
- The C Standard Library
- The C Standard Library
- The C++ Standard Library
- C++ Library - Home
- C++ Library - <fstream>
- C++ Library - <iomanip>
- C++ Library - <ios>
- C++ Library - <iosfwd>
- C++ Library - <iostream>
- C++ Library - <istream>
- C++ Library - <ostream>
- C++ Library - <sstream>
- C++ Library - <streambuf>
- C++ Library - <atomic>
- C++ Library - <complex>
- C++ Library - <exception>
- C++ Library - <functional>
- C++ Library - <limits>
- C++ Library - <locale>
- C++ Library - <memory>
- C++ Library - <new>
- C++ Library - <numeric>
- C++ Library - <regex>
- C++ Library - <stdexcept>
- C++ Library - <string>
- C++ Library - <thread>
- C++ Library - <tuple>
- C++ Library - <typeinfo>
- C++ Library - <utility>
- C++ Library - <valarray>
- The C++ STL Library
- C++ Library - <array>
- C++ Library - <bitset>
- C++ Library - <deque>
- C++ Library - <forward_list>
- C++ Library - <list>
- C++ Library - <map>
- C++ Library - <multimap>
- C++ Library - <queue>
- C++ Library - <priority_queue>
- C++ Library - <set>
- C++ Library - <stack>
- C++ Library - <unordered_map>
- C++ Library - <unordered_set>
- C++ Library - <vector>
- C++ Library - <algorithm>
- C++ Library - <iterator>
- The C++ Advanced Library
- C++ Library - <any>
- C++ Library - <barrier>
- C++ Library - <bit>
- C++ Library - <chrono>
- C++ Library - <cinttypes>
- C++ Library - <clocale>
- C++ Library - <condition_variable>
- C++ Library - <coroutine>
- C++ Library - <cstdlib>
- C++ Library - <cstring>
- C++ Library - <cuchar>
- C++ Library - <charconv>
- C++ Library - <cfenv>
- C++ Library - <cmath>
- C++ Library - <ccomplex>
- C++ Library - <expected>
- C++ Library - <format>
- C++ Library - <future>
- C++ Library - <flat_set>
- C++ Library - <flat_map>
- C++ Library - <filesystem>
- C++ Library - <generator>
- C++ Library - <initializer_list>
- C++ Library - <latch>
- C++ Library - <memory_resource>
- C++ Library - <mutex>
- C++ Library - <mdspan>
- C++ Library - <optional>
- C++ Library - <print>
- C++ Library - <ratio>
- C++ Library - <scoped_allocator>
- C++ Library - <semaphore>
- C++ Library - <source_location>
- C++ Library - <span>
- C++ Library - <spanstream>
- C++ Library - <stacktrace>
- C++ Library - <stop_token>
- C++ Library - <syncstream>
- C++ Library - <system_error>
- C++ Library - <string_view>
- C++ Library - <stdatomic>
- C++ Library - <variant>
- C++ STL Library Cheat Sheet
- C++ STL - Cheat Sheet
- C++ Programming Resources
- C++ Programming Tutorial
- C++ Useful Resources
- C++ Discussion
C++ Unordered_map::bucket() Function
The C++ function unordered_map::bucket() function returns the bucket number where element with key k is located. Bucket is a memory space in the container's hash table to which elements are assigned based on the hash value of their key. Valid range of buckets is from 0 to bucket_count - 1.
Syntax
Following is the Syntax of std::unordered_map::bucket() function.
size_type bucket(const key_type& k) const;
Parameters
k − It indicates the key whose bucket is to be located.
Return value
Returns the unsigned integral type that is the order number of the bucket corresponding to key k.
Example 1
Following is the example, where we are going to demonstrate the usage of unordered_map::bucket() function.
#include <iostream> #include <unordered_map> using namespace std; int main(void){ unordered_map<char, int> um = { {'a', 1}, {'b', 2}, {'c', 3}, {'d', 4}, {'e', 5} }; for (auto it = um.begin(); it != um.end(); ++it) { cout << "Element " << "[" << it->first << " : "<< it->second << "] " << "is in "<< um.bucket(it->first) << " bucket." << endl; } return 0; }
Output
Following is the output of the above code −
Element [e : 5] is in 3 bucket. Element [d : 4] is in 2 bucket. Element [c : 3] is in 1 bucket. Element [b : 2] is in 0 bucket. Element [a : 1] is in 6 bucket.
Example 2
In the following example, we are creating an unordered_map that stores the only string value and counting the number of buckets assigned to each name in the current unordered_map.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_map<string, string> um = { {"Aman", "Ranchi"}, {"Vivek", "Kanpur"}, {"Akash", "Daltonganj"}, {"Revathi", "Wrangle"}, {"Sarika", "Banaras"} }; for (auto it = um.begin(); it != um.end(); ++it) { cout << "Element " << "[" << it->first << " : " << it->second << "] " << "is in " << um.bucket(it->first) << " bucket." << endl; } return 0; }
Output
Following is the output of the above code −
Element [Sarika : Banaras] is in 9 bucket. Element [Revathi : Wrangle] is in 10 bucket. Element [Akash : Daltonganj] is in 5 bucket. Element [Vivek : Kanpur] is in 4 bucket. Element [Aman : Ranchi] is in 8 bucket.
Example 3
Consider the following example, where we are going to displaying the number of buckets of the iteration pointing to the first element of the container from unordered_map.
#include <iostream> #include <unordered_map> using namespace std; int main(void) { unordered_map<string, string> um = { {"Aman", "Ranchi"}, {"Vivek", "Kanpur"}, {"Akash", "Daltonganj"}, {"Revathi", "Wrangle"}, {"Sarika", "Banaras"} }; // prints the bucket number of the beginning element auto it = um.begin(); // stores the bucket number of the key k int number = um.bucket(it->first); cout << "The bucket number of key " << it->first << " is " << number; return 0; }
Output
Let us compile and run the above program, this will produce the following result −
The bucket number of key Sarika is 9