Found 1204 Articles for Numpy

Multiply one polynomial to another in Python

AmitDiwan
Updated on 25-Feb-2022 08:25:14

2K+ Views

To multiply one polynomial to another, use the numpy.polynomial.polynomial.polymul() method in Python. Returns the multiplication of two polynomials c1 + c2. The arguments are sequences of coefficients from lowest order term to highest, i.e., [1, 2, 3] represents the polynomial 1 + 2*x + 3*x**2.The method returns the coefficient array representing their sum. The parameters c1 and c2 are the 1-D arrays of coefficients representing a polynomial, relative to the “standard” basis, and ordered from lowest order term to highest.This numpy.polynomial.polynomial module provides a number of objects useful for dealing with polynomials, including a Polynomial class that encapsulates the usual ... Read More

Subtract one polynomial to another in Python

AmitDiwan
Updated on 25-Feb-2022 08:22:44

254 Views

To subtract one polynomial to another, use the numpy.polynomial.polynomial.polysub() method in Python. Returns the difference of two polynomials c1 + c2. The arguments are sequences of coefficients from lowest order term to highest, i.e., [1, 2, 3] represents the polynomial 1 + 2*x + 3*x**2.The method returns the coefficient array representing their difference. The parameters c1 and c2 returns 1-D arrays of polynomial coefficients ordered from low to high.This numpy.polynomial.polynomial module provides a number of objects useful for dealing with polynomials, including a Polynomial class that encapsulates the usual arithmetic operations.StepsAt first, import the required libraries -from numpy.polynomial import polynomial ... Read More

Add one polynomial to another in Python

AmitDiwan
Updated on 25-Feb-2022 08:20:40

2K+ Views

To add one polynomial to another, use the numpy.polynomial.polynomial.polyadd() method in Python. Returns the sum of two polynomials c1 + c2. The arguments are sequences of coefficients from lowest order term to highest, i.e., [1, 2, 3] represents the polynomial 1 + 2*x + 3*x**2.The method returns the coefficient array representing their sum.The parameters c1 and c2 returns 1-D arrays of polynomial coefficients ordered from low to high.This numpy.polynomial.polynomial module provides a number of objects useful for dealing with polynomials, including a Polynomial class that encapsulates the usual arithmetic operations.StepsAt first, import the required libraries-from numpy.polynomial import polynomial as PDeclare ... Read More

Get the inverse of a 3D array in Python

AmitDiwan
Updated on 25-Feb-2022 08:17:39

586 Views

To compute the inverse of a 3D array, use the numpy.linalg.tensorinv() method in Python. The result is an inverse for a relative to the tensordot operation tensordot(a, b, ind), i. e., up to floating-point accuracy, tensordot(tensorinv(a), a, ind) is the “identity” tensor for the tensordot operation. The method returns a’s tensordot inverse, shape a.shape[ind:] + a.shape[:ind].The 1st parameter is a, the Tensor to ‘invert’. Its shape must be ‘square’, i. e., prod(a.shape[:ind]) == prod(a.shape[ind:]). The 2nd parameter is ind, the number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2.StepsAt first, ... Read More

Get the inverse of a Four-Dimensional array in Python

AmitDiwan
Updated on 25-Feb-2022 07:54:35

340 Views

To compute the inverse of a Four-Dimensional array, use the numpy.linalg.tensorinv() method in Python. The result is an inverse for a relative to the tensordot operation tensordot(a, b, ind), i. e., up to floating-point accuracy, tensordot(tensorinv(a), a, ind) is the “identity” tensor for the tensordot operation.The method returns a’s tensordot inverse, shape a.shape[ind:] + a.shape[:ind]. The 1st parameter is a, the Tensor to ‘invert’. Its shape must be ‘square’, i. e., prod(a.shape[:ind]) == prod(a.shape[ind:]). The 2nd parameter is ind, the number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2.StepsAt first, ... Read More

Compute the multiplicative inverse of a matrix object with matrix() in Python

AmitDiwan
Updated on 25-Feb-2022 07:41:07

262 Views

To compute the multiplicative inverse of a matrix object with matrix(), use the numpy.linalg.inv() method in Python. Given a square matrix a, return the matrix ainv satisfying dot(a, ainv) = dot(ainv, a) = eye(a.shape[0]).The method returns (Multiplicative) inverse of the matrix a. The 1st parameter, a is a Matrix to be inverted.StepsAt first, import the required libraries-import numpy as np from numpy.linalg import invCreate an array −arr = np.array([[ 5, 10], [ 15, 20 ]])Display the array −print("Our Array...", arr)Check the Dimensions −print("Dimensions of our Array...", arr.ndim) Get the Datatype −print("Datatype of our Array object...", arr.dtype)Get the Shape −print("Shape of ... Read More

Compute the inverse of an N-dimensional array in Python

AmitDiwan
Updated on 25-Feb-2022 07:33:58

162 Views

To compute the inverse of an N-dimensional array, use the numpy.linalg.tensorinv() method in Python. The result is an inverse for a relative to the tensordot operation tensordot(a, b, ind), i. e., up to floating-point accuracy, tensordot(tensorinv(a), a, ind) is the “identity” tensor for the tensordot operation.The method returns a’s tensordot inverse, shape a.shape[ind:] + a.shape[:ind]. The 1st parameter is a, the Tensor to ‘invert’. Its shape must be ‘square’, i. e., prod(a.shape[:ind]) == prod(a.shape[ind:]). The 2nd parameter is ind, the number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2.StepsAt first, ... Read More

Compute the Moore-Penrose pseudoinverse of a stack of matrices in Python

AmitDiwan
Updated on 25-Feb-2022 07:19:18

266 Views

To Compute the (Moore-Penrose) pseudo-inverse of a stack of matrices, use the numpy.linalg.pinv() method in Python. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values.The 1st parameter, a is a Matrix or stack of matrices to be pseudo-inverted. The 2nd parameter, rcodn is cutoff for small singular values. Singular values less than or equal to rcond * largest_singular_value is set to zero. Broadcasts against the stack of matrices. The 3rd parameter, hermitian, if True, a is assumed to be Hermitian, enabling a more efficient method for finding singular values. Defaults to ... Read More

Return the element-wise square of the array input in Python

AmitDiwan
Updated on 25-Feb-2022 07:16:38

4K+ Views

To return the element-wise square of the array input, use the numpy.square() method in Python. The method returns the element-wise x*x, of the same shape and dtype as x. This is a scalar if x is a scalar.The 1st parameter, x is the input data. The 2nd parameter, out is a location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.The 3rd parameter, where, ... Read More

Compute the multiplicative inverse of more than one matrix at once in Python

AmitDiwan
Updated on 25-Feb-2022 07:10:47

103 Views

To compute the (multiplicative) inverse of a matrix, use the numpy.linalg.inv() method in Python. Given a square matrix a, return the matrix ainv satisfying dot(a, ainv) = dot(ainv, a) = eye(a.shape[0]). The method returns (Multiplicative) inverse of the matrix a. The 1st parameter, a is a Matrix to be inverted.StepsAt first, import the required libraries-import numpy as np from numpy.linalg import invCreate several matrices using array() −arr = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])Display the array −print("Our Array...", arr)Check the Dimensions −print("Dimensions of our Array...", arr.ndim) Get the Datatype −print("Datatype of our Array object...", arr.dtype)Get the Shape −print("Shape ... Read More

Advertisements