
- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
1's complement notation
This is one of the methods of representing signed integers in the computer. In this method, the most significant digit (MSD) takes on extra meaning.
- If the MSD is a 0, we can evaluate the number just as we would interpret any normal unsigned integer.
- If the MSD is a 1, this indicates that the number is negative.
The other bits indicate the magnitude (absolute value) of the number.
If the number is negative, then the other bits signify the 1's complement of the magnitude of the number.
Some signed decimal numbers and their equivalent in 1's complement notations are shown below, assuming a word size of 4 bits.
Signed decimal | 1’s complement |
---|---|
+6 | 0110 |
-6 | 1001 |
+0 | 0000 |
-0 | 1111 |
+7 | 0111 |
-7 | 1000 |
Range
From the above table, it is obvious that if the word size is n bits, the range of numbers that can be represented is from -(2n-1- 1) to+(2n-1 -1). A table of word size and the range of 1's complement numbers that can be represented is shown.
Word size | Range for 1's complement numbers |
---|---|
4 | -7 to +7 |
8 | -127 to +127 |
16 | -32767 to +32767 |
32 | -2147483647 to +2147483647 |
Example 1
Add the numbers (+5) and (-3) using a computer. The numbers are assumed to be represented using 4-bit 1's complement notation.
1110 <- carry generated during addition
0101 <- (+5) First Number
+ 1100 <-(-3) Second Number
0001 <- (+1) Sum
The computer instead of giving the correct answer of +2 = 0010, has given the wrong answer of +1 = 0001! However, to get the correct answer the computer will have to simply add to the result the final carry that is generated, as shown in the following.
0001
+ 1
0010 = (+2) Result
Example 2
Add the numbers (-4) and (+2) using a computer. The numbers are assumed to be represented using 4-bit 1's complement notation.
0010 <- carry generated during addition
1011 <- (-4) First Number
+ 0010 <-(+2) Second Number
1101 <- (-2) Sum
After the addition of the final array, the result remains as 1101. This is -2, which is the correct answer. In 1 101 the MSB is a 1. It means the number is negative. Then, the remaining bits do not provide the magnitude directly. To solve this problem, just consider 1's complement of 1 101. 1'scomplement of 1 101 is 0 010, which is +2. Thus, 1 101, which is 1'scomplement of 0 010 is −2.
Disadvantages
1's complement notation is not very simple to understand because it is very much different from the conventional way of representing signed numbers.
The other disadvantage is that there are two notations for 0 (0000 and 1111), which is very inconvenient when the computer wants to test for a 0 result.
Advantage
It is quite convenient for the computer to perform arithmetic. To get the correct answer after addition, the result of addition and final carry has to be added up.
Hence, 1's complement notation is also generally not used to represent signed numbers inside a computer, so the concept of 2’s complement has come.