way, we can implement join as in RDBMS. A ReferenceField constructor uses name of

other document class as parameter.

class doc1(Document):

 field1=StringField()

class doc2(Document):

 field1=StringField()

 field2=ReferenceField(doc1)

In following example, StudentDB database contains two document classes, student and

teacher. Document of Student class contains reference to an object of teacher class.

MongoEngine

 19

from mongoengine import *

connect('studentDB')

class Teacher (Document):

 tid=StringField(required=True)

 name=StringField()

class Student(Document):

 sid = StringField(required=True)

 name = StringField()

 tid=ReferenceField(Teacher)

t1=Teacher()

t1.tid='T1'

t1.name='Murthy'

t1.save()

s1=Student()

s1.sid='S1'

s1.name='Mohan'

s1.tid=t1

s1.save()

Run above code and verify result in Compass GUI. Two collections corresponding to two

document classes are created in StudentDB database.

The teacher document added is as follows:

{

"_id":{"$oid":"5ead627463976ea5159f3081"},

"tid":"T1",

"name":"Murthy"

}

The student document shows the contents as below:

{

"_id":{"$oid":"5ead627463976ea5159f3082"},

"sid":"S1",

"name":"Mohan",

"tid":{"$oid":"5ead627463976ea5159f3081"}

MongoEngine

 20

}

Note that ReferenceField in Student document stores _id of corresponding Teacher

document. When accessed, Student object is automatically turned into a reference, and

dereferenced when corresponding Teacher object is accessed.

To add reference to document being defined, use ‘self’ instead of other document class as

argument to ReferenceField. It may be noted that use of ReferenceField may cause poor

performance as far retrieval of documents is concerned.

The ReferenceField constructor also has one optional argument as reverse_delete_rule. Its

value determines what to be done if the referred document is deleted.

The possible values are as follows:

 DO_NOTHING (0) - don’t do anything (default).

 NULLIFY (1) - Updates the reference to null.

 CASCADE (2) - Deletes the documents associated with the reference.

 DENY (3) - Prevent the deletion of the reference object.

 PULL (4) - Pull the reference from a ListField of references

You can implement one to many relationship using list of references. Assuming that a

student document has to be related with one or more teacher documents, the Student

class must have a ListField of ReferenceField instances.

from mongoengine import *

connect('studentDB')

class Teacher (Document):

 tid=StringField(required=True)

 name=StringField()

class Student(Document):

 sid = StringField(required=True)

 name = StringField()

 tid=ListField(ReferenceField(Teacher))

t1=Teacher()

t1.tid='T1'

t1.name='Murthy'

t1.save()

t2=Teacher()

t2.tid='T2'

t2.name='Saxena'

MongoEngine

 21

t2.save()

s1=Student()

s1.sid='S1'

s1.name='Mohan'

s1.tid=[t1,t2]

s1.save()

On verifying result of the above code in Compass, you will find the student document

having reference of two teacher documents:

Teacher Collection

{

"_id":{"$oid":"5eaebcb61ae527e0db6d15e4"},

"tid":"T1","name":"Murthy"

}

{

"_id":{"$oid":"5eaebcb61ae527e0db6d15e5"},

"tid":"T2","name":"Saxena"

}

Student collection

{

"_id":{"$oid":"5eaebcb61ae527e0db6d15e6"},

"sid":"S1","name":"Mohan",

"tid":[{"$oid":"5eaebcb61ae527e0db6d15e4"},{"$oid":"5eaebcb61ae527e0db6d15e5"}]

}

DateTimeField

An instance of DateTimeField class allows data in date format in MongoDB database.

MongoEngine looks for Python-DateUtil library for parsing data in appropriate date format.

If it is not available in current installation, date is represented using built-in time module’s

time.strptime() function. Default value of field of this type is current datetime instance.

MongoEngine

 22

DynamicField

Different and varying type of data can be handled by this field. This type of field is

internally used by DynamicDocument class.

ImageField

This type of field corresponds to field in document that can store an image file. Constructor

of this class can accept size and thumbnail_size parameters (both in terms of pixel size).

MongoEngine

 23

We have already used save() method of Document class to add a document in the

collection. The save() method can be further customized with the help of following

arguments:

force_insert Default is False, if set to True doesn’t allow updates of existing

documents.

validate validates the document; set to False to skip.

clean call the document clean method, validate argument should be True.

write_concern will be used as options for the resultant getLastError command. For

example, save(..., write_concern={w: 2, fsync: True}, ...) will wait

until at least two servers have recorded the write and will force an

fsync on the primary server.

cascade Sets the flag for cascading saves. You can set a default by setting

“cascade” in the document __meta__.

cascade_kwargs optional keyword arguments to be passed throw to cascading saves.

Equivalent to cascade=True.

_refs A list of processed references used in cascading saves

save_condition only perform save if matching record in db satisfies condition(s).

Raises OperationError if the conditions are not satisfied

signal_kwargs kwargs dictionary to be passed to the signal calls.

You can set cleaning rules for validation of documents before calling save(). By providing

a custom clean() method, you can do any pre validation/data cleaning.

class MyDocument(Document):

 ...

 ...

 def clean(self):

 if <condition>==True:

 msg = 'error message.'

 raise ValidationError(msg)

Note that Cleaning is only called if validation is turned on and when calling save().

Document class also has insert() method to perform bulk insert. It has following

parameters:

9. MongoEngine — Add/Delete document

MongoEngine

 24

doc_or_docs A document or list of documents to be inserted

load_bulk If True, returns the list of document instances

write_concern Extra keyword arguments are passed down to insert() which will be

used as options for the resultant getLastError command.

signal_kwargs (optional) kwargs dictionary to be passed to the signal calls

If document contains any ReferenceField objects, then by default the save() method will

not save any changes to those objects. If you want all references to be saved also, noting

each save is a separate query, then passing cascade as True to the save method will

cascade any saves.

Deleting a document from its collection is very easy, by calling delete() method.

Remember that it will only take effect if the document has been previously saved. The

delete() method has following arguments:

signal_kwargs (optional) kwargs dictionary to be passed to the signal calls.

write_concern Extra keyword arguments are passed down which will be used as

options for the resultant getLastError command.

To delete entire collection from database use drop_collecction() method. It drops the

entire collection associated with this Document type from the database. The method raises

OperationError if the document has no collection set (i.g. if it is abstract).

The modify() method in document class performs atomic update of the document in the

database and reloads its updated version. It returns True if the document has been

updated or False if the document in the database does not match the query. Note that all

unsaved changes that have been made to the document are rejected if the method returns

True.

Parameters

query The update will be performed only if the document in the database matches

the query

update Django-style update keyword arguments

MongoEngine

 25

The connect() function returns a MongoClient object. Using list_database_names()

method available to this object, we can retrieve number of databases on the server.

from mongoengine import *

con=connect('newdb')

dbs=con.list_database_names()

for db in dbs:

 print (db)

It is also possible to obtain list of collections in a database, using list_collection_names()

method.

collections=con['newdb'].list_collection_names()

for collection in collections:

 print (collection)

As mentioned earlier, the Document class has objects attribute that enable access to

objects associated with the database.

The newdb database has a products collection corresponding to Document class below. To

get all documents, we use objects attribute as follows:

from mongoengine import *

con=connect('newdb')

class products (Document):

 ProductID=IntField(required=True)

 Name=StringField()

 price=IntField()

for product in products.objects:

 print ('ID:',product.ProductID, 'Name:',product.Name,

'Price:',product.price)

Output

ID: 1 Name: Laptop Price: 25000

10. MongoEngine — Querying database

MongoEngine

 26

ID: 2 Name: TV Price: 50000

ID: 3 Name: Router Price: 2000

ID: 4 Name: Scanner Price: 5000

ID: 5 Name: Printer Price: 12500

MongoEngine

 27

The objects attribute is a QuerySet manager. It creates and returns a QuerySet when

accessed. A query can be subjected to filter with the help of field names as keyword

arguments. For example, from above products collection, to print details of document with

name of product as ‘TV’, we use Name as keyword argument.

for product in products.objects(Name='TV'):

 print ('ID:',product.ProductID, 'Name:',product.Name,

'Price:',product.price)

You can use filter method of QuerySet object to apply filter to query. Following code

snippet also returns product details with name=’TV’.

qset=products.objects

for product in qset.filter(Name='TV'):

 print ('ID:',product.ProductID, 'Name:',product.Name,

'Price:',product.price)

11. MongoEngine — Filters

MongoEngine

 28

In addition to = operator to check equality, the following logical operators are defined in

MongoEngine.

ne not equal to

lt less than

lte less than or equal to

gt greater than

gte greater than or equal to

not negate a standard check, may be used before other operators

in value is in list

nin value is not in list

mod value % x == y, where x and y are two provided values

all every item in list of values provided is in array

size the size of the array is

exists value for field exists

These operators must be attached to field name with double underscore __.

To use greater than (gt) operator, use the following format:

#using greater than operator

for product in products.objects(price__gt=10000):

 print ('ID:',product.ProductID, 'Name:',product.Name,

'Price:',product.price)

Output

ID: 1 Name: Laptop Price: 25000

ID: 2 Name: TV Price: 50000

ID: 5 Name: Printer Price: 12500

The in operator is like Python’s in operator. For name of product matching with names in

list, the following code is used:

for product in products.objects(Name__in=['TV', 'Printer']):

 print ('ID:',product.ProductID, 'Name:',product.Name,

'Price:',product.price)

12. MongoEngine — Query operators

MongoEngine

 29

Output

ID: 2 Name: TV Price: 50000

ID: 5 Name: Printer Price: 12500

You can use following operators as shortcut for regex expressions for applying filter to

queries:

exact string field exactly matches value

iexact string field exactly matches value (case insensitive)

contains string field contains value

icontains string field contains value (case insensitive)

startswith string field starts with value

istartswith string field starts with value (case insensitive)

endswith string field ends with value

iendswith string field ends with value (case insensitive)

match performs an $elemMatch so you can match an entire document within an

array

For example, the following code prints product details for name containing ‘o’ in name:

for product in products.objects(Name__contains='o'):

 print ('ID:',product.ProductID, 'Name:',product.Name,

'Price:',product.price)

Output

ID: 1 Name: Laptop Price: 25000

ID: 3 Name: Router Price: 2000

In another example of string query, the following code displays name ending with ‘er’:

for product in products.objects(Name__endswith='er'):

 print ('ID:',product.ProductID, 'Name:',product.Name,

'Price:',product.price)

Output

ID: 3 Name: Router Price: 2000

ID: 4 Name: Scanner Price: 5000

ID: 5 Name: Printer Price: 12500

MongoEngine

 30

The QuerySet object possesses following useful methods for querying the database.

first(()

First document satisfying the query is returned. Following code will return first document

in products collection, that has price < 20000.

qset=products.objects(price__lt=20000)

doc=qset.first()

print ('Name:',doc.Name, 'Price:',doc.price)

Output

Name: Router Price: 2000

exclude()

This will cause mentioned fields to be excluded from Query Set. Here, to_json() mehod of

Document class is used to obtain JSONified version of Document. ProductID field will not

appear in the result.

for product in products.objects.exclude('ProductID'):

 print (product.to_json())

Output

{"_id": {"$oid": "5c8dec275405c12e3402423c"}, "Name": "Laptop", "price": 25000}

{"_id": {"$oid": "5c8dec275405c12e3402423d"}, "Name": "TV", "price": 50000}

{"_id": {"$oid": "5c8dec275405c12e3402423e"}, "Name": "Router", "price": 2000}

{"_id": {"$oid": "5c8dec275405c12e3402423f"}, "Name": "Scanner", "price": 5000}

{"_id": {"$oid": "5c8dec275405c12e34024240"}, "Name": "Printer", "price":

12500}

fields()

Use this method to manipulate which fields to load in the query set. Use field names as

keyword arguments and set to 1 to include, 0 to exclude.

for product in products.objects.fields(ProductID=1,price=1):

 print (product.to_json())

13. MongoEngine — QuerySet Methods

MongoEngine

 31

Output

{"_id": {"$oid": "5c8dec275405c12e3402423c"}, "ProductID": 1, "price": 25000}

{"_id": {"$oid": "5c8dec275405c12e3402423d"}, "ProductID": 2, "price": 50000}

{"_id": {"$oid": "5c8dec275405c12e3402423e"}, "ProductID": 3, "price": 2000}

{"_id": {"$oid": "5c8dec275405c12e3402423f"}, "ProductID": 4, "price": 5000}

{"_id": {"$oid": "5c8dec275405c12e34024240"}, "ProductID": 5, "price": 12500}

Setting field keyword argument to 0 in fields() method works similar to exclude() method.

for product in products.objects.fields(price=0):

 print (product.to_json())

Output

{"_id": {"$oid": "5c8dec275405c12e3402423c"}, "ProductID": 1, "Name": "Laptop"}

{"_id": {"$oid": "5c8dec275405c12e3402423d"}, "ProductID": 2, "Name": "TV"}

{"_id": {"$oid": "5c8dec275405c12e3402423e"}, "ProductID": 3, "Name": "Router"}

{"_id": {"$oid": "5c8dec275405c12e3402423f"}, "ProductID": 4, "Name":

"Scanner"}

{"_id": {"$oid": "5c8dec275405c12e34024240"}, "ProductID": 5, "Name":

"Printer"}

only()

Effect of this method is similar to fields() method. Fields corresponding to keyword

arguments only will appear in the query set.

for product in products.objects.only('Name'):

 print (product.to_json())

Output

{"_id": {"$oid": "5c8dec275405c12e3402423c"}, "Name": "Laptop"}

{"_id": {"$oid": "5c8dec275405c12e3402423d"}, "Name": "TV"}

{"_id": {"$oid": "5c8dec275405c12e3402423e"}, "Name": "Router"}

{"_id": {"$oid": "5c8dec275405c12e3402423f"}, "Name": "Scanner"}

{"_id": {"$oid": "5c8dec275405c12e34024240"}, "Name": "Printer"}

sum()

This method computes sum of given field in the query set.

MongoEngine

 32

average()

This method calculates average of given field in the query set.

avg=products.objects.average('price')

ttl=products.objects.sum('price')

print ('sum of price field',ttl)

print ('average of price field',avg)

Output

sum of price field 94500

average of price field 18900.0

MongoEngine

 33

QuerySet’s order_by() function is used to obtain the query result in a sorted manner.

The usage is as follows:

Qset.order_by(‘fieldname’)

By default, the sort order is ascending. For descending order, attach – sign to name of

field. For example, to get price wise list in ascending order:

from mongoengine import *

con=connect('newdb')

class products (Document):

 ProductID=IntField(required=True)

 company=StringField()

 Name=StringField()

 price=IntField()

for product in products.objects.order_by('price'):

 print ("Name:{} company:{} price:{}".format(product.Name, product.company,

product.price))

Output

Name:Router company:Iball price:2000

Name:Scanner company:Cannon price:5000

Name:Printer company:Cannon price:12500

Name:Laptop company:Acer price:25000

Name:TV company:Philips price:31000

Name:Laptop company:Dell price:45000

Name:TV company:Samsung price:50000

Following code will get the list in descending order of name:

for product in products.objects.order_by('-Name'):

 print ("Name:{} company:{} price:{}".format(product.Name, product.company,

product.price))

Output

Name:TV company:Samsung price:50000

14. MongoEngine — Sorting

MongoEngine

 34

Name:TV company:Philips price:31000

Name:Scanner company:Cannon price:5000

Name:Router company:Iball price:2000

Name:Printer company:Cannon price:12500

Name:Laptop company:Acer price:25000

Name:Laptop company:Dell price:45000

You can also get sorting done on multiple fields. This code will get you companywise,

pricelist in ascending order.

for product in products.objects.order_by('company','price'):

 print ("Name:{} company:{} price:{}".format(product.Name, product.company,

product.price))

Output

Name:Laptop company:Acer price:25000

Name:Scanner company:Cannon price:5000

Name:Printer company:Cannon price:12500

Name:Laptop company:Dell price:45000

Name:Router company:Iball price:2000

Name:TV company:Philips price:31000

Name:TV company:Samsung price:50000

MongoEngine

 35

By default, the objects attribute on a document class returns a QuerySet without applying

any filter. However, you can define a classmethod on a document that modifies a queryset.

Such a method should accept two arguments – doc_cls and queryset and it needs to be

decorated with queryset_manager() in order for it to be recognized.

@queryset_manager

 def qry_method(docs_cls,queryset):

 ….

In the following example, the document class called products has an expensive_prods()

method which is decorated by @queryset_manager. The method itself applies a filter to

queryset such that only objects with price >20000 are returned. This method is now the

default document query and objects attribute of products class returns filtered documents.

from mongoengine import *

con=connect('newdb')

class products (Document):

 ProductID=IntField(required=True)

 company=StringField()

 Name=StringField()

 price=IntField()

 @queryset_manager

 def expensive_prods(docs_cls,queryset):

 return queryset.filter(price__gt=20000)

for product in products.expensive_prods():

 print ("Name:{} company:{} price:{}".format(product.Name, product.company,

product.price))

Output

Name:Laptop company:Acer price:25000

Name:TV company:Samsung price:50000

Name:TV company:Philips price:31000

Name:Laptop company:Dell price:45000

15. MongoEngine — Custom Query Sets

MongoEngine

 36

If you wish to customize methods for filtering documents, first declare a subclass of

QuerySet class, and use it as value of queryset_class property in meta dictionary.

The example below uses MyQuerySet class as definition of custom queryset. The

myqrymethod() in this class filters the documents whose name field ends with ‘er’. In

products class, meta attribute refers to this queryset subclass is used as value of

queryset_class property.

from mongoengine import *

con=connect('newdb')

class MyQuerySet(QuerySet):

 def myqrymethod(self):

 return self.filter(Name__endswith='er')

class products (Document):

 meta = {'queryset_class': MyQuerySet}

 ProductID=IntField(required=True)

 company=StringField()

 Name=StringField()

 price=IntField()

for product in products.objects.myqrymethod():

 print ("Name:{} company:{} price:{}".format(product.Name, product.company,

product.price))

Output

Name:Router company:Iball price:2000

Name:Scanner company:Cannon price:5000

Name:Printer company:Cannon price:12500

MongoEngine

 37

An indexed collection results in faster processing of queries. By default, every collection is

automatically indexed on _id field. In addition, you can create index on one or more fields.

Using Compass, we can build index very easily. Click on CREATE INDEX button on Indexes

tab as shown in figure below:

A dialog box appears as shown. Choose name of index, field on which to index, order of

index (ascending or descending) and other options.

16. MongoEngine — Indexes

MongoEngine

 38

While using MongoEngine, indexes are created by specifying ‘indexes’ key in meta

dictionary of definition of Document class.

Value of indexes property is a list of fields. In the following example, we ask documents

in student collection be indexed according to name field.

from mongoengine import *

con=connect('mydata')

class student(Document):

 name=StringField(required=True)

 course=StringField()

 meta = {'indexes':['name']}

MongoEngine

 39

s1=student()

s1.name='Avinash'

s1.course='DataScience'

s1.save()

s2=student()

s2.name='Anita'

s2.course='WebDesign'

s2.save()

By default, indexing order is ascending. Order may be specified by prepending ‘+’ for

ascending or ‘-‘ for descending order.

To create compound index, use a tuple of field names, optionally having + or – symbol

attached to indicate sort order.

In the following example, student document class contains definition of compound index

on name and course (note - symbol prefixed to course field which means index is built

namewise ascending and coursewise descending order.

from mongoengine import *

con=connect('mydata')

class student(Document):

 name=StringField(required=True)

 course=StringField()

 meta = {'indexes':[('name','-course')]}

s1=student()

s1.name='Avinash'

s1.course='DataScience'

s1.save()

s2=student()

s2.name='Anita'

s2.course='WebDesign'

s2.save()

MongoDB Compass will show indexes as below:

MongoEngine

 40

Value of ‘indexes’ may be a dictionary of various options as below:

fields The fields to index.

cls If allow_inheritance is turned on, you can configure whether

the index should have the _cls field added automatically.

sparse Whether the index should be sparse.

unique Whether the index should be unique.

expireAfterSeconds automatically expire data from a collection by setting the

time in seconds

name Allows you to specify a name for the index

collation Allows to create case insensitive indexes

Following example creates index on name field that expires after 3600 seconds.

from mongoengine import *

con=connect('mydata')

class student(Document):

 name=StringField(required=True)

 course=StringField()

 meta = {'indexes':[{

 'fields': ['name'],

 'expireAfterSeconds': 3600

 }

]

}

MongoEngine

 41

To specify text index, prefix field name with ‘$’ sign and for hashed index, use ‘#’ as prefix.

Indexes so specified are created automatically as documents are added in the collection.

To disable automatic creation, set ‘auto_create_index’ to False in meta attribute.

We have list_indexes() method with Document class that displays list of available

indexes.

print (student.list_indexes())

[[('name', 1)], [('_id', 1)]]

To create index on a field not in the meta dictionary, use create_index() method. The

following code will create index on course field:

class student(Document):

 name=StringField(required=True)

 course=StringField()

 meta = {'indexes':[{

 'fields': ['name'],

 'expireAfterSeconds': 3600

 }

]}

student.create_index(['course'])

MongoEngine

 42

The term ‘aggregation’ is used for the operation that processes data and returns

computed result. Finding sum, count and average on one or more fields of documents in

a collection can be called as aggregation functions.

MongoEngine provides aggregate() function that encapsulates PyMongo’s aggregation

framework. Aggregation operation uses a collection as input and returns one or more

documents as a result.

MongoDB uses concept of data processing pipelines. A pipeline can have multiple stages.

Basic stage provides that provide filter and operate like queries. Others provide tools for

grouping and/or sorting by one or more fields, string concatenation tasks, array

aggregation tools, etc.

Following stages are defined in MongoDB pipeline creation:

Name Description

$project Reshapes each document in the stream, by adding new fields or

removing existing fields.

$match Filters the document stream to allow only matching documents to pass

unmodified into the next stage. $match uses standard MongoDB

queries.

$redact Reshapes each document by restricting the content for each

document based on information stored in the documents themselves.

$limit Limits documents to be passed unmodified to the pipeline

$skip Skips the first n documents and passes the remaining documents

unmodified to the pipeline.

$group Groups input documents by a given identifier expression and applies

the accumulator expressions to each group. The output documents

only contain the identifier field and accumulated fields.

$sort Reorders the document stream by a specified sort key.

$out Writes the resulting documents of the aggregation pipeline to a

collection.

Aggregation expressions use field path to access fields in the input documents. To specify

a field path, use a string that prefixes with a dollar sign $ the field name. Expression can

use one or more Boolean operators ($and, $or, $not) and comparison operators ($eq, $gt,

$lt, $gte, $lte and $ne).

Following arithmetic expressions are also used for aggregation:

$add Adds numbers to return the sum. Accepts any number of argument

expressions

$subtract Returns the result of subtracting the second value from the first

17. MongoEngine — Aggregation

MongoEngine

 43

$multiply Multiplies numbers to return the product. Accepts any number of

argument expressions

$divide Returns the result of dividing the first number by the second. Accepts two

argument expressions

$mod Returns the remainder of the first number divided by the second. Accepts

two argument expressions

Following string expression can also be used in aggregation:

$concat Concatenates any number of strings

$substr Returns a substring of a string, starting at a specified index position up

to a specified length

$toLower Converts a string to lowercase. Accepts a single argument expression

$toUpper Converts a string to uppercase. Accepts a single argument expression

$strcasecmp Performs string comparison and returns 0 if two strings are equivalent,

1 if first is greater than second, and -1 if first string is less than second

To demonstrate how aggregate() function works in MongoEngine, let us first define a

Document class called orders.

from mongoengine import *

con=connect('mydata')

class orders(Document):

 custID = StringField()

 amount= IntField()

 status = StringField()

We then add following documents in orders collection:

_id custID amount status

ObjectId("5eba52d975fa1e26d4ec01d0") A123 500 A

ObjectId("5eba536775fa1e26d4ec01d1") A123 250 A

ObjectId("5eba53b575fa1e26d4ec01d2") B212 200 D

ObjectId("5eba540e75fa1e26d4ec01d3") B212 400 A

The aggregate() function is to be used to find sum of amount field for each custID only

when status equals ‘A’. Accordingly, the pipeline is constructed as follows.

First stage in pipeline uses $match to filter documents with status=’A’. Second stage uses

$group identifier to group documents on CustID and performs sum of amount.

pipeline = [

 {"$match" : {"status" : "A"}},

 {"$group": {"_id": "$custID", "total": {"$sum": "$amount"}}}

MongoEngine

 44

]

This pipeline is now used as argument to aggregate() function.

docs = orders.objects().aggregate(pipeline)

We can iterate over the document cursor with a for loop. The complete code is given

below:

from mongoengine import *

con=connect('mydata')

class orders(Document):

 custID = StringField()

 amount= IntField()

 status = StringField()

pipeline = [

 {"$match" : {"status" : "A"}},

 {"$group": {"_id": "$custID", "total": {"$sum": "$amount"}}}

]

docs = orders.objects().aggregate(pipeline)

for doc in docs:

 print (x)

For the given data, the following output is generated:

{'_id': 'B212', 'total': 400}

{'_id': 'A123', 'total': 750}

MongoEngine

 45

In order to get more efficiency in retrieving a subset of fields in a document, use only()

method of Objects attribute. This will significantly improve performance especially for

fields with extremely large length such as ListField. Pass the required field to only()

function. If other fields are accessed after executing only() query, default value is

returned.

from mongoengine import *

con=connect('newdb')

class person (Document):

 name=StringField(required=True)

 city=StringField(default='Mumbai')

 pin=IntField()

p1=person(name='Himanshu', city='Delhi', pin=110012).save()

doc=person.objects.only('name').first()

print ('name:',doc.name)

print ('city:', doc.city)

print ('PIN:', doc.pin)

Output

name: Himanshu

city: Mumbai

PIN: None

Note: The value of city attribute is used as default. As default is not specified for PIN, it

prints None.

You may call reload() function if you need missing fields.

When a document class has a ListField or DictField, while iterating through it, any DBREf

objects are automatically dereferenced. To increase the efficiency further, especially if the

document has ReferenceField, number of queries can be limited by using select_related()

function which converts QuerySet in a list and effects dereferencing.

MongoEngine API contains Q class which is useful for constructing advanced queries

consisting of number of constraints. Q represents a part of query which can be initialized

by keyword argument syntax and binary & and | operators.

person.objects(Q(name__startswith=’H’) &Q(city=’Mumbai’))

18. MongoEngine — Advanced Queries

MongoEngine

 46

It is possible to define an inherited class of any user defined Document class. The inherited

class may add extra fields if required. However, since such as a class is not a direct

subclass of Document class, it will not create a new collection, instead its objects are

stored in a collection used by its parent class. In the parent class, meta attribute

‘allow_inheritance’ property should be set to True.

In the following example, we first define employee as a document class and set

allow_inheritance to true. The salary class is derived from employee, adding two more

fields dept and sal. Objects of Employee as well as salary classes are stored in employee

collection.

from mongoengine import *

con=connect('newdb')

class employee (Document):

 name=StringField(required=True)

 branch=StringField()

 meta={'allow_inheritance':True}

class salary(employee):

 dept=StringField()

 sal=IntField()

e1=employee(name='Bharat', branch='Chennai').save()

s1=salary(name='Deep', branch='Hyderabad', dept='Accounts', sal=25000).save()

We can verify that two documents are stored in employee collection as follows:

{

"_id":{"$oid":"5ebc34f44baa3752530b278a"},

"_cls":"employee",

"name":"Bharat",

"branch":"Chennai"

}

{

"_id":{"$oid":"5ebc34f44baa3752530b278b"},

"_cls":"employee.salary",

19. MongoEngine — Document Inheritance

MongoEngine

 47

"name":"Deep",

"branch":"Hyderabad",

"dept":"Accounts",

"sal":{"$numberInt":"25000"}

}

Note that, in order to identify the respective Document class, MongoEngine adds a “_cls”

field and sets its value as "employee" and "employee.salary".

If you want to provide extra functionality to a group of Document classes, but without

overhead of inheritance, you can first create an abstract class and then derive one or

more classes from the same. To make a class abstract, meta attribute ‘abstract’ is set to

True.

from mongoengine import *

con=connect('newdb')

class shape (Document):

 meta={'abstract':True}

 def area(self):

 pass

class rectangle(shape):

 width=IntField()

 height=IntField()

 def area(self):

 return self.width*self.height

r1=rectangle(width=20, height=30).save()

MongoEngine

 48

Atomicity is one of the ACID transaction properties. A database transaction has to be

indivisible and irreducible so that it either occurs completely or doesn’t occur at all. This

property is called Atomicity. MongoDB supports Atomicity only on single documents and

not on multi-document transactions.

MongoEngine provides the following methods for atomic updates on a queryset.

update_one(): Overwrites or adds first document matched by query.

update(): Performs atomic update on fields matched by query.

modify(): Update a document and return it.

Following modifiers may be used with these methods. (These modifiers come before the

field, not after).

set set a particular value

unset delete a particular value

inc increment a value by a given amount

dec decrement a value by a given amount

push append a value to a list

push_all append several values to a list

pop remove the first or last element of a list depending on the value

pull remove a value from a list

pull_all remove several values from a list

add_to_set add value to a list only if its not in the list already

The following is an example of atomic update, we first create a Document class called tests

and add a document in it.

from mongoengine import *

con=connect('newdb')

class tests (Document):

 name=StringField()

 attempts=IntField()

 scores=ListField(IntField())

t1=tests()

20. MongoEngine — Atomic updates

MongoEngine

 49

t1.name='XYZ'

t1.attempts=0

t1.scores=[]

t1.save()

Let us use update_one() method to update name field from XYZ to MongoDB.

tests.objects(name='XYZ').update_one(set__name='MongoDB')

The push modifier is used to add data in ListField (scores).

tests.objects(name='MongoDB').update_one(push__scores=50)

To increment attempts field by one, we can use inc modifier.

tests.objects(name='MongoDB').update_one(inc__attempts=1)

The updated document looks as follows:

{

"_id":{"$oid":"5ebcf8d353a48858e01ced04"},

"name":"MongoDB",

"attempts":{"$numberInt":"1"},

"scores":[{"$numberInt":"50"}]

}

MongoEngine

 50

QuerySet object of MongoEngine has exec_js() method that allows execution of a

Javascript function on MongoDB server. This function processes the following arguments:

exec_js(code, *field_names, **options)

Where,

 code – a string containing Javascript code to execute

 fields – to be used in your function, which will be passed as arguments

 options – options that you want available to the function (accessed in Javascript

through the options object)

In addition, some more variables are also made available to the function’s scope as given

below:

 collection: name of the collection corresponding to the Document class. This

should be used to get the Collection object from db in Javascript code

 query: the query that has been generated by the QuerySet object; passed into the

find() method on a Collection object in the Javascript function

 options: an object containing the keyword arguments passed into exec_js()

Note that attributes in MongoEngine document class may use different names in the

database (set using the db_field keyword argument to a Field constructor).

class BlogPost(Document):

 title = StringField(db_field='doctitle')

For this purpose, a mechanism exists for replacing MongoEngine field attribute with the

database field names in Javascript code.

When accessing a field on a collection object, use square-bracket notation, and prefix the

MongoEngine field name with a tilde (~) symbol. The field name that follows the tilde will

be translated to the name used in the database.

document': doc[~title];

Note that when Javascript code refers to fields on embedded documents, the name of the

EmbeddedDocumentField, followed by a dot, should be used before the name of the field

on the embedded document.

21. MongoEngine — Javascript

MongoEngine

 51

In MongoDB, the files with size larger than 16 MB are stored using GridFS specifications.

A file is divided into multiple chunks each with a default size of 255KB. Large chunk may

be as large as necessary. GridFS uses two collections, one for chunks and other for

metadata.

GridFS may be used to store any file if you want to access it without having to load it

entirely in the memory.

MongoEngine API supports GridFS through FileField object. Using this object, it is possible

to insert and retrieve data. The FileField object’s put() method helps writing the file as a

part of Document.

from mongoengine import *

con=connect('newdb')

class lang (Document):

 name=StringField()

 developer=StringField()

 logo=FileField()

l1=lang()

l1.name='Python'

l1.developer='Van Rossum'

f=open('pylogo.png','rb')

l1.logo.put(f,content_type='image/png')

l1.save()

Contents of FileField can be retrieved by read() method of Python’s File object.

from mongoengine import *

con=connect('newdb')

class lang (Document):

 name=StringField()

 developer=StringField()

 logo=FileField()

l1 = lang.objects(name='Python').first()

22. MongoEngine — GridFS

MongoEngine

 52

logo = l1.logo.read()

There is also delete() method to delete the stored file.

l1 = lang.objects(name='Python').first()

l1.logo.delete()

l1.save()

Note that the FileField stores only the ID of file in a separate GridFS collection. Hence

delete() method does not delete the file physically.

The replace() method helps in replacing reference of file with another file.

l1 = lang.objects(name='Python').first()

f=open('newlogo.png','rb')

l1.logo.replace(f,content_type='image/png')

l1.save()

MongoEngine

 53

Signals are events dispatched by a sender object, any number of receiver objects can

subscribe to such events. A signal receiver can subscribe to a specific sender or may

receive signals from many senders.

In MongoEngine, signal handling is supported by blinker library, which means you need to

install it using pip utility. The mongoengine.signals module has the definitions of following

signals:

pre_init Called during the creation of a new Document or

EmbeddedDocument instance and executed after the

constructor arguments have been collected but before any

additional processing has been done to them.

post_init Called after all processing of a new Document or

EmbeddedDocument instance has been completed.

pre_save Called within save() prior to performing any actions.

pre_save_post_validation Called within save() after validation has taken place but

before saving.

post_save Called within save() after most actions (validation,

insert/update) have completed successfully. An additional

Boolean keyword argument is passed to indicate if the save

was an insert or an update.

pre_delete Called within delete() prior to attempting the delete

operation.

post_delete Called within delete() upon successful deletion of the

record.

pre_bulk_insert Called after validation of the documents to insert, but prior

to any data being written.

post_bulk_insert Called after a successful bulk insert operation. An additional

Boolean argument, loaded, identifies the contents of

documents as either Document instances when True or a list

of primary key values for the inserted records if False.

An event handler function is then attached to Document class. Note that

EmbeddedDocument only supports pre/post_init signals. pre/post_save, etc., should be

attached to Document’s class only.

You can also use a decorator to quickly create a number of signals and attach them to

your Document or EmbeddedDocument subclasses as class decorators.

In the following example, used as demonstration of signal handlers, we also use Python’s

standard library module – logging and set the logging level to debug.

from mongoengine import *

23. MongoEngine — Signals

MongoEngine

 54

from mongoengine import signals

import logging

logging.basicConfig(level=logging.DEBUG)

We then write a document class so that corresponding collection is created in newdb

database. Inside the class, two class mehods pre_save() and post_save() methods are

defined which are intended to be invoked before and after a document is saved in Author

collection.

class Author(Document):

 name = StringField()

 def __unicode__(self):

 return self.name

 @classmethod

 def pre_save(cls, sender, document, **kwargs):

 logging.debug("Pre Save: %s" % document.name)

 @classmethod

 def post_save(cls, sender, document, **kwargs):

 logging.debug("Post Save: %s" % document.name)

 if 'created' in kwargs:

 if kwargs['created']:

 logging.debug("Created")

 else:

 logging.debug("Updated")

Both the class methods are defined with arguments for classname, sender object and

document with optional list of keyword arguments.

Finally, we register the signal handlers.

signals.pre_save.connect(Author.pre_save, sender=Author)

signals.post_save.connect(Author.post_save, sender=Author)

As we create an instance of Document subclass, the console log will show the pre and post

save signals being processed by respective event handlers.

Author(name="Lathkar").save()

Python console reports the log as shown below:

DEBUG:root:Pre Save: Lathkar

MongoEngine

 55

DEBUG:root:Post Save: Lathkar

DEBUG:root:Created

MongoEngine

 56

MongoDB supports use of query operators that can perform text search on a string content.

As described earlier, to set a text index prefix name of index with $ symbol. For a text

index, the weight of an indexed field denotes the significance of the field relative to the

other indexed fields in terms of the text search score. You can also specify default language

in meta dictionary of the class.

List of supported languages can be found at

https://docs.mongodb.com/manual/reference/text-search-languages/

MongoEngine API consists of search_text() method for QuerySet object. The string to be

searched in indexed fields is given as argument.

In the following example, we first define a Document class called lang with two string

fields, name of language and its features. We also create indexes on both fields with

respective weights.

from mongoengine import *

con=connect('newdb')

class lang (Document):

 name=StringField()

 features=StringField()

 meta = {'indexes': [

 {'fields': ['$name', "$features"],

 'default_language': 'english',

 'weights': {'name': 2, 'features': 10}

 }]

 }

l1=lang()

l1.name='C++'

l1.features='Object oriented language for OS development'

l1.save()

l2=lang()

l2.name='Python'

l2.features='dynamically typed and object oriented for data science, AI and ML'

l2.save()

l3=lang()

24. MongoEngine — Text search

https://docs.mongodb.com/manual/reference/text-search-languages/

MongoEngine

 57

l3.name='HTML'

l3.features='scripting language for web page development'

l3.save()

In order to perform search for word ‘oriented’, we employ search_text() method as follows:

docs=lang.objects.search_text('oriented')

for doc in docs:

 print (doc.name)

Output of the above code will be names of languages in whose description the word

‘oriented’ occurs (‘Python and ‘C++’ in this case).

MongoEngine

 58

MongoEngine integrates beautifully with the following libraries:

marshmallow_mongoengine

marshmallow is an ORM/ODM/framework independent serialization/deserialization library

for converting complex datatypes, such as objects, to and from native Python datatypes.

Using this extension of MongoEngine, we can easily perform serialize/deserialize

operations.

First, create a Document class as usual as follows:

import mongoengine as me

class Book(me.Document):

 title = me.StringField()

Then generate marshmallow schema with the code below:

from marshmallow_mongoengine import ModelSchema

class BookSchema(ModelSchema):

 class Meta:

 model = Book

b_s = BookSchema()

Save a document using the code:

book = Book(title='MongoEngine Book').save()

And perform serialization/deserialization using dump(0 and load() using the code below:

data = b_s.dump(book).data

b_s.load(data).data

Flask-MongoEngine

This is a Flask extension that provides integration with MongoEngine. Connection

management of MongoDB database for your app is handled easily by this library. You can

also use WTForms as model forms for your models.

After installation of flask-mongoengine package, initialize flask app with the following

settings:

from flask import Flask

25. MongoEngine — Extensions

MongoEngine

 59

from flask_mongoengine import MongoEngine

app = Flask(__name__)

app.config['MONGODB_SETTINGS'] = {

 'db': 'mydata',

 'host': 'localhost',

 'port':27017

}

db = MongoEngine(app)

Then define a Document sub class using the below code:

class book(me.Document):

 name=me.StringField(required=True)

Declare an object of above class and call save() method when a particular route is visited.

@app.route('/')

def index():

 b1=book(name='Introduction to MongoEngine')

 b1.save()

 return 'success'

extras-mongoengine

This extension contains additional Field Types and any other wizardry.

Eve-MongoEngine

Eve is an open source Python REST API framework designed for human beings. It allows

to effortlessly build and deploy highly customizable, fully featured RESTful Web Services.

Eve is powered by Flask and Cerberus and it offers native support for MongoDB data stores.

Eve-MongoEngine provides MongoEngine integration with Eve.

Install and import the extension using the code below:

import mongoengine

from eve import Eve

from eve_mongoengine import EveMongoengine

Configure the settings and initialize the Eve instance.

my_settings = {

 'MONGO_HOST': 'localhost',

MongoEngine

 60

 'MONGO_PORT': 27017,

 'MONGO_DBNAME': 'eve_db'

app = Eve(settings=my_settings)

init extension

ext = EveMongoengine(app)

Define a Document class as shown below:

class Person(mongoengine.Document):

 name = mongoengine.StringField()

 age = mongoengine.IntField()

Add the model and run the application, finally using the below code:

ext.add_model(Person)

app.run()

Django-MongoEngine

This extension aims to integrate MongoEngine with Django API, a very popular Python web

development framework. This project is still under development.

