Tutorialspoint

LOWEST PRICE OF THE YEAR | Extra 10% OFF | Use: BF10

Master Data Analysis from Scratch

person icon Mukesh Ranjan

4.7

$10.00

$100.00

Master Data Analysis from Scratch

Mastering Data Analysis step by step from scratch

updated on icon Updated on Nov, 2025

language icon Language - English

person icon Mukesh Ranjan

English [CC]

category icon Development ,Data Science,Data Analysis

Lectures -80

Duration -11 hours

Lifetime Access

4.7

New price: $10.00

Previous price: $100.00

Lifetime Access

30-days Money-Back Guarantee

Training 5 or more people ?

Get your team access to 10000+ top Tutorials Point courses anytime, anywhere.

Course Description

In this course, you will learn about Data Analysis in a step-by-step manner. This course is divided into 4 parts. Following is the Course Structure:

   Part I: Tools For Data Analysis

      Python Refresher

  •  01 Course Pre-Requisite
    •   Learn Coding From Scratch With Python3
  •  02 Ipython Interpreter
  •  03 Jupyter Notebook
    • Running Jupyter Notebook
    •  Object introspection
    • %Run Command
    •  %load Command
    •   Executing Code from Clipboard
    •  Shortcut of Jupyter Notebook
    •  Magic Command
    •   Matplotlib Integration
  • 04 Python Refresher - Basic DataTypes
  • 05 Python Refresher - Collection Types - Lists
  • 06 Python Refresher - Collection Types - Dictionaries
  • 07 Python Refresher - Collection Types - Sets
  • 08 Python Refresher - Collection Types - Tuples
  •  09 Python Refresher - Functions
  • 10 Python Refresher - Classes And Objects

      Numpy Core Concept For Data Analysis

  • Step 1: Concept : Numpy Introduction
    •  What is Numpy?
    • Why Use Numpy?
  • Step 2: Concept: Arrays Revisited
    •  Types Of Arrays
  • Step 3: Lab: Ways to Create Arrays
    • 1. Create Arrays Using Python List
    • 2. Using Numpy's Methods 
  • Step 4: Concept + Lab: Numpy Array Internals
    • Dimensions
    • Shape
    • Strides
  • Step 5: Concept + Lab: Data Types and Casting
  • Step 6: Concept + Lab: Slicing And Indexing
    • 1. Understand Slicing and Indexing 1-D Array
    • 2. Understand Slicing and Indexing Multidimensional Array
  • Step 7 : Concept + Lab : Array Operations
    • 1. Common Operations On Arrays
    • 2. Commonly Used Functions for Numpy Array Operations
  • Step 8 : Concept + Lab : Broadcasting 
    • Array Broadcasting Principle
    • Understand Usage of Broadcasting
  • Step 9 : Concept + Lab : Understand Vectorization 

      Pandas Core Concept For Data Analysis

  • Step 1: What is Pandas
  • Step 2: DataFrames
  •  Step 3:  DataFrames Basics
  • Step 4: Handling Missing Data
  •  Step 5: GroupBy
  •  Step 6: Aggregation
  • Step 7: Transform
  •  Step 8: Window Functions
  • Step 9: Filter
  •  Step 10: Join Merge And Concat
  • Step 11: Apply Method
  •  Step 12:  DataFrame Reshape
  • Step 13:  Calculate Frequency Distribution

   Part II: Data Analysis Core Concepts

  • What is Data
  •  What is DataSet      
  • Types of Variables   
    • Types of Data Types    
    • Why Data Types are important?
  •  How do you collect Information for Different Data Types
    • For Nominal Data Type
    • Ordinal Data
    • Continuous Data
  • Descriptive Statistics Concepts
    • Types Of Statistics
      • Descriptive statistics
      •  Inferential Statistics
    • What it is?       
    • Concept 1:  Understand Normal Distribution
    • Concept 2: Central Tendency
    • Concept 3: Measures of Variability
      • Range
      • Interquartile Range(IQR)    
    • Concept 4: Variance and Standard Deviation   
    • Concept 5: Z-score or Standardized Score
    • Concept 6: Modality    
    • Concept 7: Skewness  
    • Concept 8: Kurtosis
      •  How does it look like            
      • Mesokurtic
      • platykurtic
      •  Leptokurtic 

   Part III: Tools For Data Visualization

  • Matplotlib Introduction
  •  Matplotlib Architecture
  • Seaborn Plot Overview
  • Parameters Of Plot
  • Types Of Plot By Purpose
    • 1. Correlation
      •  What It Is?
        • Type Of Graphs In Correlation Category
        • Scatter plot
        • Steps To Draw this graph
        • Step 1: Prepare Data
        • Step 2: Plot By Each Category
        • Step 3: Decorate the plot
        • Scatter plot with a line of best fit
      •  When To Use
        •  Counts Plot           
        • Marginal Boxplot
        •  Correlogram          
        •   Pairwise Plot                
    •  2. Deviation
      • Diverging Bars             
      •   Diverging Dot Plot      
    • 3. Ranking
      • Ordered Bar Chart     
      • Dot Plot             
    •  4. Distribution
      •  Histogram for Continuous Variable   
      •  Histogram for Categorical Variable         
      • Density Curves with Histogram 
      •  Box Plot               
      • Dot + Box Plot        
      • Categorical Plots         
    • 5. Composition
      •  Pie Chart
      • Treemap
      •  Bar Chart      
    • 6. Change
      • Time Series Plot
      •  Time Series Decomposition Plot     

   Part IV: Step By Step Exploratory Data Analysis and Data Preparation Workflow With Project

  • What is Exploratory Data Analysis (EDA)?
  • Value of Exploratory Data Analysis
  • Steps of Data Exploration and Preparation
    • Step 1:  Variable Identification
    • Step 2:  Univariate Analysis
    •  Step 3:  Bi-variate Analysis
    •  Step 4:  Missing values treatment
    • Step 5:  Outlier Detection and Treatment
      • What is an outlier?
      •  What are the types of outliers?
      • What are the causes of outliers?
      • What is the impact of outliers on the dataset?
      • How to detect outliers?
      • How to remove outliers?
    • Step 6:  Variable transformation
    • Step 7:  Variable creation

Goals

  • Python Important Concept For Data Analysis
  • Numpy Concept For Data Analysis
  • Python Pandas For Data Analysis
  • Matplot lib for Data Visualization in Data Analysis
  • Exploratory Data Analysis Workflow

Prerequisites

  • A computer installed with Windows/Linux /OS X.
  • Internet Connection
Master Data Analysis from Scratch

Curriculum

Check out the detailed breakdown of what’s inside the course

PART I : TOOLS FOR DATA ANALYSIS

33 Lectures
  • play icon Course Introduction 12:06 12:06
  • play icon Course Pre-requisite 04:28 04:28
  • play icon Ipython Interpreter 06:15 06:15
  • play icon Jupyter Notebook 12:24 12:24
  • play icon Python Refresher - Basic DataTypes 13:33 13:33
  • play icon Python Refresher - Collection Types - Lists 15:18 15:18
  • play icon Python Refresher - Collection Types - Dictionaries 06:23 06:23
  • play icon Python Refresher - Collection Types - Sets 06:35 06:35
  • play icon Python Refresher - Collection Types - Tuples 07:31 07:31
  • play icon Python Refresher - Collection Types - Functions 13:57 13:57
  • play icon Python Refresher - Classes And Objects 12:43 12:43
  • play icon What Is Numpy And Why To Use Numpy 03:39 03:39
  • play icon Numpy - Array Revisited 14:55 14:55
  • play icon Numpy - Ways To Create Arrays In Numpy 18:05 18:05
  • play icon Numpy Array Internals 12:46 12:46
  • play icon Numpy - DataTypes And Casting 08:29 08:29
  • play icon Numpy - Slicing And Indexing Numpy Arrays 11:45 11:45
  • play icon Numpy Array Operations 10:39 10:39
  • play icon Numpy - Broadcasting 06:50 06:50
  • play icon Numpy - Vectorization 06:29 06:29
  • play icon What is Pandas 02:56 02:56
  • play icon Pandas - Creating DataFrame in Pandas 09:14 09:14
  • play icon Pandas - DataFrames Basics 17:12 17:12
  • play icon Pandas - Handling Missing Data 14:00 14:00
  • play icon Pandas - GroupBy 14:28 14:28
  • play icon Pandas - Aggregation 05:45 05:45
  • play icon Pandas - Transform 08:53 08:53
  • play icon Pandas - Window Functions 08:32 08:32
  • play icon Pandas - Filter 03:58 03:58
  • play icon Pandas - Join Merge And Concat 15:57 15:57
  • play icon Pandas - Apply Method 03:54 03:54
  • play icon Pandas - DataFrame Reshape 06:09 06:09
  • play icon Pandas - Calculating Frequency Distribution 02:54 02:54

PART II - DATA ANALYSIS CORE CONCEPTS

10 Lectures
Tutorialspoint

PART III - TOOLS FOR DATA VISUALIZATION

24 Lectures
Tutorialspoint

PART IV : STEP BY STEP EXPLORATORY DATA ANALYSIS

12 Lectures
Tutorialspoint

Instructor Details

Mukesh Ranjan

Mukesh Ranjan

I am Mukesh Ranjan. I have total 20+ Years of experience. In these 20 years of journey I have worked with Startup to IT Gaint. I have worked on various platform from open source to proprietary. My fields of expertise are Cloud Automation / Devops / Machine Learning / SharePoint. I am passionate about learning new technology and teaching. My courses focus on providing students with an interactive and hands-on experience in learning new technology that makes learning really interesting. I designed the course as per industry standard which you can apply in your day to day activities

Course Certificate

Use your certificate to make a career change or to advance in your current career.

sample Tutorialspoint certificate

Our students work
with the Best

Related Video Courses

View More

Annual Membership

Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses

Subscribe now
Annual Membership

Online Certifications

Master prominent technologies at full length and become a valued certified professional.

Explore Now
Online Certifications