JAVA DOCUMENTATION COMMENTS

The Java language supports three types of comments:

Comment Description

[* text */ The compiler ignores everything from /* to */.

/] text The compiler ignores everything from // to the end of the line.

[** This is a documentation comment and in general its called doc comment.

documentation The JDK javadoc tool uses doc comments when preparing automatically
*/ generated documentation.

This tutorial is all about explaining Javadoc. We will see how we can make use of Javadoc for
generating useful documentation for our Java code.

What is Javadoc?

Javadoc is a tool which comes with DK and it is used for generating Java code documentation in
HTML format from Java source code which has required documentation in a predefined format.

Following is a simple example where red part of the code represents Java comments:

/**

* The HelloWorld program implements an application that
* simply displays "Hello World!" to the standard output.
*

* @author Zara Ali

* @version 1.0

* @since 2014-03-31

*/

public class Helloworld {
public static void main(String[] args) {
/* Prints Hello, World! on standard output.
System.out.println("Hello World!");

}

You can include required HTML tags inside the description part, For example, below example
makes use of <hl>....</h1l> for heading and <p> has been used for creating paragraph break:

*
*

<hi>Hello, World!</h1>

The HelloWorld program implements an application that
simply displays "Hello World!" to the standard output.
<p>

Giving proper comments in your program makes it more
user friendly and it is assumed as a high quality code.

@author Zara Ali
@version 1.0
@since 2014-03-31

E R T T R R N T N

~N

public class Helloworld {
public static void main(String[] args) {
/* Prints Hello, World! on standard output.
System.out.println("Hello World!");

http://www.tutorialspoint.com/java/java_documentation.htm

The javadoc Tags:

The javadoc tool recognizes the following tags:

Tag
@author
{@code}

{@docRoot}

@deprecated

@exception

{@inheritDoc}

{@link}

{@linkplain}

@param

@return

@see

@serial

@serialData

@serialField

@since

@throws

{@value}

@version

Description
Adds the author of a class.

Displays text in code font without interpreting the
text as HTML markup or nested javadoc tags.

Represents the relative path to the generated
document's root directory from any generated page

Adds a comment indicating that this APl should no
longer be used.

Adds a Throws subheading to the generated
documentation, with the class-name and description
text.

Inherits a comment from the nearest inheritable
class or implementable interface

Inserts an in-line link with visible text label that
points to the documentation for the specified
package, class or member name of a referenced
class. T

Identical to {@link}, except the link's label is
displayed in plain text than code font.

Adds a parameter with the specified parameter-
name followed by the specified description to the
"Parameters" section.

Adds a "Returns" section with the description text.

Adds a "See Also" heading with a link or text entry
that points to reference.

Used in the doc comment for a default serializable
field.

Documents the data written by the writeObject or
writeExternal methods

Documents an ObjectStreamField component.

Adds a "Since" heading with the specified since-text
to the generated documentation.

The @throws and @exception tags are synonyms.
When {@value} is used in the doc comment of a
static field, it displays the value of that constant:
Adds a "Version" subheading with the specified

version-text to the generated docs when the -
version option is used.

Syntax
@author name-text

{@code text}

{@docRoot}

@deprecated
deprecated-text

@exception class-name
description

Inherits a comment
from the immediate
surperclass.

{@link
package.class#member
label}

{@linkplain
package.class#member
label}

@param parameter-
name description

@return description

@see reference

@serial field-description
| include | exclude

@serialData data-
description

@serialField field-name
field-type field-
description

@since release

@throws class-name
description

{@value
package.class#field}

@version version-text

Example:

Following program uses few of the important tags available for documentation comments. You can
make use of other tags based on your requirements.

The documentation about the AddNum class will be produced in HTML file AddNum.html but same
time a master file with a name index.html will also be created.

import java.io.*;

*
*

<h1>Add Two Numbers!</hi1>

The AddNum program implements an application that

simply adds two given integer numbers and Prints

the output on the screen.

<p>

Note: Giving proper comments in your program makes it more
user friendly and it is assumed as a high quality code.

@author Zara Ali
@version 1.0
@since 2014-03-31

E R R R R N T N

~N

public class AddNum {
/**
* This method is used to add two integers. This is
a the simplest form of a class method, just to
show the usage of various javadoc Tags.
@param numA This is the first paramter to addNum method
@param numB This is the second parameter to addNum method
@return int This returns sum of numA and numB.
/
public int addNum(int numA, int numB) {
return numA + numB;
}

/**

* This is the main method which makes use of addNum method.
* @param args Unused.

* @return Nothing.

* @exception IOException On input error.

*

*

b I I

@see IOException
/
public static void main(String args[]) throws IOException

{

AddNum obj = new AddNum();
int sum = obj.addNum (10, 20);

System.out.println("Sum of 10 and 20 is :" + sum);

Now, process above AddNum.java file using javadoc utility as follows:

$ javadoc AddNum.java

Loading source file AddNum.java...

Constructing Javadoc information...

Standard Doclet version 1.7.0_ 51

Building tree for all the packages and classes..
Generating /AddNum.html...

AddNum .java:36: warning - @return tag cannot be used in method with void return type.
Generating /package-frame.html...

Generating /package-summary.html...

Generating /package-tree.html...

Generating /constant-values.html...

Building index for all the packages and classes...
Generating /overview-tree.html...
Generating /index-all.html...
Generating /deprecated-list.html...
Building index for all classes..
Generating /allclasses-frame.html...
Generating /allclasses-noframe.html...
Generating /index.html...

Generating /help-doc.html...

1 warning

$

You can check all the generated documentation here: AddNum. If you are using JDK 1.7 then
javadoc does not generate a great stylesheet.css, so | suggest to download and use standard

Ci’\llﬂ'(‘l’\ﬂﬂf‘ 'Frnnr.\ httn-//ldAarc nr:r!a rnrn/lavase/7/d0c5/a Dl/stvlesheetlcss
Loading [MathJax]/jax/output/HTML-CSS/jax.js

http://www.tutorialspoint.com/java/index.html
http://docs.oracle.com/javase/7/docs/api/stylesheet.css

