Found 10783 Articles for Python

Evaluate a Legendre series at tuple of points x in Python

AmitDiwan
Updated on 10-Mar-2022 06:47:33

91 Views

To evaluate a Legendre series at points x, use the polynomial.legendre.legval() method in Python Numpy. The 1st parameter is x. If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and treated as a scalar. In either case, x or its elements must support addition and multiplication with themselves and with the elements of c.The 2nd parameter, C, an array of coefficients ordered so that the coefficients for terms of degree n are contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the ... Read More

Differentiate a Hermite_e series and multiply each differentiation by a scalar in Python

AmitDiwan
Updated on 10-Mar-2022 06:45:03

89 Views

To differentiate a Hermite_e series, use the hermite_e.hermeder() method in Python. The 1st parameter, c is an array of Hermite_e series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index.The 2nd parameter, m is the number of derivatives taken, must be non-negative. (Default: 1). The 3rd parameter, scl is a scalar. Each differentiation is multiplied by scl. The end result is multiplication by scl**m. This is for use in a linear change of variable. (Default: 1). The 4th parameter, axis is an Axis over which the ... Read More

Differentiate a Legendre series with multidimensional coefficients over axis 1 in Python

AmitDiwan
Updated on 10-Mar-2022 06:42:35

83 Views

To differentiate a Legendre series, use the polynomial.laguerre.legder() method in Python. Returns the Legendre series coefficients c differentiated m times along axis. At each iteration the result is multiplied by scl.The 1st parameter, c is an array of Legendre series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. The 2nd parameter, m is the number of derivatives taken, must be non-negative. (Default: 1). The 3rd parameter, scl is a scalar. Each differentiation is multiplied by scl. The end result is multiplication by scl**m. This is ... Read More

Differentiate a Legendre series with multidimensional coefficients over specific axis in Python

AmitDiwan
Updated on 10-Mar-2022 06:39:24

91 Views

To differentiate a Legendre series, use the polynomial.laguerre.legder() method in Python. Returns the Legendre series coefficients c differentiated m times along axis. At each iteration the result is multiplied by scl. The 1st parameter, c is an array of Legendre series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index.The 2nd parameter, m is the number of derivatives taken, must be non-negative. (Default: 1). The 3rd parameter, scl is a scalar. Each differentiation is multiplied by scl. The end result is multiplication by scl**m. This is ... Read More

Evaluate a 2-D Hermite_e series on the Cartesian product of x and y with 3d array of coefficient in Python

AmitDiwan
Updated on 10-Mar-2022 06:36:06

102 Views

To evaluate a 2-D Hermite_e series on the Cartesian product of x and y, use the hermite.hermegrid2d(x, y, c) method in Python. The method returns the values of the two dimensional polynomial at points in the Cartesian product of x and y.The parameters are x, y. The two dimensional series is evaluated at the points in the Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.The parameter, c is an ... Read More

Evaluate a 2-D Hermite_e series on the Cartesian product of x and y in Python

AmitDiwan
Updated on 10-Mar-2022 06:33:05

87 Views

To evaluate a 2-D Hermite_e series on the Cartesian product of x and y, use the hermite.hermegrid2d(x, y, c) method in Python. The method returns the values of the two dimensional polynomial at points in the Cartesian product of x and y.The parameters are x, y. The two dimensional series is evaluated at the points in the Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.The parameter, c is an ... Read More

Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y, z complex array of points in Python

AmitDiwan
Updated on 10-Mar-2022 06:04:26

95 Views

To generate a pseudo Vandermonde matrix of the Legendre polynomial with x, y, z sample points, use the legendre.legvander3d() method in Python Numpy. Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z).The parameters, x, y ,z are arrays of point coordinates, all of the same shape. The dtypes will be converted to either float64 or complex128 depending on whether any of the elements are complex. Scalars are converted to 1-D arrays. The parameter, deg is a list of maximum degrees of the form [x_deg, y_deg, z_deg].StepsAt first, import the required library −import numpy as np from ... Read More

Generate a Pseudo Vandermonde matrix of the Legendre polynomial and x, y, z floating array of points in Python

AmitDiwan
Updated on 10-Mar-2022 05:52:08

92 Views

To generate a pseudo Vandermonde matrix of the Legendre polynomial with x, y, z sample points, use the legendre.legvander3d() method in Python Numpy. Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z).The parameters, x, y ,z are arrays of point coordinates, all of the same shape. The dtypes will be converted to either float64 or complex128 depending on whether any of the elements are complex. Scalars are converted to 1-D arrays. The parameter, deg is a list of maximum degrees of the form [x_deg, y_deg, z_deg].StepsAt first, import the required library −import numpy as np from ... Read More

Evaluate a 3-D Hermite_e series at points (x,y,z) with 2D array of coefficient in Python

AmitDiwan
Updated on 10-Mar-2022 05:48:53

95 Views

To evaluate a 3D Hermite_e series at points (x, y, z), use the hermite.hermeval3d() method in Python Numpy. The method returns the values of the multidimensional polynomial on points formed with triples of corresponding values from x, y, and z.The 1st parameter is x, y, z. The three dimensional series is evaluated at the points (x, y, z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is ... Read More

Evaluate a 2-D Hermite_e series at points (x,y) with 1D array of coefficient in Python

AmitDiwan
Updated on 10-Mar-2022 05:46:52

115 Views

To evaluate a 2D Hermite_e series at points (x, y), use the hermite.hermeval2d() method in Python Numpy. The method returns the values of the two dimensional polynomial at points formed with pairs of corresponding values from x and y.The 1st parameter is x, y. The two dimensional series is evaluated at the points (x, y), where x and y must have the same shape. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.The 2nd parameter, C, ... Read More

Advertisements