numpy.inner()
This function returns the inner product of vectors for 1-D arrays. For higher dimensions, it returns the sum product over the last axes.
Example
import numpy as np print np.inner(np.array([1,2,3]),np.array([0,1,0])) # Equates to 1*0+2*1+3*0
It will produce the following output −
2
Example
# Multi-dimensional array example import numpy as np a = np.array([[1,2], [3,4]]) print 'Array a:' print a b = np.array([[11, 12], [13, 14]]) print 'Array b:' print b print 'Inner product:' print np.inner(a,b)
It will produce the following output −
Array a: [[1 2] [3 4]] Array b: [[11 12] [13 14]] Inner product: [[35 41] [81 95]]
In the above case, the inner product is calculated as −
1*11+2*12, 1*13+2*14 3*11+4*12, 3*13+4*14
numpy_linear_algebra.htm
Advertisements