Postman

tutorialspoint

SI MPLY EASY LEARNINLG

www.tutoriaispoint.com

n https://www.facebook.com/tutorialspointindia a https://twitter.com/tutorialspoint

Postman

About the Tutorial

Postman is an Application Programming Interface (API) testing tool. This tutorial shall
provide you with a detailed understanding on Postman and its salient features. The
tutorial contains a good amount of examples on all important topics in Postman.

Audience

This tutorial is designed for professionals working in software testing who want to
improve their knowledge on API testing.

Prerequisites

Before going through this tutorial, you should have some insight on how an API works.
Also, an understanding on API testing is needed to start with this tutorial.

Copyright & Disclaimer

© Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point
(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or
republish any contents or a part of contents of this e-book in any manner without written
consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely
as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)
Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of
our website or its contents including this tutorial. If you discover any errors on our
website or in this tutorial, please notify us at contact@tutorialspoint.com

|\ tutorials

EIMPLYEAGSYLEARMNINIG

mailto:contact@tutorialspoint.com

Postman

Table of Contents

ADOUL the TULOTTAl c..eeiieieeieee ettt sb e bt e et et e b e b e e b e e reeresmnesanes i
YT e 1= o TP PP ST PR PSPPI i
e =T =T o UL =TT PP TP PO PPPPPTRTRN i
(00T 03V T4 o A D T =1 ' =Y USRI i
TaBIE OF CONTENTS ittt e e st e st e st e et e e sab e e e bt e sabeesaneesabeesaneenn i
POStMaN — INtrOAUCEIONuueeriiiiiiiiiiieiiiinccerre s ss s s sass s e e s s s s s s aans e e s s s e e 1
NEEA OF POSTMAN ..ttt sttt ettt et s ae e s b e b e e b e e aressnesanesbeesreenbeeneennene 1
WOTKING WILh POSTIMAN ...iiiiiiiie ettt ettt e et e e et ae e e s tb e e e e sataeeeeasaaeesssaeeestaeesensaaeesssesaeasseeenanses 2
Postman — ENVIrONMENT SETUP ...ceeeeriiiiiiiiiiiiceiiieereeisesnrseesnnsssssssseennsssssssssssennssssssssssssnnnsssssssssssnnnnssnsns 7
Y =101 Yo Yo L=l o] o] Lo 14 o o NP USRS 7
CHIOME EXEENSION ..ttt ettt ettt ettt st s bt s bt e s bt e bt et e s aeesbe e s b e e bt eabesabesaeesbeesbeebeenbeentens 11
Postman — Environment Variables..........ooueiiiiiiiiiiieiiiiiiiiiniiiiieiensnesnesesesseennsseen 16
Create ENVIFONMENT ..oiiiiiiiiiiitteee ettt e ettt e e e e e sttt e e e s e s s bbbt e e e e e e s aababaeeeesesasbabaeaeeessassnsaaaeesssansnnees 16
ENVIronmMeNnt Variables SCOPE....cc.ueiiiiiiiieiieee ettt sttt ettt e s b e e b e st e e b e e saeeenees 18
Postman — AUthOrIZatioN........cuuiiiiiiiiiiiiiiiiir s ss e s san e e 20
TYPES OF AUTNOTIZATION .ottt e e e e e et e e e e aae e e etb e e e e ttaeeeensaaeesasbaaeeasbseaeansraeesnsanas 22
Authorization @t COIECLIONScc.viiiiiiiiie e s e sbeeenees 27
POStMAN — WOTKFIOWSuuveiiiiiiiiiieiiiten ittt s sas s s an e s s aan e 30
POStMAN — GET REOUESTSiiveuiiiiieeiiiiiteiiiiineiiiieneiiiienisiiesesiiessssiessstiensssmessssmssssssmenssssssnssssssnssssssnssssss 35
Create @ GET REQUEST ..o 35
POStMAN — POST REQUESES ...ceuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiniisiisiisiisneissisnssiissesnmsssssissssssrsnssssssnssssssnssssssnssssss 41
Create @ POST REQUEST ...cceiiiiiiiceeececeee et e e e e et e e et e e et e e e e et et e e e e et e e e e e e eeeeeeaeanens 41
POSTMAN — PUT REOUESESiiiiuiiiiiieiiiiiiiiiiiiieiiiieneiiiinmeisiismsisiismsssisssssrssssssrssssssrsssssssssssssssssssssssssssssnssssss 47
Create @ PUT REOUEST ..ot e e e e e et et e e e e e e e e e e et e e eeeeaeeeeeasanens 48
POoStmMan — DELETE REQUESESciivueiiiiiniiiiiniiiieniiiieneiiiiensisiiessiosiensosiensssiessssisnsssstensssssssssssssnsssssansssnss 51
Create @ DELETE REQUEST....cci i e e e e e e e e e e e e aaaes 51
[]

EIMPLYEAGSYLEARMNINIG

|\ tutorials

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

Postman

Postman — Create Tests fOr CRUDccccccvveiiiiuneiiineneiiiitteiiseessiseesssssessessssessssssesssssssesessasessessasesss 54
TeSES 1N POSTMAN .eiiiiiiiiiiiiiiiiii e e e 54
Postman — Create CollECtiONScivvveeiiiiieeiiiitiicieee it as e s ase e s sanne s 57
Create @ NEW COIIECHION ..ottt sttt e st e et e st e e s it e e sabeesane e sabeesaneens 57
Postman — Parameterize REQUESTEScciivieeeiiiiiiiiiniiiiiiiniiinriiiiissiinnsssssssssssnnssssssssssssssssssssssssssssssssnss 60
Create @ Parameter REQUESTooeiii it rae e s sra e s s s 60
Postman — Collection RUNNETcccovueeieiiiiiiiiiiitetiiinssnsree s sssssssee s ssssse s s s ssssss e s s s sssssssnnnnnnns 63
Execute Tests With Collection RUNNETc..eoiiiiiiiieeee et e e 63
POSEMAN — ASSEITION....cciiiiinettiiiiiiiiiitttetetiiiiiieeree et teesssssree e e s seessssssseeesseessssssseeessesssssssssneessessssssssnnnns 66
WITING ASSEITIONS .eiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee et e et e e et et et et et e ee e et et et e e e e et etetetetetetetetereteeeeeteretererererererereeerenens 66
Assertion for ObJeCt VerifiCationocuiii it e e e rrr e s aa e e e st e e e e ateeeseasaeeesabraaeans 68
FAN =T o] T Y/ o =TSP PPPPPPRY 69
POStMAN — IMIOCK SEIVETuuuiiiiiiiriiiiiniiiiiieeiiiteiiisetesissteiessneeiesssnessssssnesessasessesssnessssssnesesssnsssessaneses 71
BENETItS OF IMIOCK SEIVET ...uiiiiiiee ettt ettt e e e sttt e e st e e e s aae e e e s beeessssteeesasaeeeenstaeesnnseeessnsseeenns 71
Y o Tol QY= VT o O =T Y o o [P 71
EXQMPIE REQUEST ..ttt ettt e s e e et e s bt e e bt e e shb e e at e e sabe e bt e e sabeesaeeesnbeebeeesabeenanes 77
POStMAN — COOKIES .ccovviiinneeertiiiiiiiietteet et as s as s s e e s s s s sans s e e e s se s ssnnnnenes 83
(0o o] =T 1Y T =TT 0 0 1= o P PURPNS 83
ACCESS COOKIES VIa PrOSIaMueeiiiiiieee ittt ettt e e e e sttt e e e e e e st r e e e e e e seaaataeeeeeesenasstaeseeessennstaneeesssanans 85
POSEMAN — SESSIONS .coviiiiinieerieiiiiiiiietreer et as e as s e s s s s sas s s e e s s s s s s sanss e e e s sesssssnnnnenes 87
PoStman — NEeWMan OVEIVIEWcccccceeereeiiiiiiiiiinnreeiiiiiiiiinseeeeiiisisssssseesssissssssssseesssssssssssseessssssssssssssees 89
NeWmMaN INSTAlIAtIONcocuiiiii e et s e e 89
Postman — Run Collections USiNg NEWMaNccceeriiiiiiniisisissses 91
I @e] | L=ty T o LTS U PP PP 91
Common command-line arguments for NEWMaNcocciiiiieiir e ere e e e e e snae e e e e e e sennes 93
Postman — OAuth 2.0 AUthOFIZationcceiiiiiieeieiiiiictree e 95
[]

EIMPLYEAGSYLEARMNINIG

|\ tutorials

1. Postman — Introduction

Postman is an Application Programming Interface (API) testing tool. API acts like an
interface between a couple of applications and establishes a connection between them.

Thus, an API is a collection of agreements, functions, and tools that an application can
provide to its users for successful communication with another application. We require
an API whenever we access an application like checking news over the phone, Facebook,
and so on.

Postman was designed in the year 2012 by software developer and entrepreneur
Abhinav Asthana to make API development and testing straightforward. It is a tool for
testing the software of an APIL. It can be used to design, document, verify, create, and
change APIs.

Postman has the feature of sending and observing the Hypertext Transfer Protocol
(HTTP) requests and responses. It has a graphical user interface (GUI) and can be used
in platforms like Linux, Windows and Mac. It can build multiple HTTP requests - POST,
PUT, GET, PATCH and translate them to code.

Need of Postman

Postman has a huge user base and has become a very popular tool because of the
reasons listed below:

e Postman comes without any licensing cost and is suitable for use for the teams
with any capacity.

e Postman can be used very easily by just downloading it.

e Postman can be accessed very easily by logging into your own account after
installation on the device.

e Postman allows easy maintenance of test suites with the help of collections. Users
can make a collection of API calls which can have varied requests and sub-
folders.

e Postman is capable of building multiple API calls like SOAP, REST, and HTTP.

e Postman can be used for test development by addition of checkpoints to HTTP
response codes and other parameters.

e Postman can be integrated with the continuous integration and either continuous
delivery or continuous deployment (CI/CD) pipeline.

e Postman can be integrated with Newman or Collection Runner which allows
executing tests in much iteration. Thus we can avoid repeated tests.

e Postman has big community support.

e The Postman console allows debugging test steps.

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

e With Postman, we can create more than one environment. Thus, a single
collection can be used with various configurations.
e Postman gives the option to import/export Environments and Collections,

enabling easy sharing of files.

Working with Postman

To start working with Postman, we have the navigations as shown below. It primarily
consists of four sections:

e Header
e Response
e Sidebar

e Builder

Given below is the screenshot of the navigations available in Postman:

Postman - o x

File Edit View Help

+ New Import Runner od

My Workspace ~ 2 Invite & @ n Q Upgrade v

Q, Environment X No Environment v © =
Launchpad GET CC GET Test1 L] ipRc=s
History Collections APIs » Testl Examples 0 v .
Save Responses Clear all
GET v Send ¥ Save ¥
No results found for "Environment
Params Auth Headers (6) Body Pre-req. Tests Settings Cookies Code

Query Params

KEY VALUE DESCRIPTION LLd] Bulk Edit

Header

Postman consists of New, Import, Runner (used to execute tests with Collection Runner),
Open New, Interceptor, Sync menus, and so on. It shows the workspace name - My
Workspace along with the option for Invite for sharing it among teams.

[=]=]

—+ New Import Runner & 8o My Waorkspace ~ 2 Invite & & 0 Q Upgrade ¥

New menu is used to create a new Environment, Collection or request. The Import menu
helps to import an Environment/Collection.

]

) tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

Create New Templates APl Network X

BUILDING BLOCKS

Request Collection Environment
GET Create a basic request B Save your requests in a | D-I Save values you frequently use
collection for reuse and in an environment
sharing
ADVANCED
AP| Documentation Mock Server Monitor
E Create and publish beautiful @ Create a mock server for your E\EI Schedule automated tests and
documentation for your APIs in-development APIs check performance of your
APIs
API

Q0 Manage all aspects of API
design, development, and
testing

We can import from a File, Folder, Link, Raw text or from Code repository options which
are also available under Import.

Import

File Folder Link Raw text Code repository New

Drag and drop Postman data or any of the formats below
OpenAPI RAML GraphQL CURL WADL

OR

Upload Files

Here, Open New is used to open a new tab, Postman or a Runner Window.

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

+ New

Import

Runner

B

Postman

86 My Work:

O Environment

History

Save Responses

Response

Collections

APl

Clear

Tab

Postman Window

Runner Window

GET

Response section shall have values populated only when a request is made. It generally

contains the Response details.

Launchpad GET CC
» Testl
GET hd
Params Auth Headers (6) Body

Query Params

KEY

Sidebar

GET Test1

Pre-req. Tests

VALUE

Settings

Mo Environment v

Examples 0

DESCRIPTION ee

Sidebar consists of Collections (used to maintain tests, containing folders, sub-folders,
requests), History (records all API requests made in the past), and APIs.

@ Ntutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

O\ Environment X
LaL
History Collections APIs I » Te

Save Responses Clear all
GET

Mo results found for "Environment”

Param
Quer

Builder

Builder is the most important section of the Postman application. It has the request tab
and displays the current request name. By default, Untitled Request is mentioned if no
title is provided to a request.

No Environment v @ =z
GET Test1 o] 1 oo
» Testl Examples 0 ¥ V4
GET v Send -~ Save v
Params Auth Headers (6) Body Prereq. Tests Settings Cookies Code
Query Params
KEY VALUE DESCRIPTION see Bulk Edit

The Builder section also contains the request type (GET, POST, PUT, and so on) and URL.
A request is executed with the Send button. If there are any modifications done to a
request, we can save it with the Save button.

GET v https:ffjsonplaceholder.typicode.comfusers| Save [~

The Builder section has the tabs like Param, Authorization, Headers, Body, Pre-req.,
Tests and Settings. The parameters of a request in a key-value pair are mentioned
within the Params tab. The Authorization for an API with username, password, tokens,
and so on are within the Authorization tab.

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

The request headers, body are defined within the Headers and Body tab respectively.
Sometimes, there are pre-condition scripts to be executed prior to a request. These are
mentioned within the Pre-req. tab.

The Tests tab contains scripts that are run when a request is triggered. This helps to

validate if the API is working properly and the obtained data and Response code is
correct.

GET ¥ https://jsonplaceholder.typicode.com/users Send

IParamS Auth Headers (7) Body Pre-req. Tests Settingsl

Query Params

KEY VALUE DESCRIPTION

tutorialspoint

EIMPLYEAGSYLEARMNINIG

2

2. Postman — Environment Setup

Postman can be installed in operating systems like Mac, Windows and Linux. It is
basically an independent application which can be installed in the following ways:

e Postman can be installed from the Chrome Extension (will be available only in
Chrome browser).

e It can be installed as a standalone application.

Standalone Application

To download Postman as a standalone application in Windows, navigate to the following
link https://www.postman.com/downloads/

Then, click on Download the App button. As per the configuration of the operating
system, select either the Windows 32-bit or Windows 64-bit option.

c @ © & nhttpsy//www.postman.com/downloads/ oo |

Download Postman

Download the app to quickly get started using the Postman API Platform. Or, if you prefer a bro
version of Postman.

The Postman app

The ever-improving Postman app (a new release every two
weeks) gives you a full-featured Postman experience.

4

=8 Windows 32-bit

=8 Windows 64-bit

The pop-up to save the executable file gets opened. Click on Save File.

tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://www.postman.com/downloads/

Opening Postman-win64-8.1.0-5etup.exe

You have chasen to open:

Postman-win64-8.1.0-Setup.exe

which is: exe File (115 MB)
from: https://dl.pstmn.io

Would you like to save this file?

Save File

As the download is completed successfully, the executable file gets generated.

Name Date modified

4 Postman-win64-8.1.0-Setup.exe 4/6/2021 2:19 PM

Double-click on it for installation.

Cancel

Application

Postman

Size

118,136 KB

After installation, the Postman landing screen opens. Also, we have to sign up here.

There are two options to create a Postman account, which are as follows:

e Click on the Create free account.

e Use the Google Account.

@ tutorialspoint

Postman

/ POSTMAN Create Postman Account Signininstead?
Email

Why Sign Up?
Username
Password

Sign up to get product updates, news, and other

marketing communications.

Keep me signed in

By creating an account, | agree to the Terms and Privacy
Policy.

Create free account

‘ G Sign up with Google

Proceed with the steps of account creation and enter relevant details like name, role, and
So on.

tutorialspoint

EIMPLYEAEYLEARHNINIG

&

Postman

Welcome to Postman!

Tell us a bit about yourself so we can help you get the most out of Postman.

What's your name?

Change profile photo
Debo

Which of these roles is closest to yours?

Quality Engineer -

How do you plan to use Postman?

AP| documentation Automated testing
Debugging and manual testing Designing and mocking APIs
Monitoring Publishing APIs

Finally, we shall land to the Start screen of Postman. The following screen will appear on
your computer:

w \tutorialspoint

EIMPLYEAGSYLEARMNINIG

10

Postman

File Edit View Help

A Invite

-\ No Environment - @ =

Launchpad SET cc GET Test] X
i Collections APIs
History Collections APIs b Testl Examples @ +
= . m save |~
You haven't sent any requests Params Authorization Headers (6) Body Pre-request Script Tests Settings s
equest you send in this workspace v Query Params

KEY VALUE DESCRIPTION

Chrome Extension

To download Postman as a Chrome browser extension, launch the below link in Chrome:

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomo
p2.
Then, click on Add to Chrome.

chrome.google.com/webstore /detail/postman;/fhbjgbiflinjbdggehcddcbnedddomop?

£ chrome web store

Home » Apps > Postman

4 Postman l

Re Offered by: postman.com
% % % %k 8966 | Extensions | & 3,000,000+ users
]

@ Runs offline

A pop-up gets displayed, click on the Add app button.

11

@' tutorialspoint

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop

Postman

X
@ Add "Postman"?

It can:

Exchange data with any device on the local network or
internet

Display notifications

Chrome Apps page gets launched, along with the Postman icon. Next, we have to click
on the Postman icon.

& ® Chrome | chrome://apps

~

Web Store

YouTube Postman

Installation of Postman kicks off.

12

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

Distorting space-time continuum...

I — T ™,
7 g -.-.\-." ’

Once the installation is completed, the Postman registration page is opened. We can
either proceed with the registration as explained previously (while installing Postman as
a standalone application) or skip it by clicking on the link Take me straight to the app.

We can create an account later.

13

&

tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

Sign Up with G

Sign Up (it's free)

By signing up you agree to the EULA

Already have an account? Sign In

I Take me straight to the app. I'll create an account another time.

Registration is an important step as it enables access to user data from other machines.

Next, the Postman welcome page opens up.

m tutorialspoint

Share and manage

\/ your Postman

Collections

our Postman

Postman data

14

Postman

Create New

BUILDING BLOCKS

Request

wm Collection
Create a basic request - Save your requests in a collection for reusing and sharing

GET

Environment
| --I Create an environment to save variables you frequently use

ADVANCED

|E Documentation Mock Server
Create and publish beautiful documentation for your APls m Create a mock server for your in-d

Monitor
M Schedule automated tests for checking performance of your APls

Once we close the pop-up and move to the following page, we get the message -
Chrome apps are being deprecated.

Postman

NEW Dj Runner Import D_ Builder

o Chrome apps are being deprecated. Download our Free native apps for continued support and better performance. Learn more

Ne Envirenment

New Tab
History

Autherization I

Type No Auth

It is always recommended to install Postman as a standalone application rather than a
Chrome extension.

15

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

3. Postman — Environment Variables

Variables give the option to hold and repeat parameters in the requests, collections,
scripts and so on. If we need to modify a value, we need to do it in only one place. Thus,
the variables help to minimise the chance of errors and increase efficiency.

In Postman, an environment consists of a key-value pair. It helps to identify each
request separately. As we create environments, we can modify key-value pairs and that
will produce varied responses from the same request.

The key in the key-value pair in the environment is known as the Environment variable.
There can be multiple environments and each of them can also have multiple variables.
However, we can work with a single environment at one time.

In short, an environment allows the execution of requests and collections in a varied
data set. We can create environments for production, testing and development. Each of
these environments will have different parameters like URL, password, and so on.

Create Environment

Follow the steps given below to create an environment in Postman:

Step 1: Navigate to the New menu and then click on Environment.

Create New Templates API Network
BUILDING BLOCKS
Request Collection Environment
Create a basic request B Save your requests in a collection for reuse | E'.I Save values you frequently use in an
and sharing environment
ADVANCED
APl Documentation Mock Server Monitor
B Create and publish beautiful @ Create a mock server for your in- E\El Schedule automated tests and check

documentatien for your APls development APls performance of your APls

Step 2: MANAGE ENVIRONMENTS pop-up gets opened. We have to enter the
Environment name. Then, add a variable name and value.

Here, we have added the variable u and the value as
https://jsonplaceholder.typicode.com/users. Close the pop-up.

16

@ tutorialspoint

EIMPLYEASYLEARNING

https://jsonplaceholder.typicode.com/users

Postman

MAMNAGE ENVIRONMENTS

Add Environment

ENV1

VARIABLE INITIAL VALUE @ CURRENT VALUE @ ase | Persist A Reset All

u https:/fjsonplaceholde... https://jsonplacehalder.typicode.comiusers

Step 3: The new Environment (ENV1) gets reflected as one of the items in the No
Environment dropdown.

B My Workspace ~ & Invite

Launchpad GET CC GET Test1] oo0
Mo Environment
b Testl
ENV1
GET v {{u}} Environment_Test

Step 4: Select the ENV1 environment and enter {{u}} in the address bar. To utilise
an Environment variable in a request, we have to enclose it with double curly braces
({{<Environment variable name>}}).

Step 5: Then, click on Send. This variable can be used instead of the actual URL. We
have received the Response code 200 OK (meaning the request is successful).

17

]

) tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

+ New Import Runner B 88 My Workspace ~ 2 Invite

C, Environment X - ENV1 v ©® =5
Launchpad SET cC GET Test] [see
History Collections APIs b Testl Examples 0
Save Responses Clear all
GET b Send ' Save ¥
No results found for "Environment I
Params Authorization Headers (7) Body Pre-request Script Tests Settings C Code

Query Params

KEY VALUE DESCRIPTION e ulk Edit
Body Cookies (1) Headers (26) TestResults & st 200 0K Time: 162 ms 6.6 KB Save Response -
Pretty Raw Preview Visualize JSON = mQ
10 —
2 {
4 "Leanne Graham",
5 ": "Bret”,
6 "email": "Sincere@april.biz",
7 "address”: {
8 "street": "Kulas Light",
9 "suite": "Apt. 556",
10 "city": "Gwenborough",
11 "zipcode": "92998-3874",
12 "geo": {
13 "lat": "-37.3159",
14 "Lng": "81.1496"
15 T
18 1

Environment Variables Scope

The scope of an Environment variable is within the environment for which it is created.
This means it has a local scope confined to that environment. If we select another
environment, and try to access the same Environment variable, we shall get an error.

In this chapter, we have created an Environment variable u within the ENV1
environment and on sending a GET request, we got the desired response.

However, if we try to use the same Environment variable u from another Environment,
say Environment_Test, we will receive errors.

The following screen shows the error, which we may get if we use the same Environment
variable u from another environment:

18

w tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

-+

A+ Invite

Q, Environment X
Launchpad GET cc GET Test]
Examples 0 «

History Collections APIs b Testl
Save R Clear all
GET v | {ul Sen Save ~
No results found for "Environment’
Params Authorization Headers Body Pre-reques Tests Settings
Query Params
VALUE DESCRIPTION **+ Bulk Edi

KEY

Could not send request

View In Console

Error: getaddrinfo ENOTFOUND {{u}}

EIMPLYEAGSYLEARHMI

j Ntutorialspoint

19

4. Postman — Authorization

In Postman, authorization is done to verify the eligibility of a user to access a resource in
the server. There could be multiple APIs in a project, but their access can be restricted
only for certain authorized users.

The process of authorization is applied for the APIs which are required to be secured.
This authorization is done for identification and to verify, if the user is entitled to access

a Server resource.

This is done within the Authorization tab in Postman, as shown below:

DELETE ¥ http://dummy.restapiexample.com/api/fv1/delete/2

Params I Authorization Headers (&) Body Pre-request Script Tests @ Settings
TYPE :

Inherit auth from parent v

The authorization header will be automatically
generated when you send the request. Learn
meore about authorization

In the TYPE dropdown, there are various types of Authorization options, which are as
shown below:

20

' tutorialspoint

EIMPLYEASYLEARNING

Postman

Params Authorization Headers (B) Body Pre-request Script Tests @ Settings
TYPE
Inherit auth from parent a

Inherit auth from parent
Mo Auth
APl Key
Bearer Token
Basic Auth
Digest Auth
OAuth 1.0
OAuth 2.0
Hawk Authentication
Re AWS Signature
NTLM Authentication [Beta]

Akamai EdgeGrid

Let us now create a POST request with the APIs from GitHub Developer having an
endpoint https://www.api.github.com/user/repos. In the Postman, click the Body tab
and select the option raw and then choose the JSON format.

Add the below request body:

"name" : "Tutorialspoint”

Then, click on Send.

POST ¥ | https://api.github.com/user/repos Send

Params Authorization Headers (8) Body @ Pre-request Script Tests @ Settings

none form-data xfwww—form—urlencoded binary GraphQL | JSON ¥ "
i
2 ‘ "name": "Tutorialspoint"
I b
Body Cookies Headers (19) Test Results @& | status: 401 Unauthorized | Time: 49 ms Size: 1.09 KB
Pretty Raw Preview Visualize JSON ¥ 5
1~
2 "message": "Requires authentication",
3 "documentation_url”: "https://docs.github.com/rest/reference/repos#create-a-repository-for-the-authenticated-user"
4 kK

21

I@) \tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://www.api.github.com/user/repos

Postman

The Response code obtained is 401 Unauthorized. This means, we need to pass
authorization to use this resource. To authorize, select any option from the TYPE
dropdown within the Authorization tab.

Types of Authorization

Let us discuss some of the important authorization types namely Bearer Token and Basic
Authentication.

Bearer Token

For Bearer Token Authorization, we have to choose the option Bearer Token from the
TYPE dropdown. After this, the Token field gets displayed which needs to be provided in
order to complete the Authorization.

Step 1: To get the Token for the GitHub API, first login to the GitHub account by
clicking on the link given herewith: https://github.com/login.

Step 2: After logging in, click on the upper right corner of the screen and select the

Settings option.

Signed in as

(2) Setstatus

Your profile

Your repositories
Your codespaces
Your projects
Your stars

Your gists

Upgrade
Feature preview []
Help

Settings

Now, select the option Developer settings.

|\ tutorials

EIMPLYEAGSYLEARMNINIG

22

Postman

@ https://github.com/settings/profile

Motifications

SSH and GPG keys
Repositories
Packages
Organizations
Saved replies

Applications

I DeveloEer senings I %

Moderation settings

Blocked users

Interaction limits
Next, click on Personal access tokens.
Settings | Developer settings

| GitHub Apps GitHub Apps New GitHub App

OAuth Apps Want to build something that integrates with and extends GitHub? Register a new GitHub App to get started

developing on the GitHub API. You can also read more about building GitHub Apps in our developer documentation.
Personal access tokens

Now, click on the Generate new token button.

Settings / Developer seftings

GitHub Apps Personal access tokens Generate new token

OAuth Apps Tokens you have generated that can be used to access the GitHub API. :

Personal access tokens

Provide a Note and select option repo. Then, click on Generate Token at the bottom of
the page.

Finally, a Token gets generated.

23

tutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

GitHub Apps New personal access token
OAuth Apps o))
Personal access tokens function like ordinary OAuth access tokens. They can be used instead of a pas
Personal access tokens over HTTPS, or can be used to authenticate to the API over Basic Authentication.
Note B
Postman Testing

What's this token for?

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

repo Full control of private repositories
repo:status —4)— Access commit status
repo_deployment Access deployment status
public_repo Access public repositories
repoinvite Access repository invitations
security_events Read and write security events

Copy the Token and paste it within the Token field under the Authorization tab in
Postman. Then, click on Send.

Please note: Here, the Token is unique to a particular GitHub account and should not be
shared.

Response

The Response code is 201 Created which means that the request is successful.

POST ¥ https://api.github.com/user/repos
Params m Headers (9) Body @ Pre-request Script Tests @ Settings
TYPE

Token

Bearer Token A

The authorization header will be
automatically generated when you send the

Body Cookies Headers (25) Test Results &% | status: 201 Created | Time: 1148 ms

Pretty Raw Preview Visualize JSON ¥ s}
1 {
2 "id": 357300003,
3 "node_id": "MDEw01J1cG9zaXRvcnkzNTczMDAWMDM=",
4 "name": "Tutorialspoint",
5 "full_name": " === 'Tutorialspoint”,
6 "private": false,
7 "owner": {
8 "login": ™ "
9 "id": 52132518,
10 "node id": "MDQ FEollow link (ctrl + click)
11 "avatar url": "https://avatars.githubusercontent.com/u/521325187v=4",

Basic Authentication

24

w Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

For Basic Authentication Authorization, we have to choose the option Basic Auth from
the TYPE dropdown, so that the Username and Password fields get displayed.

First we shall send a GET request for an endpoint (https://postman-echo.com/basic-
auth) with the option No Auth selected from the TYPE dropdown.

Please note: The username for the above endpoint is postman and password is
password.

GET ¥ https://postman-echo.com/basic-auth

Params Authorization Headers (9) Body @ Pre-request Script Tests @ Settings
TYPE
No Auth M This request does not use any authorization. Le nore about authorization
Body Cookies (1) Headers (5) TestResults @5 Status: 401 Unauthorized Time: 227 ms Size: 293 B
Pretty Raw Preview Visualize Text ¥ =

1 Unauthorized

The Response Code obtained is 401 Unauthorized. This means that Authorization did
not pass for this API.

Now, let us select the option Basic Auth as the Authorization type, following which the
Username and Password fields get displayed.

Enter the postman for the Username and password for the Password field. Then, click on
Send.

GET v https://postman-echo.com/basic-auth Send

Params Authorization @ Headers (10) Body @ Pre-request Script Tests @ Settings
TYPE
Username postman
Basic Auth v
Password password

The authorization h

earn more Show Password

generate

Body Cookles (1) Headers (7) TestResults @& | status: 200 0K | Time: 341 ms Size: 3588
Pretty Raw Preview Visualize JSON ¥ 5 _(%)_
1 q
2 "authenticated": true
3}

The Response code obtained is now 200 OK, which means that our request has been
sent successfully.

No Auth

We can also carry out Basic Authentication using the request Header. First, we have to
choose the option as No Auth from the Authorization tab. Then in the Headers tab, we
have to add a key: value pair.

We shall have the key as Authorization and the value is the username and password of
the user in the format as basic <encoded credential>.

25

w tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

The endpoint used in our example is: https://postman-echo.com/basic-auth. To encode
the username and password, we shall take the help of the third party application having
the URL: https://www.base64encode.org

Please note: The username for our endpoint here is postman and password is password.
Enter postman: password in the edit box and click on Encode. The encoded value gets
populated at the bottom.

& https://www.base64encode.org

Encode to Base64 format

Simply enter your data then push the encode button.

I postman:password |

@ To encode binaries (like images, documents, etc.) use the file upload form a little further down on this page.

UTF-8 j Destination character set.
nd LF (Unix) :| Destination newline separator.
Encode each line separately (useful for when you have multiple entries).
at
t Split lines into 76 character wide chunks (useful for MIME).
Perform URL-safe encoding (uses Elase.ﬁélURL format).
]
@ Live mode OFF Encodes in real-time as you type or paste (supports only the UTF-8 character set).
b3 =\ (o705 MRl | Encodes your data into the area below.
cG9zdG1hbjpwYXNzd29yZ A== :
We shall add the encoded Username and Password received as
cG9zdG1hbjpwYXNzd29yZA== in the Header in the format - basic

cG9zdG1hbjpwYXNzd29yZA==. Then, click on Send.

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

26

https://postman-echo.com/basic-auth
https://www.base64encode.org/

GET ¥ https://postman-echo.com/basic-auth
Params Authorization Headers (10) Body @ Pre-request Script Tests @ settings
Content-Length <calculated when request is sent>
Host <calculated when request Is sent>
User-Agent PostmanRuntime/7.26.8
Accept iz
Accept-Encoding gzip, deflate, br
Connection keep-alive
I Authorization basic cG9zdG1hbjpwYXNzd29yZA== I
Body Cookies (1) Headers (7) TestResults
Pretty Raw Preview Visualize JsON ¥ =
1 q
2 "authenticated": true
3}

No Auth selected from the TYPE dropdown.

GET ¥ https://postman-echo.com/basic-auth
Params Authorization Headers (10) Body @ Pre-request Script Tests @
TYPE
No Auth v
Body Cookies (1) Headers (7) TestResults
Pretty Raw Preview Visualize JSON 5
{
2 "authenticated": true
31

Settings

Postman

@ [status: 2000k || Time: 71 ms Size: 3568

This request does not use any authorization. Learn more about au

€ status: 200 0K

The Response code obtained is 200 OK, which means that our request has been sent

successfully.

Authorization at Collections

To add Authorization for a Collection, following the steps given below:

Step 1: Click on the three dots beside the Collection name in Postman and select the

option Edit.

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

27

Collection1

4 requests

GE1
/A Share Collection

) Ma nage Roles

| A] Rename

PL‘”I /2 Edit

L_i Create a fork

Create Pull Request

Merge changes
Add Request
EF Add Folder
Im) Duplicate
o, Export
E‘:":] Monitor Collection
9 Mock Collection

'ﬁ' Publish Docs

Postman

Step 2: The EDIT COLLECTION pop-up comes up. Move to the Authorization tab and

then select any option from the TYPE dropdown. Click on Update.

EIMPLYEAGSYLEARMNINIG

w \tutorialspoint

Postman

EDIT COLLECTION

Name

Collection

Description Authorization Pre-request Scripts Tests Variables

This authorization method will be used for every request in this collection. You can override this by specifying one in the request.

L]
TYPE
Mo Auth a This collection does not use any authorization. Learn more about
authorization
No Auth
AFl Key

Bearer Taken

Basic Auth

Digest Auth

OAuth 1.0

OAuth 2.0

Hawk Authentication

AWS Signature

NTLM Authentication [Beta]

Akamai EdgeGrid

Cancel I Update

29

EIMPLYEAGSYLEARMNINIG

j Ntutorialspoint

5. Postman — Workflows

In a Postman Collection, the requests are executed in the order in which they appear.
Every request is run first by the order of the folder followed by any request at the
Collection root.

Let us create a Collection (Collection1) with four requests. The details on how to create a
Collection is discussed in detail in the Chapter about Create Collections.

Step 1: Click on the arrow appearing to the right of the Collection name in the sidebar.
Then, click on Run button to trigger execution of requests within the Collection.

History Collections APIs APl This callection Is niat lir

o
5 Collection? E

4 requests o Documentation Monitors
GET Get Request @ Learn how to document your r

POST Create User
el . Add a description _‘%)_
DEL elete Request _(%)_
PUT Update Request GET Get Request
POST Create User
DEL Delete Request
PUT Update Request
Step 2: The Collection Runner pop-up comes up. The RUN ORDER section shows the

order in which the requests shall get executed from top to the bottom. (GET->POST-
>DEL->PUT). Click on the Run Collection1 button.

30

' tutorialspoint

EIMPLYEASYLEARNING

Postman

Collection Runner

le Edit View Help

=]=]

Collection Runner oo My Workspace v

GET Get Request
Create User

DEL Delete Request

(VN I <

Environment Mo Environment v PUT Update Request
Iterations 1
Delay 0 ms
Data Select File

Save responses o
Keep variable values o
Run collection without using stored cookies —<%>—

Save cookies after collection run o

Run Collection1

Step 3: Execution Results show the GET request executed first, followed by POST, then
DEL and finally PUT, as mentioned in the RUN ORDER section in the Step 2.

Iteration 1
=

- GET Get Request 200 OK 94 ms 21.248 KB
. Equality
. Create User 200 OK 777 ms 659 B

This request does not have any tests.

- DELETE Delete Request 200 OK 708 ms 652 B
B status Code is 200

B rur Update Request 200 OK 717 ms 652 B

This request does not have any tests.

31

@ Ntutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

If we want to change the order of the request to be executed (for example, first the Get
Request shall run, followed by Create User, then Update Request and finally the Delete
Request). We have to take the help of the function postman.setNextRequest().

This function has the feature to state which request shall execute next. The request
name to be executed next is passed as a parameter to this function. As per the
workflow, we have to add this function either in the Tests or Pre-request Script tab under
the endpoint address bar in Postman.

The syntax for execution of a request in Postman is as follows:

postman.setNextRequest("name of request")

Implementation of a Workflow

The implementation of a workflow in Postman is explained below in a step wise manner:

Step 1: Add the below script under the Tests tab, for the request - Create User.

postman.setNextRequest("Update Request")

The following screen will appear:

Create User @ 1 a0

» Create User

POST ¥ | http://dummy.restapiexample.com/api/v1/create

Params Authorization Headers (7) Body Pre-request Script Tests @ Settings

1 postman.setNextRequest/("Update Request"ﬂ

Step 2: Add the below script under the Tests tab, for the request — Update Request.

postman.setNextRequest("Delete Request")

The following screen will appear:

|\ tutorials

EIMPLYEAGSYLEARMNINIG

32

Postman

PUT Update Request ® -+ coe

» Update Request

PUT v http://dummy.restapiexample.com/api/v1/update/21

Params Authorization Headers (7) Body Pre-request Script Tests ® settings

1 postman.setNextRequest("Delete Request" }|

Output of Workflow

Given below is the output of the workflow:

2R My Workspace v Run In Command Line

@ Collection1 no environment - al

r Iteration 1

B GET GetReguest 200 OK 88 ms 21.248 KB
B cqualiy
[
- Create User 200 OK 611 ms B59B

This request does not have any tests.

- PUT Update Request 200 OK 593 ms 652 B
This request does not have any tests.
@ DELETE Delete Request 429 Too Many Requests 546 ms 1.181KB
@ Status Code is 200 | AssertionError: expected false to be truthy

- PUT Update Request 429 Too Many Requests 529 ms 1.181 KB

This request does not have any tests.

. DELETE Delete Request 429 Too Many Requests 554 ms 1181 KB

B status Code Is 200 | AssertionError: expected false to be truthy [::

The output shows that Update Request and Delete Request are running in an infinite loop
until we stop it by clicking the Stop Run button.

Infinite Workflow Loop

If we want to stop the infinite Workflow loop via script, we have to add the below script
for the request — Delete Request.

postman.setNextRequest(null)

The following screen will appear:

33

@ Ntutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

DEL Delete Request X - | 900

» Delete Request

DELETE v http://dummy.restapiexample.com/api/v1/delete/2

Params Authorization Headers (6) Body Pre-request Script Tests ® settings

1 tests["Status Code is 200"]= responseCode.code ===200
2 postman.setNextRequest(null)

Again run the same Collection and output shall be as follows:

Collection Runner - 0 &
File Edit View Help

Collection Runner Run Results 88 My Workspace v

i No Environmen
[Iteration 1 -
. GET Get Request 200 OK 185 ms 21.248 KB
. Equality
[] Create User 200 OK 671 ms 659 B

This request does not have any tests.
. PUT Update Request 200 OK 627 ms 652 B
This request does not have any tests.

429 Too Man 672 1.181
@ DELETE Delete Request Requests / ms KB

. Status Code Is 200 | AssertionError: expected false to be truthy

The output shows the order of execution as Get Request, Create User, Update Request
and finally Delete Request.

34

EIMPLYEAGSYLEARMNINIG

@ Ntutorialspoint

6. Postman — GET Requests

A GET request is used to obtain details from the server and does not have any impact on
the server. The GET request does not update any server data while it is triggered. The
server only sends its Response to the request.

Create a GET Request

Follow the steps given below to create a GET request successfully in Postman:

Step 1: Click on the New menu from the Postman application. The Create New pop-up
comes up. Then click on the Request link.

Create New Templates API Network

BUILDING BLOCKS

Request Collection Environment
Create a basic request G Save your requestsin a | ﬂ.l Save values you frequently |
collection for reuse and in an environment
sharing

Step 2: SAVE REQUEST pop-up comes up. Enter the Request name then click on Save.

35

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

SAVE REQUEST

Requests in Postman are saved in collections (a group of requests).

Learn more about creating collections

Request name

Test1]

Request description (Optional)

Descriptions suppert Markdown

Select a collection or folder to save to:

Cancel Save to FirstTest

Step 3: The Request name (Testl) gets reflected on the Request tab. We shall then
select the option GET from the HTTP request dropdown.

@ Ntutorialspoint

EIMPLYEAGSYLEARMNINIG

36

Postman

No Environmen
X A o

» Testl Examples

& ox -

| GET | Body Pre-req. Tests Settings

POST
AL VALUE DESCRIF
PATCH
DELETE
COPY

| HEAD
OPTIONS
LINK
UNLINK
PURGE
LOCK

Hit Send to get a response
UNLOCK

Step 4: Enter an URL - https://www.tutorialspoint.com/index.htm in the address bar
and click on Send.

Response

Once a request has been sent, we can see the response code 200 OK populated in the
Response. This signifies a successful request and a correct endpoint. Also, information on
the time consumed to complete the request (223 ms) and payload size (20.75 KB) are
populated.

37

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://www.tutorialspoint.com/index.htm

Postman

No Environment v (@] =
GET Test1 ® | oo
» Testl Examples 0 ¥ BUILD V4
GET ¥ | https://www.tutorialspoint.com/index.htm “ Save v
Params Auth Headers (6) Body Pre-req. Tests Settings Cookles Code
Query Params
KEY VALUE DESCRIPTION ees Bulk Edit
Body Cookies Headers (15) Test Results @‘a 200 0K 223ms 20.75KB || Save Response ¥
Pretty ~ Raw Preview Visualize HTML v = mQ
1 <!DOCTYPE html>
2 <!--[if IE 8]><html class="ie ie8"> <![endif]-->
3 «<!--[if IE 9]><html class="ie ie9"> <![endif]-->
4 <!--[if gt IE 9]><!-->
5 <html lang="en-US">
6 <!--<![endif]-->
? ——
I

On hovering over the response time, we can see the time taken by different events like
DNS Lookup, SSL Handshake and so on.

TN IV Wi . T —0

EVENT TIME
Prepare

jex Socket Initialization N 35.74ms
DNS Lookup | 0.13ms
TCP Handshake [4857ms »
55L Handshake e 86.8 ms
Transfer Start [] 21.45ms
Download B 2094ms
Total 241.54 ms

€ 2000k 223ms 2075KB Save Response ¥

On hovering over the payload size, the details on the size of response, headers, Body,
and so on are displayed.

38

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

Examples 0 v BUILD V4
Response Size 20.75 KB
itm Body 20.27KB ¥
Headers 494 B

ettings od

@é, 2000K 223ms 20.75KB Save Response ¥

— [M

The Response Body contains the sub-tabs - Pretty, Raw and Preview. The Pretty format
shows color formatting for keywords and indentation for easy reading. The Raw format
displays the same data displayed in the Pretty tab but without any color or indentation.

The Preview tab shows the preview of the page.

KEY VALUE DESCRIPTION e

Body J|Cookies Headers (15) Test Results € 2000K 223ms 2075KB Save Re

Raw Preview Visualize HTML 5

1 <!DOCTYPE html=>

2 <!--[if IE 8]=<html class="ie ie8"> <![endif]-->

3 <!--[if IE 9]=<html class="ie ie9"> <![endif]--=

4 <!--[if gt IE 9]><!-->

5 <html lang="en-US">

6 <!--<![endif]-->

7

8 <head=>

9 <!-- Basic --=>

10 <meta charset="utf-8">

11 <title=RxJS, aaplot2, Pvthon Data Persistence, Caffe2, PyBrain, Pvthon Data Access
3 <!--|1T LE Y]><ntml class="1le 1eY"> <!|endiT]-->
4 «<!--[if gt IE 9]><!-->
5 <html lang="en-US">

Raw tab

The following screen will appear:

39

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

Body || Cookies Headers (15) Test Results € 2000k

Pretty Raw Preview Visualize
<!DOCTYPE html>
<!--[if IE 8]=<html class="ie ieB8"> <![endif]--=
<!--[if IE 9]=><html class="ie iefd"> <![endif]--=
<!--[if gt IE 9]><!-->
<html lang="en-US"> <!--<![endif]-->
<head>
<!-- Basic -->

<meta charset="utf-8">

Postman

Save Response

'm

Q

<title>RxJS, ggplot2, Python Data Persistence, Caffe2, PyBrain, Python Data Access, H20,

Colab, Theano, Flutter, KNime, Mean.js, Weka, Solidity</title>

<meta name="Description" content="RxJS, aaplot2, Python Data Persistence, Caffe2,

Preview tab

The following screen will appear:

Body Cookies Headers (15) Test Results @,} 200 OK

Pretty Raw [Preview | Visualize

Q

tutorialspoint

SIMPLYEASYLEARNING

The Response also contains the Cookies, Headers and Test Results.

KEY VALUE

3ody [Cookies Headers (15) Test Resulis

]

) tutorialspoint

PLYEAGSYLEARNINIG

=

€ 2000k

DESCRIPTION

40

7. Postman — POST Requests

Postman POST request allows appending data to the endpoint. This is a method used to
add information within the request body in the server. It is commonly used for passing
delicate information.

Once we send some the request body via POST method, the API in turn yields certain
information to us in Response. Thus, a POST request is always accompanied with a body
in a proper format.

Create a POST Request

Follow the steps given below to create a POST request successfully in Postman:

Step 1: Click on the New menu from the Postman application. The Create New pop-up
comes up. Then, click on the Request link.

Create New Templates APl Network

BUILDING BLOCKS

Collection Environment
Create a basic request G Save your requestsin a | I:I.I Save values you frequently v

collection for reuse and In an envircnment
sharing

Step 2: SAVE REQUEST pop-up comes up. Enter the Request hame then click on Save.

41

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

SAVE REQUEST

Requests in Postman are saved in collections (a group of requests).

Learn more about creating collections

Request name

Test1]

Request description (Optional)

Descriptions suppert Markdown

Select a collection or folder to save to:

Cancel Save to FirstTest

Step 3: The Request name (Testl) gets reflected on the Request tab. Also, we shall
select the option POST from the HTTP request dropdown.

Then, enter an URL https://jsonplaceholder.typicode.com/users in the address bar.

E X a | https://jsonplaceholder.typicode.com/users

| GET Body Pre-req. Tests Settings
POST
PuT VALUE DESCRIP1
PATCH
| 5 (26) TestResults € 2000K 86
™ DELETE

Step 4: Move to the Body tab below the address bar and select the option raw.

42

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

POST ¥ https://jsonplaceholder.typicode.com/users
Params Auth Headers (8) Pre-req. Tests Settings

none &

none Th uest ¢ [E

form-data

¥-www-form-urlencoded

raw

binary

GraphQL
Step 5: Then, choose JSON from the Text dropdown.
POST ¥ | https://jsonplaceholder.typicode.com/users

Params Auth Headers (8) Body Pre-req. Tests Settings

I raw Text a

Text

1

JavaScript

JSON

HTML

XML

Step 6: Copy and paste the below information in the Postman Body tab.

"id": 11,
"name": "Tutorialspoint”,
"username": "Testl",
"email": "abc@gmail.com",
"address": {

"street": "qa street”,

"suite": "Apt 123",

"city": "Kochi",

tutorialspoint

EIMPLYEAGSYLEARMNINIG

43

Postman

"zipcode": "49085",
"geo": {
"lat": "-3.3155",
"lng": "94.156"
}
}s
"phone": "99599125",
"website": "Tutorialspoint.com",

"company": {

"name": "Tutorialspoint”,
"catchPhrase": "Simple Easy Learning",
"bs": "Postman Tutorial™

}

The above data that is being sent via POST method is only applicable to the endpoint:

https://jsonplaceholder.typicode.com/users.

To pass the data in the correct JSON format, we can use the Jsonformatter available in

the below link:

https://jsonformatter.curiousconcept.com/

w tutorialspoint

EIMPLYEAEYLEARHNINIG

44

https://jsonplaceholder.typicode.com/users
https://jsonformatter.curiousconcept.com/

Postman

Test1 X | 4 | oo
» Testl
POST ¥ https://jsonplaceholder.typicode.com/users

Params Authorization Headers (9) Body @ Pre-request Script Tests Settings

nene form-data x-www-form-urlencoded | ® rawI binary GraphQL | JSON ¥

1 | {

2 "id": 11,

3 “name": "Tutorialspoint”,
4 "username": "Testl",

5 "email": "abc@gmail.com",
6 "address": {

7 "street": "ga street",
8 "suite": "Apt 123",

9 "city": "Kochi",

10 "zipcode": "49085",

11 "geo": {

12 “lat": "-3.3155",

13 "lng": "94.156"

14 }

15 },

16 "phone”: "99599125",

17 "website": "Tutorialspoint.com",
18 “company": {

Step 7: Click on the Send button.

» Testl Examples 0 w BUILD
POST * https://jsonplaceholder.typicode.com/users | Send b
Response

Once a request has been sent, we can see the response code 201 Created populated in
the Response. This signifies a successful request and the request we have sent has been
accepted by the server.

Also, information on the time consumed to complete the request (347 ms) and payload
size (1.61 KB) are populated.

45

@ tutorialspoint

Postman

-

+ New Import Runner & 88 My Workspace v A& Invite S O Upgrade

Q, Environment x No Envirenment v @ =
Test1 x +

History Collections APIs » Test1 Examples 0 ¥ V4

Save Responses Clear all I
POST ¥ | https://jsonplaceholder.typicode.com/users Send v Save ~

No results found for "Environment”

s Code

Params Auth Headers (9) Body ® Pre-req. Tests Settings

raw v SON ¥ Beautify
1 { i
2 "id": 11,
3 "name": "Tutorialspoint”,
4 "username": "Testl",

Cookies (1) Headers (26) Test Results @él 201 Created 347 ms 1.61 I<B| Save Response ¥

Pretty Raw Preview \Visualize mQ

{
"id": 11,
"name": "Tutorialspoint",
"username": "Testl",
"email": "abc@gmail.com",
"address": {
"street": "ga street", .

We can see that the Response body is the same as the request body which we have sent
to the server.

POST v https://jsonplaceholder.typicode.com/users

Params Authorization Headers (9) Body @ Pre-request Script Tests Settings
Body Cookies (1) Headers (26) Test Results 5 Status: 201 Created Time: 347ms Size: 1.61 KB
Pretty Raw Preview Visualize
{
“id*: 11

"name": “"Tutorialspoint”,
"username": "Testl",
"email": "abc@gmail.com”,
"address”: {
"street”: "ga street”,
"suite": "Apt 123",
"city": "Kochi",
"zipcode": "49885",
"geo": {
"lat": "-3.3155",
"lng": "94.156"
1
¥
"phone": "99599125",
"website": "Tutorialspoint.com”,
"company": {
"name": "Tuterialspeint”,
"catchPhrase”: "Simple Easy Learning",
"bs": "Postman Tutorial"

46

j Ntutorialspoint

EIMPLYEAGSYLEARMNINIG

8. Postman — PUT Requests

A Postman PUT request is used to pass data to the server for creation or modification of
a resource. The difference between POST and PUT is that POST request is not
idempotent.

This means invoking the same PUT request numerous times will always yield the same
output. But invoking the same POST request numerous times will create the similar
resource more than one time.

Before creating a PUT request, we shall first send a GET request to the server on an
endpoint: http://dummy.restapiexample.com/api/vi/employees. The details on how to
create a GET request is explained in detail in the Chapter - Postman GET Requests.

On applying the GET method, the Response body obtained is as follows:

GET Testl [] b e
k Test]
GET * httpi//dummy.restapiexample.com/apiivifemployees
Params Authorization Headers (8) Body @ Pre-request Script Tests Settings

Body Cookies Headers (19) Test Results

Pretty Raw Preview Visualize JSON - >
144 {

145 “id": 21,

146 "employee name”: "Jenette Caldwell”,
147 “employee salary®: 345000,

148 "employee_age”: 38,

149 "profile_image=: "~

158 1.

151 { E
152 "id": 22,

153 "employee_name”: "Yuri Berry~,

154 "employee_salary”: 675008,

155 "employee_age”: 48,

156 "profile_image®: "~

157 ¥

158 {

159 "id": 23,

166 “employee_name”: “"Caesar Vance",
161 "employee salary": 1086458,

162 “employee _age®: 11,

163 "profile_image~: ""

164 1.

165 {

166 =id": 24,

167 “employee_name®: “Doris wWilder®,
168 "employee_salary”: 85600,

169 “employee_age”: 23,

178 “profile_image®: "*

171 }

Now, let us update the employee_salary and employee_age for the id 21 with the
help of the PUT request.

' tutorialspoint

EIMPLYEASYLEARNING

47

http://dummy.restapiexample.com/api/v1/employees

Postman

Create a PUT Request

Follow the steps given below to create a PUT request in Postman successfully:

Step 1: Click on the New menu from the Postman application. The Create New pop-up
comes up. Then, click on the Request link.

Create New Templates API Network

BUILDING BLOCKS

Request Collection Environment
GET Create a basic request E Save your requestsin a I:I.l Save values you frequently v
collection for reuse and in an envircnment
sharing

Step 2: SAVE REQUEST pop-up comes up. Enter the Request nhame then click on Save.

SAVE REQUEST

Requests in Postman are saved in collections (a group of requests).

Learn more about creating collections

Request name

Test1]

Request description (Optional)

Descriptions suppert Markdown

Select a collection or folder to save to:

Cancel Save to FirstTest

Step 3: The Request name (Testl) gets reflected on the Request tab. We shall select
the option PUT from the HTTP request dropdown.

Then enter the URL - http://dummy.restapiexample.com/api/vl/update/21 (endpoint for
updating the record of id 21) in the address bar.

48

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

http://dummy.restapiexample.com/api/v1/update/21/

Postman

It must be noted that in a PUT request, we have to mention the id of the resource in the
server which we want to update in the URL.

For example, in the above URL we have added the id 21.

PUT Test1 ® | eoo
» Testl
m X a [http://dummy.restapiexample.com/api/v1/update/21
GET Headers (8) Body @ Pre-request Script Te
POST
x-www-form-urlencoded ® raw binary
PUT

Step 4: Move to the Body tab below the address bar and select the option raw.

Params Auth Headers (8) Pre-req. Tests Settings

]
none &
none This request does not hay
form-data
x-www-form-urlencoded

raw

binary

GraphQL

Step 5: Then, choose JSON from the Text dropdown.

Params Auth Headers (8) Body Pre-req. Tests Settings

I raw Text a

Text

1
JavaScript

JSON

HTML

XML

m tutorialspoint

49

Postman

Step 6: Copy and paste the below information in the Postman Body tab.

{ "name": "Jenette Caldwell","salary": "2000","age": "15"}

The overall parameters to be set for a PUT request are shown below:

PUT v http://dummy.restapiexample.com/api/v1/update/21

Params Authorization Headers (8) Body @ Pre-request Script Tests Settings
none form-data x-www-form-urlencoded @ raw binary GraphQL |SON
1 {"name": "Jenette Caldwell", "salary":"2808", "age": "15"}
2
3
-

Step 7: Click on the Send button.

Response

Once a request has been sent, we can see the response code 200 OK populated in the
Response body. This signifies a successful request and the request we have sent has
been accepted by the server.

Also, information on the time consumed to complete the request (673 ms) and payload
size (705 B) are populated. The Response body shows the salary and age got updated to
2000 and 15 respectively for the employee having id 21.

PUT ¥ http//dummy.restapiexample.com/api/v1/update/21 m

Params Authorization Headers (8) Body @ Pre-request Script Tests Settings
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON ¥
1 {"name": "Jenette Caldwell”, "salary":"2000", "age": "15"}
2
3
4
3ody Cookies Headers (18) Test Results @) Status: 200 OK Time: 673 ms Size: 705B
Pretty Raw Preview Visualize JSON ¥ =
1
2 "status": "success",
3 "data": {
4 "name": "Jenette Caldwell",
5 “salary": "2000",
6 "age": "15"
7 I
8 "message”: "Successfully! Record has been updated.”
9 B

50

tutorialspoint

EIMPLYEAEYLEARHNINIG

&

9. Postman — DELETE Requests

Postman DELETE request deletes a resource already present in the server. The DELETE
method sends a request to the server for deleting the request mentioned in the
endpoint. Thus, it is capable of updating data on the server.

Before creating a DELETE request, we shall first send a GET request to the server on the
endpoint: http://dummy.restapiexample.com/api/vli/employees. The details on how to
create a GET request is explained in detail in the Chapter onGET Requests.

On applying the GET method, the below Response Body is obtained:

GET ¥ http://dummy.restapiexample.com/api/v1/employees

Params Authorization Headers (6) Body Pre-request Script Tests Settings

Body Cookies Headers (19) Test Results

Pretty Raw Preview Visualize JSON * s |
1 f
2 "status": "success",
3 "data": [
4 {
5 "id": 1,
6 "employee name": "Tiger Nixon",
7 "employee salary": 320800,
8 "employee age": 61,
9 "profile image": ""
10 T
11 {
12 "id": 2,
13 "employee name": "Garrett Winters",
14 "employee salary": 170750,
15 "employee age": 63,
16 "profile image": ""
17 }

Let us delete the record of the id 2 from the server.

Create a DELETE Request

Follow the steps given below to create a DELETE request in Postman successfully:

Step 1: Click on the New menu from the Postman application. The Create New pop-up
comes up. Then, click on the Request link.

51

' tutorialspoint

EIMPLYEASYLEARNING

http://dummy.restapiexample.com/api/v1/employees

Postman

Create New Templates API Network
BUILDING BLOCKS
Request Collection Environment
GET Create a basic request E Save your requestsin a D.l Save values you frequently v
collection for reuse and in an environment
sharing

Step 2: SAVE REQUEST pop-up comes up. Enter the Request nhame then click on Save.

SAVE REQUEST

Requests in Postman are saved in collections (a group of requests).

Learn more about creating collections

Request name

Test1]

Request description (Optional)

Descriptions support Markdown

Select a collection or folder to save to:

Cancel Save to FirstTest

Step 3: The Request name (Testl) gets reflected on the Request tab. We shall select
the option DELETE from the HTTP request dropdown.

Then enter the URL - http://dummy.restapiexample.com/api/vi/delete/2 (endpoint for
deleting the record of id 2) in the address bar.

Here, in the DELETE request, we have mentioned the id of the resource in the server
which we want to delete in the URL.

52

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

DELETEJES G Ihttp:ﬁdummy.restaplexample.com!aplfm.fdeletefz

GET Headers (6) Body Pre-request Script Tests Settings

| POST
PUT

PATCH

I DELETE

Step 4: Click on the Send button.

Response

Once a request has been sent, we can see the Response code 200 OK populated in the
Response. This signifies a successful request and the request we have sent has been
accepted by the server.

Also, information on the time consumed to complete the request (734 ms) and payload
size (652 B) are populated. The Response shows the status as success. The record id 2
gets deleted from the server.

DELETE ¥ httpx/dummy.restapiexample.com/api/vi/delete/2 m

Params Authorization Headers (6) Body Pre-request Script Tests Settings
Query Params
KEY VALUE DESCRIPTION
Body Cookies Headers (18) Test Results ® ISta[us: 200 OK Time: 734 ms Size: 652 B I
Pretty Raw Preview Visualize JSON = 5
1 q
2 "status": "success",
3 "data": "2",
4 "message": "Successfully! Record has been deleted"
5}

A B Manat. "15"]

After deletion of the record with id 2, if we run the GET request on the endpoint:
http://dummy.restapiexample.com/api/vl/employee/2, we shall receive 401
Unauthorized status code.

53

tutorialspoint

EIMPLYEAGSYLEARMNINIG

Y.

10. Postman — Create Tests for CRUD

CRUD stands for Create, Retrieve, Update and Delete operations on any website
opened in a browser. Whenever we launch an application, the retrieve operation is
performed.

On creating data, for example, adding a new user for a website, the create operation is
performed. If we are modifying the information, for example, changing details of an
existing customer in a website, the update operation is performed.

Finally, to eliminate any information, for example, deleting a user in a website, the
delete operation is carried out.

To retrieve a resource from the server, the HTTP method - GET is used (discussed in
details in the Chapter - Postman GET Requests). To create a resource in the server, the
HTTP method - POST is used (discussed in details in the Chapter - Postman POST
Requests).

To modify a resource in the server, the HTTP method - PUT is used (discussed in details
in the Chapter - Postman PUT Requests). To delete a resource in the server, the HTTP
method - DELETE is used (discussed in details in the Chapter - Postman DELETE
Requests).

Tests in Postman

A Postman test is executed only if a request is successful. If a Response Body is not
generated, it means our request is incorrect and we will not be able to execute any test
to validate a Response.

In Postman, tests are developed in JavaScript and can be developed using the JavaScript
and Functional methods. Both the techniques are based on the language JavaScript.

JavaScript Method

Follow the steps given below to develop tests in Javascript:

Step 1: Tests developed in the JavaScript method are mentioned within the Tests tab
under the address bar.

54

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

GET Get Request ® DEL Delete Request - | ooe

» Get Request

GET v {{url}¥/index.htm
Params Authorization Headers (6) Body Pre-request Script Tests Settings
L
Step 2: Add the below JavaScript verifications within the Tests tab:
tests["Status Code should be 200"] = responseCode.code === 200

tests["Response time lesser than 10ms"] = responseTime<10

We can add one or more than one test for a particular request.

Here, tests is a variable of type array which can hold data types- integer, string, Boolean
and so on. The Status Code should be 200 and Response time lesser than 10ms are the
names of the tests. It is recommended to give meaningful names to test.

The responseCode.code is the response code obtained in the Response and the
responseTime is the time taken to get the Response.

Step 3: Select the GET method and enter an endpoint then click on Send.
Response

In the Response, click on the Test Results tab:

No Environment

GET Get Request ® DEL Delete Request
» Get Request Examples 0 v

GET v {{url}}/index.htm “
Params Authorization Headers (6) Body Pre-request Script Tests @ Settings

1 tests["Status Code should be 200"]= responseCode.code ===200 Test scripts are written in Jav

2 tests["Response time lesser than 10ms"] = responseTime<l1@ run after the response is rect
SNIPPETS

I
riable

Body Cookies Headers (15) | Test Results (1/2) €2 Status: 2000K Time: 129 ms Size: 20.75KB

All Passed Skipped Failed
Status Code should be 200
Response time lesser than 10ms | AssertionError: expected false to be truthy

The Test Results tab shows the test which has passed in green and the test which has
failed in red. The Test Results (1/2) means one out of the two tests has passed.

&

55

tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

Response shows the status as 200 OK and Response time as 129ms (the second test
checks if the Response time is less than 10ms).

Hence, the first test got passed and the second one failed along with the Assertion error.

Functional Method

Follow the steps given below to develop a test in with functional method:

Step 1: Tests developed in the Functional method are mentioned within the Tests tab
under the address bar.

Step 2: Add the below code within the Tests tab:

pm.test["Status Code is 401"], function(){

pm.response.to.have.status(401)

1)

Here, pm.test is the function for the test being performed. Status Code is 401 and it is
the name of the test which shall be visible in the Test Result after execution.

The pm.response is used for obtaining the response and adding assertions on it to
verify the header, code, status, and so on.

Step 3: Select the GET method and enter an endpoint then click on Send.
Response

In the Response, click on the Test Results tab:

No Environi
GET Get Request DEL Delete Request
» Get Request Examj
GET v /index.htm
Params Authorization Headers (6) Body Pre-request script Tests @ Settings
1 pm.test("Status code is 401", function(){ Tes
2 pm.response.to.have.status(401) run
31
S
Body Cookies Headers (15) | Test Results (0/1) Ha, @ | status: 200 OK | Time: 62 ms
All Passed Skipped Failed

Bl Status code is 401 | AssertionError: expected response to have status code 401 but got 200

The Test Results tab shows the test in red as the test has failed. The Test Results (0/1)
means zero out of the one test has passed. Response shows the status as 200 OK (the
test checks if the response code is 401).

Hence the test shows failed along with the Assertion error.

56

|\ tutorials

EIMPLYEAGSYLEARMNINIG

11. Postman — Create Collections

A group of requests that have been saved and organized into folders is known as the
Collections. It is similar to a repository. Thus, Collections help to maintain the API tests
and also split them easily with teams.

Create a New Collection

Follow the steps given below to create a new collection in Postman:

Step 1: Click on the New icon from the Postman application. The Create New pop-up
comes up. Then click on the Collection link.

Create New Templates API Network
BUILDING BLOCKS
Request Collection Environment
GET Create a basic request B Save your requests in a collection | n.l Save values you frequently use in
for reuse and sharing an environment

Step 2: CREATE A NEW COLLECTION pop-up comes up. Enter a Collection Name and
click on the Create button.

LLECTION

Name

Collection1|

Description Authorization Pre-request Scripts Tests Variables

This description will show in your collection's documentation, along with the descriptions of its folders and requests.

Descriptions support Markdown

E—

Step 3: The Collection hame and the number of requests it contains are displayed in the
sidebar under the Collections tab.

57

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

Q)
Collection X
History Collections APls
+ MNew Collection Trash m T .
Collection <l
= |
— Dreguests Documentation Manitors Mocks Changelog

Step 4: To the right of the Collection name, we have the options like Share, Run and so
on available. Click on the three dots to get more options to select.

+ New 8o

Collectioni

History Collections APls AP
View In we
s [Collection <l 2 Edit
Documer hlinge
[# Create afork
HHXK

5] Manage Roles
Thiscolle [Add Request eql

5 Add Folder

(O Duplicate

o, Export

] Monitor Collection

i Mock Collection

& Publish Docs

Remove from workspace

] Delete

Step 5: Click on Add Request. The SAVE REQUEST pop-up comes up. Enter Request
Name and select the Collection we have created. Then, click on the Save to Collection1
button.

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

SAVE REQUEST

Request name

I Get Request

Request description (Optional)

Descriptions suppart M

Select a collection or folder to save to:

Q

4 Coll

(1]
[n]

tion1 + Create Folder

Cancel I Save to Collection

Step 6: The Collection with its request gets displayed to the side bar under the
Collections tab.

+ MNew Import

History Collections APIs

MNew Collection Trash

Collection

1 request

GET (et Request

@ Ntutorialspoint

EIMPLYEAGSYLEARMNINIG

59

12. Postman — Parameterize Requests

We can parameterize Postman requests to execute the same request with various sets of
data. This is done with the help of variables along with parameters. A parameter is a
part of the URL used to pass more information to the server.

The data can be used in the form of a data file or an Environment variable.
Parameterization is an important feature of Postman and helps to eliminate redundant
tests. Parameters are enclosed in double curly braces {{parameter}}.

Example

Let us take an example of an URL: https://www.tutorialspoint.com/index.htm. We shall
create a variable as url then use it for parameterization of request. We can refer to it in
the format {{url}} in Postman.

A parameter is in the form of a key-value pair. So to point to the URL:
https://www.tutorialspoint.com/index.htm, we can mention it as {{url}}/index.htm. So
here, the url is the key and the value set is https://www.tutorialspoint.com.

Create a Parameter Request

Follow the steps given below to create a parameter request in Postman:

Step 1: Click on the eye icon to the right of the Environment dropdown in the top right
corner in the Postman application.

& Invite

No Environment - e
GET Get Request X T | ooo

» Get Request Examples 0 BUILD £ E

Step 2: Click on the Edit link in the Globals section.

Mo Environment A @
GET Get Request X | =ee
Environment Add
» Get Rel
Mo active Environment
GET

An environment is a set of variables that allow you to switch the
context of your requests.

Params
Learn more about environments
Query Par
KEY I Globals Edit I}
A

No global variables

falakal variahloc are o cat nf variahlac that ara ahamve svailablain 2

60

@ tutorialspoint

EIMPLYEASYLEARNING

https://www.tutorialspoint.com/index.htm
https://www.tutorialspoint.com/index.htm

Postman

Step 3: MANAGE ENVIRONMENTS pop-up comes up. Enter URL for the VARIABLE
field and https://www.tutorialspoint.com for INITIAL VALUE. Then, click on Save.

MAMNAGE ENVIRONMENTS

Learn more about globals
Globals

VARIARLE INITIALVALUE @ CURRENT VALUE @ *** Persist A Reset A

url https:/fwww.tuterialspoint.com || https://www.tutorialspoint.com

@ Use variables to reuse values in different places. Waork with the current value of a variable to prevent
sharing sensitive values with your team. Learn more about variable values

Save and Download as |SON Cance Save

Step 4: Click on close to move to the next screen.

Step 5: In the Http Request tab, enter {{url}}/index.htm in the address bar. Select
the GET method and click on Send.

No Environment v
GET Get Request L]
* Get Request Examples 0 ¥
GET v findex.htm Send s Save -
Response

Once a request has been sent, we can see the response code 200 OK populated in the
Response. This signifies a successful request and a correct endpoint.

61

@ Ntutorialspoint

EIMPLYEAGSYLEARMNINIG

GET Get Request L]

» Get Request

GET v {Hurl}}/index.htm
Params Auth Headers (§) Body Pre-req. Tests
Query Params
KEY VALUE
Key Value
Body ¥
Pretty Raw Preview Visualize HTML
1 <!DOCTYPE html=>
2 <!--[if IE 8]=<html class="ie ie8"> <![endif]-->
3 <!--[if IE 9]=<html class="ie ie9"> <![endif]--=
4 <!--[if gt IE 9]=<!--=
5 <html lang="en-us"=
6 <!--<![endif]-->

Y.

tutorialspoint

EIMPLYEASYLEARNING

Settings

= =

Postman

No Environment A @ =
Examples 0 « BUILD g B

€

Cookies Code

DESCRIPTION *** Bulk Edit
Descriptior

2000K 147ms 20.75KEJ Save Response ¥

mQ

62

13. Postman — Collection Runner

Postman Collection Runner is used to execute a Collection having multiple requests
together. All the requests within a Collection will be executed simultaneously. The
Collection Runner does not produce any Response Body.

The Collection Runner console displays the test results for individual requests. It is
mandatory to have more than one request within the Collection to work with Collection
Runner.

The details on how to create a Collection is discussed in detail in the Chapter on Create
Collections.

Execute Tests with Collection Runner

Follow the steps given below to execute the tests with Collection Runner in Postman:

Step 1: Click on the Runner menu present at the top of the Postman application.

+ New

0\ Filter _(%)_

History Collections APIs

+ New Collection Trash

Collection
2 requests

GET Get Request

DEL Delete Request

Step 2: The Collection Runner screen shall appear.

63

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

Collection Runner - o0 X

File Edit View Help

Collection Runner B8 My Workspace v Run In Command Line

Recent Runs Q Import Runs

Envir ent No Environment v

Step 4: Select an environment from the Environment dropdown to run the requests in a
particular environment. Then, specify the number of times we need to iterate the
request. We can also set a delay time in milliseconds for the requests.

Environment Mo Environment v
e 2
Delay 1500 [k

Step 5: If we have data in a file, then we have to choose the file type from Data. Then,
click on the Run Collection1 button.

64

w tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

Data Select File

Keep variable values)

save cookies after collection run)

Run Collection1

Step 6: The Run Results page shall come up. Depending on the delay time provided, the
tests should get executed.

The test results (Pass/Fail) should be displayed for each iteration. The pass status is
represented in green and failed ones are represented in red. If there is no test
implemented for a particular request, then it shall display the message as - This
request does not have any tests.

This is the environment in which the tests are executed and the Collection names are
visible at the top of the Collection Runner. For each request, the status code, time taken,
payload size, and test verification are also displayed.

Collection Runner - o0 &

File Edit View Help

B8 My Workspace Run In Command Line
@ collsctiont Export Results -
Iteration 1
.
B GET GetRequest 200 OK 117 ms 21.248 KB

B status Code is 200

. DELETE Delete Request 200 0K 640 ms 652B

B status Code is 200
Iteration 2

. GET Get Reguest 200 0K 19 ms 21.248 KB
B status Codeis 200
B DELETE Delete Request 200 0K 706 ms 652 B

B status Code is 200

65

tutorialspoint

EIMPLYEAEYLEARHNINIG

&

14. Postman — Assertion

Assertions are used to verify if the actual and expected values have matched after the
execution of a test. If they are not matching, the test shall fail and we shall get the
reason for failure from the output of the test.

An assertion returns a Boolean value of either true or false. In Postman, we can take the
help of JavaScript Chai Assertion Library to add assertions in our tests. It is available in
the Postman application automatically.

The Chai - Assertions are easily comprehensible as they are defined in a human
readable format. The Assertions in Postman are written within the Tests tab under the
address bar.

The documentation for Chai is available in the following link:

https://www.chaijs.com/

GET ¥ | {url}¥/index.htm
Params Authorization Headers (6) Body Pre-request Script Tests ® Settings
1 pm.test@“Status code is 401", function(){ —é—
2 pm.response.to.have.status(401)
31
Writing Assertions

Let us write an assertion to check if a particular text - Postman is within an array
of strings.

pm.test["Text is present"], function(){
pm.expect(['Java', 'Postman']).to.include('Postman')

9

Output

The output is as follows:

@ tutorialspoint

EIMPLYEASYLEARNING

66

Params Authorization Headers (&) Body Pre-request Script Tests @

pm.test("Text is present", function(){
‘ pm.expect(['Java', 'Postman']).to.include('Postman')

1
2
31
4

Body Cookies Headers (15) Test Results (1/1)

All Passed Skipped Failed

Text Is present

Let us write an Assertion to check if an array is empty.

Postman

settings

pm.test["Array contains element"], function(){

pm.expect(['Java', 'Postman']).to.be.an('array').that.is.not .empty

1))

Output

The output is given below:

Params Authorization Headers (6) Body Pre-request Script Tests ®

Settings

pm.test("Array contains element", function(){

1
2
31
4

Body Cookies Headers (15) Test Results (1/1)

All Passed Skipped Failed

Sl Array contains element

tutorialspoint

EIMPLYEAGSYLEARMNINIG

pm.expect(['Java', 'Postman']).to.be.an('array').that.is.not.empty

67

Postman

Assertion for Object Verification

Let us write an Assertion for object verification with eql. It is used to compare the
properties of the object i and j in the below example.

pm.test("Equality", function(){
let i = {

"subject" : "Postman"

};

let j= {

"subject" : "Cypress"

};

pm.expect(i).to.not.eql(j);

Output

The output is mentioned below:

Params Authorization Headers (&) Body Pre-request Script Tests @ Settings
1 pm.test("Equality", function(){
2 let 1 = {
3 "subject”: "Postman"
4 }
5 let j = {
6 "subject”: “Cypressr
7 }
8 pm.expect(i).to.not.eq(j)
9 b
10
Body Cookies Headers (15) Test Results (1/1)
All Passed Skipped Failed
S Eqjuality

The property defined for object i is Postman while the property defined for j is Cypress.
Hence, not.eql Assertion got passed.

68

tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

Assertion Types

In Postman, we can apply assertions on different parts of Response. These are explained
below:

Status Code

The assertion for status code is as follows:pm.test["Status Code is 401"],
function(){

pm.response.to.have.status(401)

})

The above assertion passes if the Response status code obtained is 401.

pm.test["Status is Forbidden"], function(){

pm.response.to.have.property('status’', ' Forbidden')

1)

The above assertion is applied on the Response property - status having the value
Forbidden.

Time taken by Response

The assertion for time taken by response is as follows:

pm.test("Response time above 500 milliseconds", function () {

pm.expect(pm.response.responseTime).to.be.above(500)

1)

The above assertion passes if the Response time is above 500ms.

Type of Response Format

The assertion for type of response format is as follows:

pm.test("Response type is JSON", function(){
pm.response.to.be.json;

1)

The above assertion passes if the Response is of JSON type.

Header of Response

The assertion for header of response is as follows:

pm.test("Header Content-Encoding is available", function () {

pm.response.to.have.header("Content-Encoding")

1)

69

|\ tutorials

EIMPLYEAGSYLEARMNINIG

Postman

The above assertion passes if the Response has a header Content-Encoding.

Text of Response

The assertion for text of response is as follows:

pm.test("Response Text", function () {
pm.expect(pm.response.text()).to.include("Tutorialspoint™)

})

The above assertion passes if the Response text contains the text Tutorialspoint.

70

tutorialspoint

EIMPLYEAEYLEARHNINIG

15. Postman — Mock Server

A mock server is not a real server and it is created to simulate and function as a real
server to verify APIs and their responses. These are commonly used if certain responses
need to be verified but are not available on the web servers due to security concerns on
the actual server.

Purpose of Mock Server

A Mock Server is created for the reasons listed below:

e A Mock Server is created if the APIs to be used in Production are still in
development.

e A Mock Server is used if we want to avoid sending requests on real time data.

Benefits of Mock Server

The benefits of Mock Server are listed below:

e Simulation of real API features with examples.

e Mock server can be appended to a Collection.

e Verify APIs with mocking data.

e To identify errors and defects early.

e To identify dependencies in API before it is released for actual usage.

e It is used by engineers to build a prototype for a concept and showcase it to
higher management.

e While developing the front end of an application, the developer should have some
idea on the response features that shall be obtained from the real server on

sending a request. A Mock Server can be really helpful at this time.

Mock Server Creation

Follow the steps given below for creation of mock server in Postman:

Step 1: Click on the New icon from the Postman application. Then, click on Mock
Server.

71

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

API Network

Create New Templates

BUILDING BLOCKS

Request Collection Environment
GET) Create a basic request B Save your requests in a collection for reuse and sharing | ‘:'_I Save values you frequently use in an environment
ADVANCED
API Documentation Mock Server Monitor
I% Create and publish beautiful documentation for your APis @ Create a mack server for your in-development APIs E\/:I Schedule automated tests and check performance of your APIs

Step 2: Select GET from the Method dropdown, enter a Request Path as /user/home,
Response Code as 200, and a Response Body. Then, click on Next.

1. Select a collection to mock

Create a new collection Select an existing collection

Mock servers let you simulate your APl endpoints without having to set up a backend.

Enter request paths for your APl endpoints and then the expected response code and response body to create an example. To add a body or description to the request, click the (=) icon.

Method Request Path Response Code Response Body aes
= GET v {{url}}/ /user/home 200 This is Postman Tutori in Tutoralispoint I X
GET v {{url)/ path 200 Response Bod!

Learn how mock servers and examples can speed up your APl development.

|
Back Next

Step 3: Enter a Mock Server name and click on the Create Mock Server button.

+ Select a collection to mock 2. Set up the mock server 3. Next steps >

Name the mock server

Mock Serveﬂ

Select an environment (optional)

No Environment ¥

Make this mock server private

x-api-key h
Postman API key.

Note: This will create a new environment containing the URL

Save the mock server URL as an environment variable

Add a delay before sending response mulate a network delay

|
Back Create Mock Server,

Step 4: The Mock Server gets created along with the Mock URL. The Copy Mock URL
button is used to copy the Mock link. Click on the Close button to proceed.

72

EIMPLYEAGSYLEARMNINIG

j' tutorialspoint

Postman

& Select a collection to mock v Setup the mock server 3. Next steps

@ Mock server, collection and environment created
To keep things easy, they're all named Mock Server.
Check out your mock server's call logs here: Mock Call Logs [Z

Try it out:

To call the mock server:

Add examples responses to each request that the mock server will return.
Learn what examples are and how to use them

Then Just send a request to the tfollowing URL, tollowed by the request path:
https://05303abe-b842-4c47-ab8c-db2af9334f57. mock.pstmn.io/

Or select the Mock Server environment and enter {{url}} followed by the
request path.

Il Copy Mock URL

Note: Calls to a mock server count against your plan's monthly call limits. Be
sure to check your usage limits,

Step 5: Select Mock Server as the Environment from the No Environment dropdown
and click on Send. The Response code obtained is 200 OK which means that the request
is successful.

Also the Response Body shows the message - This is Postman Tutorial for
Tutorialspoint which is the same as we passed as a Response Body in the Step 2.

Mock Server

GET /user/home X | A oo
» /user/home Examples 1 ¥
GET v {{url}}//user/home Send
Params Authorization Headers (6) Body Pre-request Script Tests Settings
KEY VALUE DESCRIPTION
Key Value Descriptiot
Body Cookies Headers (14) Test Results €l status: 200 0K | Time: 195ms Size: 479 B
Pretty Raw Preview Visualize HTML + 5

1 This is Postman Tutori in Tutoraispoint

&y

Step 6: The value of URL can be obtained by clicking on the eye icon at the right upper
corner of the screen.

73

w Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

| Mock Server v E
* + ooo
Mock Server Edit
url https://05303abe-b842-4c47-ab8c- https://05303abe-b842-4c47-ab8c-
db2af9334f57.mock.pstmn.io db2af9334f57.mock.pstmn.io -‘%—

So the complete request Mock URL should be: https://05303abe-b842-4c47-ab8c-
db2af9334f57.mock.pstmn.io/user/home(represented by {{url}}/user/home in the
address bar in Step 5). We have appended /user/home at the end of the url value since
it is the Request Path we have set for the Mock Server in Step2.

Step 7: We have seen that the Response Body is in text format. We can get the
response in JSON format as well. To achieve this select the option Save as example from
the Save Response dropdown.

Body Cookies Headers (14) Test Results &3 status: 2000K Time: 195ms Size: 479 B Save Response 4
— Save as example
Pretty Raw Preview Visualize HTML =2 "%‘
Save to a file

1 This is Postman Tutori in Tutoraispoint

Step 8: Provide an Example name and select JSON from the Response Body section.

74

i

tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://05303abe-b842-4c47-ab8c-db2af9334f57.mock.pstmn.io/user/home
https://05303abe-b842-4c47-ab8c-db2af9334f57.mock.pstmn.io/user/home

GET /user/home B3 /user/home Example

4 Juser/home

fuser/home Example

EXAMPLE REQUEST
GET v | {url}}//user/home
Params Headers Body

Query Params

. SON
HTML
EXAMPLE RESPONSE
Text
Bod Headers (14) Auto
Pretty Raw review HTML & =

1 This is Postman Tutori in Tutoraispoint

VALU

Postman

Step 9: Add the below Response Body in JSON format. Then click on Save Example.

{

"name": "Tutorialspoint",

"subject": "Postman"

}

m tutorialspoint

75

Postman

Mock Server v @

GET /user/home B /user/home Example X+ e

4 /user/home
Key

EXAMPLE RESPONSE
Body Headers (14)

Pretty Raw Preview JSON =

"name": "Tutorialspoint",
"subject”: "Postman"

BW N

/user/home Example ¥ E

Value Descriptior

(%)

Status 200 OK

m Q

Step 10: Finally, send the GET request on the same endpoint, and we shall receive the
same Response Body as we have passed in the Example request.

The below image shows Response is in HTML format:

GET /user/home X +

» /user/home

IGET A4 {{url}}//user/fhome I

Params Authorization Headers (6)

KEY

Key

Mock Server

Examples 2

Body Pre-request Script Tests Settings

VALUE DESCRIPTION

value Description

Body Cookies Headers (14) Test Results

Pretty Raw Preview Visualize

{
"name": "Tutorialspoint",
"subject": "Postman"

¥

B W N =

Ch Status: 200 OK | Time: 465ms Size: 498 B

HTML =

The below image shows Response is in JSON format:

76

w Mtutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

Mock Server

GET /user/home L J + oo

» fuser/fhome Examples 2 ~

GET v {{url}}//user/nome Hy,

Params Authorization @ Headers (6) Body Pre-request Script Tests Settings

Query Params

KEY VALUE DESCRIPTION
Key Value Description
Body Cookies Headers (14) Test Results €5 status: 2000K Time: 525ms Size: 498 B
Pretty Raw Preview Visualize JSON 5
1) {
2 "name": "Tutorialspeint",
3 "subject": "Postman"
4 |k

Follow the steps given below for Mock Server Creation by example request:

Step 1: Create a Collection and add a request to it.

The details on how to create a Collection is discussed in detail in the Chapter - Postman
Create Collections.

History Collections APls

+ New Collection Trash

Collection1
4 requests

Mock Server

1 request

GET Get Request 1 :

Step 2: Add the endpoint https://postman-echo.com/get?test=123 and send a GET
request.

77

w \tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://postman-echo.com/get?test=123

Postman

» Get Request 1 Examples 0 ~
GET ¥ https://postman-echo.com/get?test=123
Params ® Authorization Headers (7) Body Pre-request Script Tests Settings

Query Params

KEY VALUE DESCRIPTION see
Body Cookies (2) Headers (7) Test Results €3 status: 2000K Time: 215ms Size: 828 B Sav
Pretty Raw Preview Visualize JSON w 5
1
2 "args": {
3 “"test": "123"
- H
5 "headers": {
6 "x-forwarded-proto": "https",
7 "x-forwarded-port": "443",
8 "host": "postman-echo.com",

Step 3: From Response Body, select the option Save as Example from the Save
Response dropdown.

Body Cookies (2) Headers (7) Test Results @3 status: 2000K Time: 215ms Size: 828 B Save Response &
Pretty Raw Preview Visualize JSON ~ 5 _%)_
Save to afile
1 {
2 "args": {
3 "test": "123"
4 3,
5 "headers": {
6 "x-forwarded-proto": "https",
7 "x-forwarded-port": "443",
8 "host": "postman-echo.com",

Step 4: Give an Example name and click on the Save Example button.

No Environment v ©

GET Get Request 1 B Example Get Requestl ® -+ oo
4 Get Request 1 Example Get Request1 ¥ Save Example

Example Get Request1 _(#_

GET ¥ https://postman-echo.com/get?test=123
Params ® Headers Body
Query Params
KEY VALUE DESCRIPTION ees Bulk Edit

test 123

Step 5: Click on the Collection name Mock Server (that we have created) and click on
the Mock tab. Then, click on Create a mock server.

78

tutorialspoint

EIMPLYEAGSYLEARMNINIG

Q, Filter
History Collections APIs
+ New Collection Trash
Collection1
3
4 requests

Mock Server <l

O

1 request coo

GET Get Request

Mock Server

API

Postman

This collection is not linked to any API

Y ENE Run View in web ooo

Documentation Monitors Mocks Changelog

Cﬁ‘ Learn how to mock your requests

This collection is not being mocked

A mock lets you simulate endpoints and their

corresponding responses in a Collection without

actually spinning up a back end.

Create a mock server

Step 6: The Create mock server pop-up comes up. Provide a name to the Mock Server
and then click on the Create Mock Server button.

Please note: We can make a Mock Server private or public. To make a Mock Server
private, we have to check the checkbox Make this mock server private. Then, we

need to utilise the Postman API key.

Create mock serve

Name your mock server

Mock Server1

Select a version tag

CURRENT

Select an environment (optional)

No Environment

I Make this mock server pr\vatel

Add a delav before sendine resnanse

w \tutorialspoint

EIMPLYEAGSYLEARMNINIG

you'll need to add x-api-key

10w {0 generate a Postman API key.

Cancel Create Mock Server I

79

Postman

Step 7: The message - Mock server created shall come up. Also, we shall get the Mock
URL. We can copy it with the Copy Mock URL button. Then, click on Close.

Create mock server

@ Mock server created
Mack server1 has been created for Mock Server collection
Check out your mock server's call logs here: Mack Call Logs (%

To call the mock server:

Add examples responses to each request that the mock server will return. :

Learn what examples are and how to use them

Then just send a request to the following URL, followed by the request path

https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/

Copy Mock URL

Note: Calls to a mock server count against your plan's maonthly call limits. Be
sure to check your usage limits

-

Step 8: The Mock Server which we have created gets reflected under the Mock tab in
the Collections sidebar. Click on the same.

Mock Server X
History Collections APIs API
n :
New Collection Trash m view in web o
Collection
4 requests Documentation Monitaors Mocks Changelog
Mock Server <l @ Learn how to mock your requests C
1 request 600
+ Add moc
GET Get Request 1 Aecmoes

Maock Server1
https://f270f73a-6fdd-4aeZ-aeae-.. _(%)_

Step 9: We shall add a new request and paste the URL we have copied in Step 7. To
send a GET request, we shall append the value - /get at the end of the pasted URL.

For example, here, the Mock URL generated is: https://f270f73a-6fdd-4ae2-aecae-
cb0379234c87.mock.pstmn.io.

Now to send a GET request, the endpoint should be: https://f270f73a-6fdd-4ae2-aeae-
cb0379234c87.mock.pstmn.io/get.

80

tutorialspoint

EIMPLYEAGSYLEARMNINIG

https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/
https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/
https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/get
https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/get

Postman

No Enviror
GET Get Request 1 Example Get Request1 GET https://f270f73a-6fdd-dae2-aea.. @ + o0

Untitled Request

GET v Ihttps:/ffz70f73a-6fdd-4aez-aeae—cbOS?QZM—cS?.mock.pstmn.io/get I =

Params Authorization Headers (7) Body Pre-request Script Tests Settings

Query Params

KEY VALUE DESCRIPTION
Body Cookies (1) Headers (15) Test Results tﬁﬁ 200 OK Time: 480 m:
Pretty Raw Preview Visualize JSON ¥ = ‘}
{
2 "args": {
3 “test": "123"
] H
o

"headers": {
"x-forwarded-proto": "https",
"%-forwarded-port": "443",

a "host": "postman-echo.com",
"x-amzn-trace-id": "Root=1-6075e520-71dc330909193c6a019deeee”,
1 "user-agent": "PostmanRuntime/7.26.8",
1 "accept": "F/*",
13 "postman-token": "d604ef72-904f-4554-9568-2e885bfeab74",
13 "accept-encoding": "gzip, deflate, br",
14 “"cookie": "Cookie 4=value; sails.sid=s%3AqwnptcM2ghx24FszU-Vbbl4ojoTtUKWK. co234SEVx6eQIEcNmfptL52mxXkDUdeKHMPDNbiyiCY"
15 1

The Response Body received by mocking the server is the same as the Example request.

Response obtained in the Example request is as follows:

81

A ' tutorialspoint

EIMPLYEASYLEARNING

Postman

GET Get Request 1 | B3 Example Get Requestl Ix GET https://f270f73a-6fdd-4ae2-aea... @ =+ oo

4 GetRequest 1 n Example Get Request] v
EXAMPLE REQUEST
I GET * | https.//postman-echo.com/get?test=123 I #

Params @ Headers Body

Query Params

KEY VALUE

test 123

Key
EXAMPLE RESPONSE
“Body Headers (1)

Pretty ~ Raw Preview JSoN v S
1 {
2 "args": ff
3 "test": "123"
4 X,
5 "headers": {
6 "x-forwarded-proto": "https",
7 "x-forwarded-port”: "443",
"host": "postman-echo.com”,
9 "x-amzn-trace-id": "Root=1-6075e520-7fdc330909193cha01%desee”,
10 "user-agent"”: "PostmanRuntime/7.26.8",

11 "accept": "F/*",

12 "postman-token": "d604ef72-904f-4554-9568-2e885bfeab74",

13 "accept-encoding": “"gzip, deflate, br",

14 "cookie": "Cookie d=value; sails.sid=s%3AgwnptcM2ghx24FszU-VbbldojoTtUkWK. co234SEVx6eQIEcNmfptL52mxXkDUdeKHMPDNDbiyiCY
15 I8

16 "url": "https://postman-echo.com/get?test=123"

17 1

' tutorialspoint

EIMPLYEASYLEARNING

82

16. Postman — Cookies

The cookies are information sent by the server and stored in the browser. As soon as a
request is sent, the cookies are returned by the server. In Postman, the cookies are
mentioned under the Headers and Cookies tab in the Response.

Let us apply a GET request on an endpoint and find the cookies.

In the Headers tab, the cookie sent by the server is set with the key - set-cookie.

GET ¥ https://postman-echo.com/basic-auth l

Params Authorization Headers (10) Body @ Pre-request Script Tests @ Settings

® none ® form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON ¥

1 Ir]

sody Cookies [1) Test Results _(%_ @h Status: 200 0K Time: 68 ms Size
KEY VALUE
Date (O Tue, 13 Apr 2021 03:02:09 GMT
Content-Type @ application/json; charset=utf-g
Content-Length (© 22
Cannection @ keep-alive =
ETag @ W/"16-s)z8uwjdDvOwvm7//BYdNwBvMbU"
vary @ Accept-Encoding
I set-cookie (D sails.sid=5%3AsljgPEH5871gn9dXDaWaW-UVTx4W4vU6.hWwouOBsMLKDQQOep9DwgRAUMmMxjeFZCNH|sTuGkeFUWg; Path=/; HttpOnIyI

In the Cookies tab, the same cookie details will also get displayed.

GET ¥ https://postman-echo.com/basic-auth S

Params Authorization Headers (10) Body @ Pre-request Script Tests @ Settings Co

@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON ¥
P—

Body Cookies (1) Headers (7) Test Results @‘g, Status: 200 0K Time: 68 ms Size: 356 B Save R{

Name Value Domain Path Expires HttpOnly Secure

sails.sid s%3AsljgPEH587I postman- / Session true false
gnodxDawaw- echo.com
UVTx4WavUe.hw
0uO6MLKDQQOe
pSDwgRAUMmMX]
eFZCNH|sTuGkeF
Uwg

Cookies Management

In Postman, we can manage cookies by addition, deletion, and modification of cookies.
Under the Params tab, we have the Cookies link to perform operations on cookies.
83

' tutorialspoint

EIMPLYEASYLEARNING

Postman

Params Authorization Headers (10) Body @ Pre-request Script Tests @ Settings Code
Query Params _(%,_
KEY VALUE DESCRIPTION sss Bulk Edit

Key Value Description

Click on the Cookies link. MANAGE COOKIES pop-up shall open where all the available
cookies are present with the option to add and delete a cookie.

HAGE COOKIES

Sync cookles directly from your browser with Interceptor Start Lesson x

typicode.com 1 cookie

postman-echo.com 1 cockie

sallssid X + Add Cookie

Cookies Addition

Follow the steps given below for adding cookie in Postman:

Step 1: Click on the Add Cookie button. A text box shall open up with pre-existing
values inside it. We can modify its values and then click on Save.

postman-echo.com 2 cookies

salls.sid X Cookie_3 X

Cookie_Postman=value; Path=/; Domain=.postman-echo.com; Expires=Wed, 13 Apr 2022
03:23:46 GMT;

Cancel Save

Step 2: Send the request again to the server.

The Response code obtained is 200 OK. Also, the Cookies tab in the Response now
shows the newly added cookie — Cookie_Postman.

84

I@) \tutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

GET v https://postman-echo.com/basic-auth Send A

Params Authorization Headers (10) Body @ Pre-request Script Tests @ Settings C

Query Params

KEY VALUE DESCRIPTION ses
Body [Cookies (2) | Headers (7) TestResults @2 status: 2000K Time: 75ms Size: 364 B Save
Name Value Domain Path Expires HttpOnly Secure
Cookie_Postman value postman- / Wed, 13 Apr 2022 false false
echo.com 03:23:46 GMT
sails.sid s%3A_GDZNBL7U postman- / Session true false
HTIb9z_7B54w36 echo.com

QTWnU2YGk.A48

OU3ril820c%2FD

Access Cookies via Program

Cookies can be handled programmatically without using the GUI in Postman. To work
with cookies, we have to first generate a Cookie jar. It is an object which has all the
cookies and methods to access them.

Cookie Jar Creation

The syntax for Cookie Jar Creation is as follows:

const ¢ = pm.cookies.jar();

Cookie Creation

We can create a cookie with the .set() function. It accepts URL, name of cookie, value of
cookie as parameters.

The syntax for cookie creation is as follows:

const ¢ = pm.cookies.jar();

c.set(URL, name of cookie, value of cookie, callback(error, cookie));

Get Cookie

We can get a cookie with the .get() function. It accepts the URL, name of cookie as
parameters. It yields the cookie value.

The syntax for getting a cookie is as follows:

const ¢ = pm.cookies.jar();
c.set(URL, name of cookie, value of cookie, callback(error, cookie));

c.get(URL, name of cookie, callback(error, cookie));

85

]

) tutorialspoint

EIMPLYEAEYLEARHNINIG

Postman

Get All Cookies

We can get all cookies of a specific URL within a Cookie jar with the .getAll() function. It
accepts a URL as a parameter. It yields all the cookie values for that URL.

The syntax for getting all cookies is as follows:

const ¢ = pm.cookies.jar();

c.set(URL, name of first cookie, value of first cookie, callback(error,
cookie));

c.set(URL, name of second cookie, value of second cookie, callback(error,
cookie));

c.getAl1(URL, callback(error, cookie));

Delete Cookie

We can delete a cookie with the .unset() function. It accepts the URL, name of cookie to
be deleted as parameters.

The syntax for deleting cookie is as follows:

const ¢ = pm.cookies.jar();
c.set(URL, name of cookie, value of cookie, callback(error, cookie));

c.unset(URL, name of cookie, callback(error, cookie));

Delete All Cookies

We can delete all cookies of a specific URL with the .clear() function. It accepts a URL as
a parameter. It removes all the cookie values for that URL.

The syntax for deleting all cookies is as follows:

const c = pm.cookies.jar();

c.set(URL, name of first cookie, value of first cookie, callback(error,
cookie));

c.set(URL, name of second cookie, value of second cookie, callback(error,
cookie));

c.clear(URL, callback(error, cookie));

|\ tutorials

EIMPLYEAGSYLEARMNINIG

86

17. Postman — Sessions

A session is a temporary fold that stores values of variables. They are used for the
present instance and have a local scope. In Postman, we can modify the session variable
value to share workspace among teams.

Postman gives the feature of local session share. Even if a Collection can be shared
among teams, the sessions are never shared. Different tokens have to be generated
while a task is to be carried out in a team structure.

A session has a local scope for a user within his Workspace and any modifications he
makes shall not be reflected in the server. In Postman, a session can store Environment
variables, global variables and so on.

We can assign current values to Collection variables and to the global and Environment
variables. To assign a current value to the Collection, click on the three dots appearing
beside the Collection name, then click on Edit.

Collection1 % 1=

4 requests P

v [9 /> Share Collection

(33 Manage Roles

GEl AT Rename Ctrl+E

| Editl

In the EDIT COLLECTION pop-up, move to the Variables tab.

EDIT COLLECTION

Name

Collection1

Description Authorization Pre-request Scripts Tests Variables

These variables are specific to this collection and its requests. Learn more about collection variables.

VARIABLE INITIAL VALUE @ CURRENT VALUE @ see | Persist All | ResetAll

Add a new variable [}

The CURRENT VALUE is local to the user and never in sync with the server of Postman.
We can also replace or modify the INITIAL VALUE with CURRENT VALUE.

87

@ tutorialspoint

EIMPLYEASYLEARNING

Postman

Also, it must be remembered that the INITIAL VALUE gets impacted only if we apply the
option Persist on a variable. After that, it gets in sync with the server of Postman.

tutorialspoint

EIMPLYEAEYLEARHNINIG

88

18. Postman — Newman Overview

Newman is a potential command-line runner used in Postman. We can execute and
verify a Postman Collection from the command-line as well. Newman has features which
are consistent with Postman.

We can run the requests within a Collection from Newman in the same way as in the
Collection Runner. Newman can occupy both the NPM registry and GitHub. We can also
perform Continuous Integration or Deployment with Newman.

A status code of 0 is thrown by Newman if all the execution is done without errors. The
Continuous Integration tools read the status code and accordingly fail/pass a build.

We can add the flag --bail to the Newman to pause on an error encountered in a test
with a status code of 1. This can be interpreted by the CI tools. Newman is based on
node.js and uses npm as a package manager.

Newman Installation

The installation of Newman requires Node.js and npm. Follow the steps given below to
install Newman:

Step 1: Navigate to the link: https://nodejs.org/en/download/current/ for downloading
the Node.js.

a8 https://nodejs.org/en/download/current/ 67% wee ﬁ Q Search

Downloads

Latest Current Version: 15.14.0 (includes npm 7.7.6)

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS Current
Recommended Far Most Users Latest Features
] 4
[S W
Windows Installer macOS Installer Source Code
nodenvi5. 14 0484 ms node~v15.14.0.pke nodevi5180karg:
Windows Installer (.msi) 32-bit g4-bit
Windows Binary (.zip) 32-bit 84-bit
macOSs Installer (.pkg) 64-bit
macOS Binary (.tar.gz) 64-bit
Linux Binaries (x64) 64-bit
Linux Binaries (ARM) ARMvT ARMvE
Source Code node-v15.14.0.tar.gz

89

@ tutorialspoint

EIMPLYEASYLEARNING

https://nodejs.org/en/download/current/

Postman

Step 2: Once the download is completed, execute the below command to verify that the
Node.js is installed properly.

The command for verifying the installation in Windows is as follows:

node --v

The command for verifying the installation in Linux is as follows:

node --version

The below image shows the version v10.15.2 of the Node.js is installed in the system.

S node --version

S

Step 3: The npm is allocated with Node.js so once we download the Node.js then npm
gets downloaded by default. To verify if npm is available in our system, run the below
command:

The command for verifying the installation in Windows is as follows:

npm --v

The command for verifying the installation in Linux is as follows:

npm --version

The below image shows the version 5.8.0 of the npm installed in the system:

S node --version

e

S npm --version

S

Step 4: For installation of Newman, run the below mentioned command:

npm install -g newman.

Step 5: To verify the version of newman, run the below commands:

The command for verifying the installation in Windows is as follows:

newman --v

The command for verifying the installation in Linux is as follows:

newman --version

|\ tutorials

EIMPLYEAGSYLEARMNINIG

90

Postman — Run Collections using Newman

To run Collections using Newman, we have to first launch the Postman application and
click on the three dots available beside the Collection name. The details on how to create
a Collection are discussed in detail in the Chapter - Postman Create Collections.

Run Collections

Follow the steps given below to run collections using Newman:

Step 1: Click on Export.

Collection1 +r 1=

2 requests con

GET Get Request

R

Share Collection

DEL Delete Request

b

Manage Roles

=

Rename Ctrl+E

Edit

T N

Create a fork

—
o

Create Pull Request

=0
o

Merge changes
Add Request
Add Folder

Duplicate Ctri+D

o 7 A

Export |

&3

Manitor Collection
£ Mock Collection

@ Publish Docs

Step 2: Select the option Collection v2.1(recommended) from the EXPORT
COLLECTION pop-up. Click on Export.

91

' tutorialspoint

EIMPLYEASYLEARNING

Postman

EXPORT COLLECTION

Need a better & manageable way to share this? Invite your
0, coworkers and use features like realtime sync, comments, version X

control, etc for better collaboration. Invite Teammates

Collection1 will be exported as a JSON file. Export as:

Collection v1 (deprecated)

Collection v2

L= _Collectionv2 1 (recommendead) |

Learn more about collection formats

Cancel Export

Step 3: Choose a location and then click on Save.

Step 4: Next, we shall export the Environment. Click on the eye icon to the right of the
No Environment dropdown.

o

a8 My Workspace ~ A Invite

Mo Environment v =
GET Get Request b4 t= ooe
» Get Request Examples 0
Step 5: Click on the Edit link in the Globals section.
Mo Environment v @
GET Get Request b4 t s
Environment Add
F Get Rey
Mo active Environment
GET
An environment is a set of variables that allow you to switch the
context of your requests.
Params
Learn more about environments
Query Par
KEY I Globals Edit
No global variables
lakal varishlac ara o cat nf variahlac that ara shaave sailablain o
92

@ Ntutorialspoint

EIMPLYEAGSYLEARMNINIG

Postman

Step 6: MANAGE ENVIRONMENTS pop-up comes up. Enter URL for the VARIABLE
field and https://www.tutorialspoint.com for INITIAL VALUE. Then, click on Download as
JSON.

Finally, choose a preferred location and click on Save.

MAMAGE ENVIRONMENTS

Globals
VARIABLE INITIAL VALUE) CURRENT VALUE)
url https./fesenw tutorialsp... https./Awww tutorialspoint.com
o Use variables to reuse values In different places. Work with the current value of a varlable to prevent

sharing sensitive values with yo

your tearn.

Step 7: Export the Environment to the same location where the Collection resides.

Step 8: From the command-line move to the directory path where the Collection and the
Environment is stored. Then, execute the command given below:

newman run <"file name">.

The file name should always be in inverted quotes; else it shall be taken as a directory
name.

Common command-ine arguments for Newman

The common command-line arguments for Newman are given below:

® To execute a Collection in an Environment, the command is as follows:

newman run <name of Collection> -e <name of Environment>

® To execute a Collection for a number of iterations, the command is as follows:

newman run <name of Collection> -n <iteration count>

® To execute a Collection with data file, the command is as follows:

newman run <name of Collection> --data <name of file> -n <iteration count> -e
<name of Environment>

|\ tutorials

EIMPLYEAGSYLEARMNINIG

93

e Configure delay time in between requests, the command is as follows:

Postman

newman run <name of Collection> -d <time of delay>

tutorialspoint

EIMPLYEAEYLEARHNINIG

94

20. Postman — OAuth 2.0 Authorization

The OAuth 2.0 is an authorization technique available in Postman. Here, we first obtain a
token for accessing the API and then utilise the token to authenticate a request. A token
is used to ensure that a user is authorised to access a resource in the server.

If we make an attempt to access a secured URL without the token, a Response code 401
Unauthorized shall be obtained. To start with, the application passes an authorization
request for the end user to access a resource.

As the application allows the user access, it asks for an access token from the server by
providing user information. In turn, the server yields an access token. The client can
then access the secured data via the access token.

95

' tutorialspoint

EIMPLYEASYLEARNING

