Explain about two phase locking (2PL) protocol(DBMS)


Locking and unlocking of the database should be done in such a way that there is no inconsistency, deadlock, and no starvation.

2PL locking protocol

Every transaction will lock and unlock the data item in two different phases.

  • Growing Phase − All the locks are issued in this phase. No locks are released, after all changes to data-items are committed and then the second phase (shrinking phase) starts.

  • Shrinking phase − No locks are issued in this phase, all the changes to data-items are noted (stored) and then locks are released.

The 2PL locking protocol is represented diagrammatically as follows −

In the growing phase transaction reaches a point where all the locks it may need has been acquired. This point is called LOCK POINT.

After the lock point has been reached, the transaction enters a shrinking phase.

Types

Two phase locking is of two types −

Strict two phase locking protocol

A transaction can release a shared lock after the lock point, but it cannot release any exclusive lock until the transaction commits. This protocol creates a cascade less schedule.

Cascading schedule: In this schedule one transaction is dependent on another transaction. So if one has to rollback then the other has to rollback.

Rigorous two phase locking protocol

A transaction cannot release any lock either shared or exclusive until it commits.

The 2PL protocol guarantees serializability, but cannot guarantee that deadlock will not happen.

Example

Let T1 and T2 are two transactions.

T1=A+B and T2=B+A

T1T2
Lock-X(A)Lock-X(B)
Read A;Read B;
Lock-X(B)Lock-X(A)

Here,

Lock-X(B) : Cannot execute Lock-X(B) since B is locked by T2.

Lock-X(A) : Cannot execute Lock-X(A) since A is locked by T1.

In the above situation T1 waits for B and T2 waits for A. The waiting time never ends. Both the transaction cannot proceed further at least any one releases the lock voluntarily. This situation is called deadlock.

The wait for graph is as follows −

Wait for graph: It is used in the deadlock detection method, creating a node for each transaction, creating an edge Ti to Tj, if Ti is waiting to lock an item locked by Tj. A cycle in WFG indicates a deadlock has occurred. WFG is created at regular intervals.

Updated on: 07-Nov-2023

47K+ Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements