
http://www.tutorialspoint.com/go/go_bitwise_operators.htm Copyright © tutorialspoint.com

GO - BITWISE OPERATORSGO - BITWISE OPERATORS

The Bitwise operators supported by Go language are listed in the following table. Assume variable
A holds 60 and variable B holds 13, then:

Operator Description Example

& Binary AND Operator copies a bit to the result if it
exists in both operands.

A & B will give 12 which is
0000 1100

| Binary OR Operator copies a bit if it exists in either
operand.

A | B will give 61 which is 0011
1101

^ Binary XOR Operator copies the bit if it is set in one
operand but not both.

AB will give 49 which is 0011
0001

<< Binary Left Shift Operator. The left operands value
is moved left by the number of bits specified by the
right operand.

A << 2 will give 240 which is
1111 0000

>> Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by
the right operand.

A >> 2 will give 15 which is
0000 1111

Example
Try the following example to understand all the bitwise operators available in Go programming
language:

package main

import "fmt"

func main() {

 var a uint = 60 /* 60 = 0011 1100 */
 var b uint = 13 /* 13 = 0000 1101 */
 var c uint = 0

 c = a & b /* 12 = 0000 1100 */
 fmt.Printf("Line 1 - Value of c is %d\n", c)

 c = a | b /* 61 = 0011 1101 */
 fmt.Printf("Line 2 - Value of c is %d\n", c)

 c = a ^ b /* 49 = 0011 0001 */
 fmt.Printf("Line 3 - Value of c is %d\n", c)

 c = a << 2 /* 240 = 1111 0000 */
 fmt.Printf("Line 4 - Value of c is %d\n", c)

 c = a >> 2 /* 15 = 0000 1111 */
 fmt.Printf("Line 5 - Value of c is %d\n", c)
}

When you compile and execute the above program it produces the following result:

Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49

http://www.tutorialspoint.com/go/go_bitwise_operators.htm

Line 4 - Value of c is 240
Line 5 - Value of c is 15

Loading [MathJax]/jax/output/HTML-CSS/jax.js

