
- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Convert Infix to Postfix Expression
Infix expressions are readable and solvable by humans. We can easily distinguish the order of operators, and also can use the parenthesis to solve that part first during solving mathematical expressions. The computer cannot differentiate the operators and parenthesis easily, thatâs why postfix conversion is needed.
To convert infix expression to postfix expression, we will use the stack data structure. By scanning the infix expression from left to right, when we will get any operand, simply add them to the postfix form, and for the operator and parenthesis, add them in the stack maintaining the precedence of them.
Note: Here we will consider only {+, â, â, /, ^} operators, other operators are neglected.
Input and Output
Input: The infix expression. x^y/(5*z)+2 Output: Postfix Form Is: xy^5z*/2+
Algorithm
infixToPostfix(infix)
Input â Infix expression.
Output â Convert infix expression to postfix form.
Begin initially push some special character say # into the stack for each character ch from infix expression, do if ch is alphanumeric character, then add ch to postfix expression else if ch = opening parenthesis (, then push ( into stack else if ch = ^, then //exponential operator of higher precedence push ^ into the stack else if ch = closing parenthesis ), then while stack is not empty and stack top â (, do pop and add item from stack to postfix expression done pop ( also from the stack else while stack is not empty AND precedence of ch <= precedence of stack top element, do pop and add into postfix expression done push the newly coming character. done while the stack contains some remaining characters, do pop and add to the postfix expression done return postfix End
Example
#include<iostream> #include<stack> #include<locale> //for function isalnum() using namespace std; int preced(char ch) { if(ch == '+' || ch == '-') { return 1; //Precedence of + or - is 1 }else if(ch == '*' || ch == '/') { return 2; //Precedence of * or / is 2 }else if(ch == '^') { return 3; //Precedence of ^ is 3 }else { return 0; } } string inToPost(string infix ) { stack<char> stk; stk.push('#'); //add some extra character to avoid underflow string postfix = ""; //initially the postfix string is empty string::iterator it; for(it = infix.begin(); it!=infix.end(); it++) { if(isalnum(char(*it))) postfix += *it; //add to postfix when character is letter or number else if(*it == '(') stk.push('('); else if(*it == '^') stk.push('^'); else if(*it == ')') { while(stk.top() != '#' && stk.top() != '(') { postfix += stk.top(); //store and pop until ( has found stk.pop(); } stk.pop(); //remove the '(' from stack }else { if(preced(*it) > preced(stk.top())) stk.push(*it); //push if precedence is high else { while(stk.top() != '#' && preced(*it) <= preced(stk.top())) { postfix += stk.top(); //store and pop until higher precedence is found stk.pop(); } stk.push(*it); } } } while(stk.top() != '#') { postfix += stk.top(); //store and pop until stack is not empty. stk.pop(); } return postfix; } int main() { string infix = "x^y/(5*z)+2"; cout << "Postfix Form Is: " << inToPost(infix) << endl; }
Output
Postfix Form Is: xy^5z*/2+