

ExpressJS

i

About the Tutorial

Express is a minimal and flexible Node.js web application framework that provides a robust

set of features for web and mobile applications. It is an open source framework developed

and maintained by the Node.js foundation.

Audience

This tutorial has been created for anyone who has a basic knowledge of HTML, Javascript

and how client-servers work. After completing this tutorial, you will be able to build

moderately complex websites and back-ends for you mobile applications.

Prerequisites

You should have basic knowledge of Javascript and HTML. If you are not acquainted with

these, we suggest you to go through tutorials on those areas first. It will definitely help, if

you have some exposure to HTTP, although it is not mandatory. Having a basic knowledge

of MongoDB will help you with the Database chapter.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ExpressJS

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents ... iii

 EXPRESSJS – OVERVIEW ... 1

 EXPRESSJS – ENVIRONMENT ... 2

Node Package Manager(npm) ... 2

 EXPRESSJS – HELLO WORLD ... 5

How the App Works? .. 6

 EXPRESSJS – ROUTING ... 7

app.method(path, handler) ... 7

Routers ... 8

 EXPRESSJS – HTTP METHODS .. 10

 EXPRESSJS – URL BUILDING ... 11

 EXPRESSJS – MIDDLEWARE.. 14

Third Party Middleware .. 16

 EXPRESSJS – TEMPLATING ... 18

Important Features of Pug .. 19

 EXPRESSJS – SERVING STATIC FILES ... 26

ExpressJS

iii

 EXPRESSJS – FORM DATA .. 28

 EXPRESSJS – DATABASE ... 31

Setting up Mongoose .. 31

Saving Documents ... 32

Retrieving Documents ... 35

Updating Documents .. 37

Deleting Documents .. 39

 EXPRESSJS – COOKIES .. 42

 EXPRESSJS – SESSIONS ... 45

 EXPRESSJS – AUTHENTICATION ... 48

 EXPRESSJS – RESTFUL APIS .. 55

 EXPRESSJS – SCAFFOLDING .. 65

 EXPRESSJS – ERROR HANDLING ... 67

 EXPRESSJS – DEBUGGING .. 69

 EXPRESSJS – BEST PRACTICES .. 70

Directory Structure.. 70

 EXPRESSJS – RESOURCES ... 73

ExpressJS

4

ExpressJS is a web application framework that provides you with a simple API to build

websites, web apps and back ends. With ExpressJS, you need not worry about low level

protocols, processes, etc.

What is Express?

Express provides a minimal interface to build our applications. It provides us the tools that

are required to build our app. It is flexible as there are numerous modules available on npm,

which can be directly plugged into Express.

Express was developed by TJ Holowaychuk and is maintained by the Node.js foundation

and numerous open source contributors.

Why Express?

Unlike its competitors like Rails and Django, which have an opinionated way of building

applications, Express has no "best way" to do something. It is very flexible and pluggable.

Pug

Pug (earlier known as Jade) is a terse language for writing HTML templates. It -

 Produces HTML

 Supports dynamic code

 Supports reusability (DRY)

It is one of the most popular template language used with Express.

MongoDB and Mongoose

MongoDB is an open-source, document database designed for ease of development and

scaling. This database is also used to store data.

Mongoose is a client API for node.js which makes it easy to access our database from our

Express application.

 EXPRESSJS – OVERVIEW

https://nodejs.org/

ExpressJS

5

In this chapter, we will learn how to start developing and using the Express Framework. To

start with, you should have the Node and the npm (node package manager) installed. If you

don’t already have these, go to the Node setup to install node on your local system. Confirm

that node and npm are installed by running the following commands in your terminal.

node --version

npm --version

You should get an output similar to the following.

v5.0.0

3.5.2

Now that we have Node and npm set up, let us understand what npm is and how to use it.

Node Package Manager(npm)

npm is the package manager for node. The npm Registry is a public collection of packages of

open-source code for Node.js, front-end web apps, mobile apps, robots, routers, and

countless other needs of the JavaScript community. npm allows us to access all these

packages and install them locally. You can browse through the list of packages available on

npm at npmJS.

How to use npm?

There are two ways to install a package using npm: globally and locally.

 Globally: This method is generally used to install development tools and CLI based

packages. To install a package globally, use the following code.

npm install -g <package-name>

 Locally: This method is generally used to install frameworks and libraries. A locally

installed package can be used only within the directory it is installed. To install a

package locally, use the same command as above without the -g flag.

npm install <package-name>

 EXPRESSJS – ENVIRONMENT

http://www.tutorialspoint.com/nodejs/nodejs_environment_setup.htm
https://www.npmjs.org/

ExpressJS

6

Whenever we create a project using npm, we need to provide a package.json file, which has

all the details about our project. npm makes it easy for us to set up this file. Let us set up our

development project.

Step 1: Start your terminal/cmd, create a new folder named hello-world and cd (create

directory) into it:

Step 2: Now to create the package.json file using npm, use the following code.

npm init

It will ask you for the following information.

Just keep pressing enter, and enter your name at the “author name” field.

Step 3: Now we have our package.json file set up, we will further install Express. To install

Express and add it to our package.json file, use the following command:

npm install --save express

To confirm that Express has installed correctly, run the following code.

ExpressJS

7

ls node_modules #(dir node_modules for windows)

Tip: The --save flag can be replaced by the -S flag. This flag ensures that Express is added

as a dependency to our package.json file. This has an advantage, the next time we need to

install all the dependencies of our project we can just run the command npm install and it will

find the dependencies in this file and install them for us.

This is all we need to start development using the Express framework. To make our

development process a lot easier, we will install a tool from npm, nodemon. This tool restarts

our server as soon as we make a change in any of our files, otherwise we need to restart the

server manually after each file modification. To install nodemon, use the following command:

npm install -g nodemon

You can now start working on Express.

ExpressJS

8

We have set up the development, now it is time to start developing our first app using Express.

Create a new file called index.js and type the following in it.

var express = require('express');

var app = express();

app.get('/', function(req, res){

 res.send("Hello world!");

});

app.listen(3000);

Save the file, go to your terminal and type the following.

nodemon index.js

This will start the server. To test this app, open your browser and go to http://localhost:3000

and a message will be displayed as in the following screenshot.

 EXPRESSJS – HELLO WORLD

http://localhost:3000/

ExpressJS

9

How the App Works?

The first line imports Express in our file, we have access to it through the variable Express.

We use it to create an application and assign it to var app.

app.get(route, callback)

This function tells what to do when a get request at the given route is called. The callback

function has 2 parameters, request(req) and response(res). The request object(req)

represents the HTTP request and has properties for the request query string, parameters,

body, HTTP headers, etc. Similarly, the response object represents the HTTP response that

the Express app sends when it receives an HTTP request.

res.send()

This function takes an object as input and it sends this to the requesting client. Here we are

sending the string "Hello World!".

app.listen(port, [host], [backlog], [callback]])

This function binds and listens for connections on the specified host and port. Port is the only

required parameter here.

ExpressJS

10

Argument Description

port A port number on which the server should accept incoming requests.

host
Name of the domain. You need to set it when you deploy your apps to the

cloud.

backlog The maximum number of queued pending connections. The default is 511.

callback
An asynchronous function that is called when the server starts listening for

requests.

ExpressJS

11

Web frameworks provide resources such as HTML pages, scripts, images, etc. at different

routes.

The following function is used to define routes in an Express application:

app.method(path, handler)

This METHOD can be applied to any one of the HTTP verbs – get, set, put, delete. An alternate

method also exists, which executes independent of the request type.

Path is the route at which the request will run.

Handler is a callback function that executes when a matching request type is found on the

relevant route. For example,

var express = require('express');

var app = express();

app.get('/hello', function(req, res){

 res.send("Hello World!");

});

app.listen(3000);

If we run our application and go to localhost:3000/hello, the server receives a get request

at route "/hello", our Express app executes the callback function attached to this route and

sends "Hello World!" as the response.

 EXPRESSJS – ROUTING

ExpressJS

12

We can also have multiple different methods at the same route. For example,

var express = require('express');

var app = express();

app.get('/hello', function(req, res){

 res.send("Hello World!");

});

app.post('/hello', function(req, res){

 res.send("You just called the post method at '/hello'!\n");

});

app.listen(3000);

To test this request, open up your terminal and use cURL to execute the following request:

curl -X POST "http://localhost:3000/hello"

A special method, all, is provided by Express to handle all types of http methods at a

particular route using the same function. To use this method, try the following.

app.all('/test', function(req, res){

ExpressJS

13

 res.send("HTTP method doesn't have any effect on this route!");

});

This method is generally used for defining middleware, which we'll discuss in the middleware

chapter.

Routers

Defining routes like above is very tedious to maintain. To separate the routes from our main

index.js file, we will use Express.Router. Create a new file called things.js and type the

following in it.

var express = require('express');

var router = express.Router();

router.get('/', function(req, res){

 res.send('GET route on things.');

});

router.post('/', function(req, res){

 res.send('POST route on things.');

});

//export this router to use in our index.js

module.exports = router;

Now to use this router in our index.js, type in the following before the app.listen function

call.

var express = require('Express');

var app = express();

var things = require('./things.js');

//both index.js and things.js should be in same directory

app.use('/things', things);

app.listen(3000);

The app.use function call on route '/things' attaches the things router with this route. Now

whatever requests our app gets at the '/things', will be handled by our things.js router. The

'/' route in things.js is actually a subroute of '/things'. Visit localhost:3000/things/ and you

will see the following output.

ExpressJS

14

Routers are very helpful in separating concerns and keep relevant portions of our code

together. They help in building maintainable code. You should define your routes relating to

an entity in a single file and include it using the above method in your index.js file.

ExpressJS

15

The HTTP method is supplied in the request and specifies the operation that the client has

requested. The following table lists the most used HTTP methods:

Method Description

GET
The GET method requests a representation of the specified resource. Requests

using GET should only retrieve data and should have no other effect.

POST
The POST method requests that the server accept the data enclosed in the
request as a new object/entity of the resource identified by the URI.

PUT
The PUT method requests that the server accept the data enclosed in the

request as a modification to existing object identified by the URI. If it does not

exist then the PUT method should create one.

DELETE The DELETE method requests that the server delete the specified resource.

These are the most common HTTP methods. To learn more about the methods,

visit http://www.tutorialspoint.com/http/http_methods.htm.

 EXPRESSJS – HTTP METHODS

http://www.tutorialspoint.com/http/http_methods.htm

ExpressJS

16

We can now define routes, but those are static or fixed. To use the dynamic routes, we

SHOULD provide different types of routes. Using dynamic routes allows us to pass parameters

and process based on them.

Here is an example of a dynamic route:

var express = require('express');

var app = express();

app.get('/:id', function(req, res){

 res.send('The id you specified is ' + req.params.id);

});

app.listen(3000);

To test this go to http://localhost:3000/123. The following response will be displayed.

You can replace '123' in the URL with anything else and the change will reflect in the response.

A more complex example of the above is:

var express = require('express');

var app = express();

app.get('/things/:name/:id', function(req, res){

 EXPRESSJS – URL BUILDING

http://localhost:3000/123

ExpressJS

17

 res.send('id: ' + req.params.id + ' and name: ' + req.params.name);

});

app.listen(3000);

To test the above code, go to http://localhost:3000/things/tutorialspoint/12345.

You can use the req.params object to access all the parameters you pass in the url. Note

that the above 2 are different paths. They will never overlap. Also if you want to execute code

when you get '/things' then you need to define it separately.

Pattern Matched Routes

You can also use regex to restrict URL parameter matching. Let us assume you need the id

to be a 5-digit long number. You can use the following route definition:

var express = require('express');

var app = express();

app.get('/things/:id([0-9]{5})', function(req, res){

 res.send('id: ' + req.params.id);

});

app.listen(3000);

Note that this will only match the requests that have a 5-digit long id. You can use more

complex regexes to match/validate your routes. If none of your routes match the request,

http://localhost:3000/things/tutorialspoint/12345

ExpressJS

18

you'll get a "Cannot GET <your-request-route>" message as response. This message can

be replaced by a 404 not found page using this simple route:

var express = require('express');

var app = express();

//Other routes here

app.get('*', function(req, res){

ExpressJS

19

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

