
Postman

 i

Postman

 i

About the Tutorial

Postman is an Application Programming Interface (API) testing tool. This tutorial shall

provide you with a detailed understanding on Postman and its salient features. The

tutorial contains a good amount of examples on all important topics in Postman.

Audience

This tutorial is designed for professionals working in software testing who want to

improve their knowledge on API testing.

Prerequisites

Before going through this tutorial, you should have some insight on how an API works.

Also, an understanding on API testing is needed to start with this tutorial.

Copyright & Disclaimer

 Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Postman

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Postman – Introduction .. 1

Need of Postman ... 1

Working with Postman .. 2

2. Postman — Environment Setup .. 7

Standalone Application ... 7

Chrome Extension ... 11

3. Postman — Environment Variables ... 16

Create Environment .. 16

Environment Variables Scope .. 18

4. Postman — Authorization ... 20

Types of Authorization .. 22

Authorization at Collections .. 27

5. Postman — Workflows ... 30

6. Postman — GET Requests ... 35

Create a GET Request .. 35

7. Postman — POST Requests ... 41

Create a POST Request .. 41

8. Postman — PUT Requests ... 47

Create a PUT Request .. 48

9. Postman — DELETE Requests .. 51

Create a DELETE Request... 51

Postman

 iii

10. Postman — Create Tests for CRUD .. 54

Tests in Postman ... 54

11. Postman — Create Collections .. 57

Create a New Collection .. 57

12. Postman — Parameterize Requests .. 60

Create a Parameter Request ... 60

13. Postman — Collection Runner .. 63

Execute Tests with Collection Runner ... 63

14. Postman — Assertion.. 66

Writing Assertions ... 66

Assertion for Object Verification ... 68

Assertion Types ... 69

15. Postman — Mock Server ... 71

Benefits of Mock Server .. 71

Mock Server Creation .. 71

Example Request ... 77

16. Postman — Cookies .. 83

Cookies Management .. 83

Access Cookies via Program .. 85

17. Postman — Sessions ... 87

18. Postman — Newman Overview .. 89

Newman Installation ... 89

19. Postman — Run Collections using Newman .. 91

Run Collections .. 91

Common command-line arguments for Newman ... 93

20. Postman — OAuth 2.0 Authorization .. 95

Postman

 1

Postman is an Application Programming Interface (API) testing tool. API acts like an

interface between a couple of applications and establishes a connection between them.

Thus, an API is a collection of agreements, functions, and tools that an application can

provide to its users for successful communication with another application. We require

an API whenever we access an application like checking news over the phone, Facebook,

and so on.

Postman was designed in the year 2012 by software developer and entrepreneur

Abhinav Asthana to make API development and testing straightforward. It is a tool for

testing the software of an API. It can be used to design, document, verify, create, and

change APIs.

Postman has the feature of sending and observing the Hypertext Transfer Protocol

(HTTP) requests and responses. It has a graphical user interface (GUI) and can be used

in platforms like Linux, Windows and Mac. It can build multiple HTTP requests – POST,

PUT, GET, PATCH and translate them to code.

Need of Postman

Postman has a huge user base and has become a very popular tool because of the

reasons listed below:

 Postman comes without any licensing cost and is suitable for use for the teams

with any capacity.

 Postman can be used very easily by just downloading it.

 Postman can be accessed very easily by logging into your own account after

installation on the device.

 Postman allows easy maintenance of test suites with the help of collections. Users

can make a collection of API calls which can have varied requests and sub-

folders.

 Postman is capable of building multiple API calls like SOAP, REST, and HTTP.

 Postman can be used for test development by addition of checkpoints to HTTP

response codes and other parameters.

 Postman can be integrated with the continuous integration and either continuous

delivery or continuous deployment (CI/CD) pipeline.

 Postman can be integrated with Newman or Collection Runner which allows

executing tests in much iteration. Thus we can avoid repeated tests.

 Postman has big community support.

 The Postman console allows debugging test steps.

1. Postman – Introduction

Postman

 2

 With Postman, we can create more than one environment. Thus, a single

collection can be used with various configurations.

 Postman gives the option to import/export Environments and Collections,

enabling easy sharing of files.

Working with Postman

To start working with Postman, we have the navigations as shown below. It primarily

consists of four sections:

 Header

 Response

 Sidebar

 Builder

Given below is the screenshot of the navigations available in Postman:

Header

Postman consists of New, Import, Runner (used to execute tests with Collection Runner),

Open New, Interceptor, Sync menus, and so on. It shows the workspace name – My

Workspace along with the option for Invite for sharing it among teams.

New menu is used to create a new Environment, Collection or request. The Import menu

helps to import an Environment/Collection.

Postman

 3

We can import from a File, Folder, Link, Raw text or from Code repository options which

are also available under Import.

Here, Open New is used to open a new tab, Postman or a Runner Window.

Postman

 4

Response

Response section shall have values populated only when a request is made. It generally

contains the Response details.

Sidebar

Sidebar consists of Collections (used to maintain tests, containing folders, sub-folders,

requests), History (records all API requests made in the past), and APIs.

Postman

 5

Builder

Builder is the most important section of the Postman application. It has the request tab

and displays the current request name. By default, Untitled Request is mentioned if no

title is provided to a request.

The Builder section also contains the request type (GET, POST, PUT, and so on) and URL.

A request is executed with the Send button. If there are any modifications done to a

request, we can save it with the Save button.

The Builder section has the tabs like Param, Authorization, Headers, Body, Pre-req.,

Tests and Settings. The parameters of a request in a key-value pair are mentioned

within the Params tab. The Authorization for an API with username, password, tokens,

and so on are within the Authorization tab.

Postman

 6

The request headers, body are defined within the Headers and Body tab respectively.

Sometimes, there are pre-condition scripts to be executed prior to a request. These are

mentioned within the Pre-req. tab.

The Tests tab contains scripts that are run when a request is triggered. This helps to

validate if the API is working properly and the obtained data and Response code is

correct.

Postman

 7

Postman can be installed in operating systems like Mac, Windows and Linux. It is

basically an independent application which can be installed in the following ways:

 Postman can be installed from the Chrome Extension (will be available only in

Chrome browser).

 It can be installed as a standalone application.

Standalone Application

To download Postman as a standalone application in Windows, navigate to the following

link https://www.postman.com/downloads/

Then, click on Download the App button. As per the configuration of the operating

system, select either the Windows 32-bit or Windows 64-bit option.

The pop-up to save the executable file gets opened. Click on Save File.

2. Postman — Environment Setup

https://www.postman.com/downloads/

Postman

 8

As the download is completed successfully, the executable file gets generated.

Double-click on it for installation.

After installation, the Postman landing screen opens. Also, we have to sign up here.

There are two options to create a Postman account, which are as follows:

 Click on the Create free account.

 Use the Google Account.

Postman

 9

Proceed with the steps of account creation and enter relevant details like name, role, and

so on.

Postman

 10

Finally, we shall land to the Start screen of Postman. The following screen will appear on

your computer:

Postman

 11

Chrome Extension

To download Postman as a Chrome browser extension, launch the below link in Chrome:

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomo

p?.

Then, click on Add to Chrome.

A pop-up gets displayed, click on the Add app button.

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop

Postman

 12

Chrome Apps page gets launched, along with the Postman icon. Next, we have to click

on the Postman icon.

Installation of Postman kicks off.

Postman

 13

Once the installation is completed, the Postman registration page is opened. We can

either proceed with the registration as explained previously (while installing Postman as

a standalone application) or skip it by clicking on the link Take me straight to the app.

We can create an account later.

Postman

 14

Registration is an important step as it enables access to user data from other machines.

Next, the Postman welcome page opens up.

Postman

 15

Once we close the pop-up and move to the following page, we get the message -

Chrome apps are being deprecated.

It is always recommended to install Postman as a standalone application rather than a

Chrome extension.

Postman

 16

Variables give the option to hold and repeat parameters in the requests, collections,

scripts and so on. If we need to modify a value, we need to do it in only one place. Thus,

the variables help to minimise the chance of errors and increase efficiency.

In Postman, an environment consists of a key-value pair. It helps to identify each

request separately. As we create environments, we can modify key-value pairs and that

will produce varied responses from the same request.

The key in the key-value pair in the environment is known as the Environment variable.

There can be multiple environments and each of them can also have multiple variables.

However, we can work with a single environment at one time.

In short, an environment allows the execution of requests and collections in a varied

data set. We can create environments for production, testing and development. Each of

these environments will have different parameters like URL, password, and so on.

Create Environment

Follow the steps given below to create an environment in Postman:

Step 1: Navigate to the New menu and then click on Environment.

Step 2: MANAGE ENVIRONMENTS pop-up gets opened. We have to enter the

Environment name. Then, add a variable name and value.

Here, we have added the variable u and the value as

https://jsonplaceholder.typicode.com/users. Close the pop-up.

3. Postman — Environment Variables

https://jsonplaceholder.typicode.com/users

Postman

 17

Step 3: The new Environment (ENV1) gets reflected as one of the items in the No

Environment dropdown.

Step 4: Select the ENV1 environment and enter {{u}} in the address bar. To utilise

an Environment variable in a request, we have to enclose it with double curly braces

({{<Environment variable name>}}).

Step 5: Then, click on Send. This variable can be used instead of the actual URL. We

have received the Response code 200 0K (meaning the request is successful).

Postman

 18

Environment Variables Scope

The scope of an Environment variable is within the environment for which it is created.

This means it has a local scope confined to that environment. If we select another

environment, and try to access the same Environment variable, we shall get an error.

In this chapter, we have created an Environment variable u within the ENV1

environment and on sending a GET request, we got the desired response.

However, if we try to use the same Environment variable u from another Environment,

say Environment_Test, we will receive errors.

The following screen shows the error, which we may get if we use the same Environment

variable u from another environment:

Postman

 19

Postman

 20

In Postman, authorization is done to verify the eligibility of a user to access a resource in

the server. There could be multiple APIs in a project, but their access can be restricted

only for certain authorized users.

The process of authorization is applied for the APIs which are required to be secured.

This authorization is done for identification and to verify, if the user is entitled to access

a server resource.

This is done within the Authorization tab in Postman, as shown below:

In the TYPE dropdown, there are various types of Authorization options, which are as

shown below:

4. Postman — Authorization

Postman

 21

Let us now create a POST request with the APIs from GitHub Developer having an

endpoint https://www.api.github.com/user/repos. In the Postman, click the Body tab

and select the option raw and then choose the JSON format.

Add the below request body:

 {

 "name" : "Tutorialspoint"

 }

Then, click on Send.

https://www.api.github.com/user/repos

Postman

 22

The Response code obtained is 401 Unauthorized. This means, we need to pass

authorization to use this resource. To authorize, select any option from the TYPE

dropdown within the Authorization tab.

Types of Authorization

Let us discuss some of the important authorization types namely Bearer Token and Basic

Authentication.

Bearer Token

For Bearer Token Authorization, we have to choose the option Bearer Token from the

TYPE dropdown. After this, the Token field gets displayed which needs to be provided in

order to complete the Authorization.

Step 1: To get the Token for the GitHub API, first login to the GitHub account by

clicking on the link given herewith: https://github.com/login.

Step 2: After logging in, click on the upper right corner of the screen and select the

Settings option.

Now, select the option Developer settings.

Postman

 23

Next, click on Personal access tokens.

Now, click on the Generate new token button.

Provide a Note and select option repo. Then, click on Generate Token at the bottom of

the page.

Finally, a Token gets generated.

Postman

 24

Copy the Token and paste it within the Token field under the Authorization tab in

Postman. Then, click on Send.

Please note: Here, the Token is unique to a particular GitHub account and should not be

shared.

Response

The Response code is 201 Created which means that the request is successful.

Basic Authentication

Postman

 25

For Basic Authentication Authorization, we have to choose the option Basic Auth from

the TYPE dropdown, so that the Username and Password fields get displayed.

First we shall send a GET request for an endpoint (https://postman-echo.com/basic-

auth) with the option No Auth selected from the TYPE dropdown.

Please note: The username for the above endpoint is postman and password is

password.

The Response Code obtained is 401 Unauthorized. This means that Authorization did

not pass for this API.

Now, let us select the option Basic Auth as the Authorization type, following which the

Username and Password fields get displayed.

Enter the postman for the Username and password for the Password field. Then, click on

Send.

The Response code obtained is now 200 OK, which means that our request has been

sent successfully.

No Auth

We can also carry out Basic Authentication using the request Header. First, we have to

choose the option as No Auth from the Authorization tab. Then in the Headers tab, we

have to add a key: value pair.

We shall have the key as Authorization and the value is the username and password of

the user in the format as basic <encoded credential>.

Postman

 26

The endpoint used in our example is: https://postman-echo.com/basic-auth. To encode

the username and password, we shall take the help of the third party application having

the URL: https://www.base64encode.org

Please note: The username for our endpoint here is postman and password is password.

Enter postman: password in the edit box and click on Encode. The encoded value gets

populated at the bottom.

We shall add the encoded Username and Password received as

cG9zdG1hbjpwYXNzd29yZA== in the Header in the format - basic

cG9zdG1hbjpwYXNzd29yZA==. Then, click on Send.

https://postman-echo.com/basic-auth
https://www.base64encode.org/

Postman

 27

No Auth selected from the TYPE dropdown.

The Response code obtained is 200 OK, which means that our request has been sent

successfully.

Authorization at Collections

To add Authorization for a Collection, following the steps given below:

Step 1: Click on the three dots beside the Collection name in Postman and select the

option Edit.

Postman

 28

Step 2: The EDIT COLLECTION pop-up comes up. Move to the Authorization tab and

then select any option from the TYPE dropdown. Click on Update.

Postman

 29

Postman

 30

In a Postman Collection, the requests are executed in the order in which they appear.

Every request is run first by the order of the folder followed by any request at the

Collection root.

Let us create a Collection (Collection1) with four requests. The details on how to create a

Collection is discussed in detail in the Chapter about Create Collections.

Step 1: Click on the arrow appearing to the right of the Collection name in the sidebar.

Then, click on Run button to trigger execution of requests within the Collection.

Step 2: The Collection Runner pop-up comes up. The RUN ORDER section shows the

order in which the requests shall get executed from top to the bottom. (GET->POST-

>DEL->PUT). Click on the Run Collection1 button.

5. Postman — Workflows

Postman

 31

Step 3: Execution Results show the GET request executed first, followed by POST, then

DEL and finally PUT, as mentioned in the RUN ORDER section in the Step 2.

Postman

 32

If we want to change the order of the request to be executed (for example, first the Get

Request shall run, followed by Create User, then Update Request and finally the Delete

Request). We have to take the help of the function postman.setNextRequest().

This function has the feature to state which request shall execute next. The request

name to be executed next is passed as a parameter to this function. As per the

workflow, we have to add this function either in the Tests or Pre-request Script tab under

the endpoint address bar in Postman.

The syntax for execution of a request in Postman is as follows:

postman.setNextRequest("name of request")

Implementation of a Workflow

The implementation of a workflow in Postman is explained below in a step wise manner:

Step 1: Add the below script under the Tests tab, for the request – Create User.

postman.setNextRequest("Update Request")

The following screen will appear:

Step 2: Add the below script under the Tests tab, for the request – Update Request.

postman.setNextRequest("Delete Request")

The following screen will appear:

Postman

 33

Output of Workflow

Given below is the output of the workflow:

The output shows that Update Request and Delete Request are running in an infinite loop

until we stop it by clicking the Stop Run button.

Infinite Workflow Loop

If we want to stop the infinite Workflow loop via script, we have to add the below script

for the request – Delete Request.

postman.setNextRequest(null)

The following screen will appear:

Postman

 34

Again run the same Collection and output shall be as follows:

The output shows the order of execution as Get Request, Create User, Update Request

and finally Delete Request.

Postman

 35

A GET request is used to obtain details from the server and does not have any impact on

the server. The GET request does not update any server data while it is triggered. The

server only sends its Response to the request.

Create a GET Request

Follow the steps given below to create a GET request successfully in Postman:

Step 1: Click on the New menu from the Postman application. The Create New pop-up

comes up. Then click on the Request link.

Step 2: SAVE REQUEST pop-up comes up. Enter the Request name then click on Save.

6. Postman — GET Requests

Postman

 36

Step 3: The Request name (Test1) gets reflected on the Request tab. We shall then

select the option GET from the HTTP request dropdown.

Postman

 37

Step 4: Enter an URL - https://www.tutorialspoint.com/index.htm in the address bar

and click on Send.

Response

Once a request has been sent, we can see the response code 200 OK populated in the

Response. This signifies a successful request and a correct endpoint. Also, information on

the time consumed to complete the request (223 ms) and payload size (20.75 KB) are

populated.

https://www.tutorialspoint.com/index.htm

Postman

 38

On hovering over the response time, we can see the time taken by different events like

DNS Lookup, SSL Handshake and so on.

On hovering over the payload size, the details on the size of response, headers, Body,

and so on are displayed.

Postman

 39

The Response Body contains the sub-tabs – Pretty, Raw and Preview. The Pretty format

shows color formatting for keywords and indentation for easy reading. The Raw format

displays the same data displayed in the Pretty tab but without any color or indentation.

The Preview tab shows the preview of the page.

Raw tab

The following screen will appear:

Postman

 40

Preview tab

The following screen will appear:

The Response also contains the Cookies, Headers and Test Results.

Postman

 41

Postman POST request allows appending data to the endpoint. This is a method used to

add information within the request body in the server. It is commonly used for passing

delicate information.

Once we send some the request body via POST method, the API in turn yields certain

information to us in Response. Thus, a POST request is always accompanied with a body

in a proper format.

Create a POST Request

Follow the steps given below to create a POST request successfully in Postman:

Step 1: Click on the New menu from the Postman application. The Create New pop-up

comes up. Then, click on the Request link.

Step 2: SAVE REQUEST pop-up comes up. Enter the Request name then click on Save.

7. Postman — POST Requests

Postman

 42

Step 3: The Request name (Test1) gets reflected on the Request tab. Also, we shall

select the option POST from the HTTP request dropdown.

Then, enter an URL https://jsonplaceholder.typicode.com/users in the address bar.

Step 4: Move to the Body tab below the address bar and select the option raw.

Postman

 43

Step 5: Then, choose JSON from the Text dropdown.

Step 6: Copy and paste the below information in the Postman Body tab.

{

 "id": 11,

 "name": "Tutorialspoint",

 "username": "Test1",

 "email": "abc@gmail.com",

 "address": {

 "street": "qa street",

 "suite": "Apt 123",

 "city": "Kochi",

Postman

 44

 "zipcode": "49085",

 "geo": {

 "lat": "-3.3155",

 "lng": "94.156"

 }

 },

 "phone": "99599125",

 "website": "Tutorialspoint.com",

 "company": {

 "name": "Tutorialspoint",

 "catchPhrase": "Simple Easy Learning",

 "bs": "Postman Tutorial"

 }

 }

The above data that is being sent via POST method is only applicable to the endpoint:

https://jsonplaceholder.typicode.com/users.

To pass the data in the correct JSON format, we can use the Jsonformatter available in

the below link:

https://jsonformatter.curiousconcept.com/

https://jsonplaceholder.typicode.com/users
https://jsonformatter.curiousconcept.com/

Postman

 45

Step 7: Click on the Send button.

Response

Once a request has been sent, we can see the response code 201 Created populated in

the Response. This signifies a successful request and the request we have sent has been

accepted by the server.

Also, information on the time consumed to complete the request (347 ms) and payload

size (1.61 KB) are populated.

Postman

 46

We can see that the Response body is the same as the request body which we have sent

to the server.

Postman

 47

A Postman PUT request is used to pass data to the server for creation or modification of

a resource. The difference between POST and PUT is that POST request is not

idempotent.

This means invoking the same PUT request numerous times will always yield the same

output. But invoking the same POST request numerous times will create the similar

resource more than one time.

Before creating a PUT request, we shall first send a GET request to the server on an

endpoint: http://dummy.restapiexample.com/api/v1/employees. The details on how to

create a GET request is explained in detail in the Chapter – Postman GET Requests.

On applying the GET method, the Response body obtained is as follows:

Now, let us update the employee_salary and employee_age for the id 21 with the

help of the PUT request.

8. Postman — PUT Requests

http://dummy.restapiexample.com/api/v1/employees

Postman

 48

Create a PUT Request

Follow the steps given below to create a PUT request in Postman successfully:

Step 1: Click on the New menu from the Postman application. The Create New pop-up

comes up. Then, click on the Request link.

Step 2: SAVE REQUEST pop-up comes up. Enter the Request name then click on Save.

Step 3: The Request name (Test1) gets reflected on the Request tab. We shall select

the option PUT from the HTTP request dropdown.

Then enter the URL - http://dummy.restapiexample.com/api/v1/update/21 (endpoint for

updating the record of id 21) in the address bar.

http://dummy.restapiexample.com/api/v1/update/21/

Postman

 49

It must be noted that in a PUT request, we have to mention the id of the resource in the

server which we want to update in the URL.

For example, in the above URL we have added the id 21.

Step 4: Move to the Body tab below the address bar and select the option raw.

Step 5: Then, choose JSON from the Text dropdown.

Postman

 50

Step 6: Copy and paste the below information in the Postman Body tab.

{ "name": "Jenette Caldwell","salary": "2000","age": "15"}

The overall parameters to be set for a PUT request are shown below:

Step 7: Click on the Send button.

Response

Once a request has been sent, we can see the response code 200 OK populated in the

Response body. This signifies a successful request and the request we have sent has

been accepted by the server.

Also, information on the time consumed to complete the request (673 ms) and payload

size (705 B) are populated. The Response body shows the salary and age got updated to

2000 and 15 respectively for the employee having id 21.

Postman

 51

Postman DELETE request deletes a resource already present in the server. The DELETE

method sends a request to the server for deleting the request mentioned in the

endpoint. Thus, it is capable of updating data on the server.

Before creating a DELETE request, we shall first send a GET request to the server on the

endpoint: http://dummy.restapiexample.com/api/v1/employees. The details on how to

create a GET request is explained in detail in the Chapter onGET Requests.

On applying the GET method, the below Response Body is obtained:

Let us delete the record of the id 2 from the server.

Create a DELETE Request

Follow the steps given below to create a DELETE request in Postman successfully:

Step 1: Click on the New menu from the Postman application. The Create New pop-up

comes up. Then, click on the Request link.

9. Postman — DELETE Requests

http://dummy.restapiexample.com/api/v1/employees

Postman

 52

Step 2: SAVE REQUEST pop-up comes up. Enter the Request name then click on Save.

Step 3: The Request name (Test1) gets reflected on the Request tab. We shall select

the option DELETE from the HTTP request dropdown.

Then enter the URL - http://dummy.restapiexample.com/api/v1/delete/2 (endpoint for

deleting the record of id 2) in the address bar.

Here, in the DELETE request, we have mentioned the id of the resource in the server

which we want to delete in the URL.

Postman

 53

Step 4: Click on the Send button.

Response

Once a request has been sent, we can see the Response code 200 OK populated in the

Response. This signifies a successful request and the request we have sent has been

accepted by the server.

Also, information on the time consumed to complete the request (734 ms) and payload

size (652 B) are populated. The Response shows the status as success. The record id 2

gets deleted from the server.

After deletion of the record with id 2, if we run the GET request on the endpoint:

http://dummy.restapiexample.com/api/v1/employee/2, we shall receive 401

Unauthorized status code.

Postman

 54

CRUD stands for Create, Retrieve, Update and Delete operations on any website

opened in a browser. Whenever we launch an application, the retrieve operation is

performed.

On creating data, for example, adding a new user for a website, the create operation is

performed. If we are modifying the information, for example, changing details of an

existing customer in a website, the update operation is performed.

Finally, to eliminate any information, for example, deleting a user in a website, the

delete operation is carried out.

To retrieve a resource from the server, the HTTP method – GET is used (discussed in

details in the Chapter – Postman GET Requests). To create a resource in the server, the

HTTP method – POST is used (discussed in details in the Chapter – Postman POST

Requests).

To modify a resource in the server, the HTTP method – PUT is used (discussed in details

in the Chapter – Postman PUT Requests). To delete a resource in the server, the HTTP

method – DELETE is used (discussed in details in the Chapter – Postman DELETE

Requests).

Tests in Postman

A Postman test is executed only if a request is successful. If a Response Body is not

generated, it means our request is incorrect and we will not be able to execute any test

to validate a Response.

In Postman, tests are developed in JavaScript and can be developed using the JavaScript

and Functional methods. Both the techniques are based on the language JavaScript.

JavaScript Method

Follow the steps given below to develop tests in Javascript:

Step 1: Tests developed in the JavaScript method are mentioned within the Tests tab

under the address bar.

10. Postman — Create Tests for CRUD

Postman

 55

Step 2: Add the below JavaScript verifications within the Tests tab:

 tests["Status Code should be 200"] = responseCode.code === 200

 tests["Response time lesser than 10ms"] = responseTime<10

We can add one or more than one test for a particular request.

Here, tests is a variable of type array which can hold data types- integer, string, Boolean

and so on. The Status Code should be 200 and Response time lesser than 10ms are the

names of the tests. It is recommended to give meaningful names to test.

The responseCode.code is the response code obtained in the Response and the

responseTime is the time taken to get the Response.

Step 3: Select the GET method and enter an endpoint then click on Send.

Response

In the Response, click on the Test Results tab:

The Test Results tab shows the test which has passed in green and the test which has

failed in red. The Test Results (1/2) means one out of the two tests has passed.

Postman

 56

Response shows the status as 200 OK and Response time as 129ms (the second test

checks if the Response time is less than 10ms).

Hence, the first test got passed and the second one failed along with the Assertion error.

Functional Method

Follow the steps given below to develop a test in with functional method:

Step 1: Tests developed in the Functional method are mentioned within the Tests tab

under the address bar.

Step 2: Add the below code within the Tests tab:

 pm.test["Status Code is 401"], function(){

 pm.response.to.have.status(401)

 })

Here, pm.test is the function for the test being performed. Status Code is 401 and it is

the name of the test which shall be visible in the Test Result after execution.

The pm.response is used for obtaining the response and adding assertions on it to

verify the header, code, status, and so on.

Step 3: Select the GET method and enter an endpoint then click on Send.

Response

In the Response, click on the Test Results tab:

The Test Results tab shows the test in red as the test has failed. The Test Results (0/1)

means zero out of the one test has passed. Response shows the status as 200 OK (the

test checks if the response code is 401).

Hence the test shows failed along with the Assertion error.

Postman

 57

A group of requests that have been saved and organized into folders is known as the

Collections. It is similar to a repository. Thus, Collections help to maintain the API tests

and also split them easily with teams.

Create a New Collection

Follow the steps given below to create a new collection in Postman:

Step 1: Click on the New icon from the Postman application. The Create New pop-up

comes up. Then click on the Collection link.

Step 2: CREATE A NEW COLLECTION pop-up comes up. Enter a Collection Name and

click on the Create button.

Step 3: The Collection name and the number of requests it contains are displayed in the

sidebar under the Collections tab.

11. Postman — Create Collections

Postman

 58

Step 4: To the right of the Collection name, we have the options like Share, Run and so

on available. Click on the three dots to get more options to select.

Step 5: Click on Add Request. The SAVE REQUEST pop-up comes up. Enter Request

Name and select the Collection we have created. Then, click on the Save to Collection1

button.

Postman

 59

Step 6: The Collection with its request gets displayed to the side bar under the

Collections tab.

Postman

 60

We can parameterize Postman requests to execute the same request with various sets of

data. This is done with the help of variables along with parameters. A parameter is a

part of the URL used to pass more information to the server.

The data can be used in the form of a data file or an Environment variable.

Parameterization is an important feature of Postman and helps to eliminate redundant

tests. Parameters are enclosed in double curly braces {{parameter}}.

Example

Let us take an example of an URL: https://www.tutorialspoint.com/index.htm. We shall

create a variable as url then use it for parameterization of request. We can refer to it in

the format {{url}} in Postman.

A parameter is in the form of a key-value pair. So to point to the URL:

https://www.tutorialspoint.com/index.htm, we can mention it as {{url}}/index.htm. So

here, the url is the key and the value set is https://www.tutorialspoint.com.

Create a Parameter Request

Follow the steps given below to create a parameter request in Postman:

Step 1: Click on the eye icon to the right of the Environment dropdown in the top right

corner in the Postman application.

Step 2: Click on the Edit link in the Globals section.

12. Postman — Parameterize Requests

https://www.tutorialspoint.com/index.htm
https://www.tutorialspoint.com/index.htm

Postman

 61

Step 3: MANAGE ENVIRONMENTS pop-up comes up. Enter URL for the VARIABLE

field and https://www.tutorialspoint.com for INITIAL VALUE. Then, click on Save.

Step 4: Click on close to move to the next screen.

Step 5: In the Http Request tab, enter {{url}}/index.htm in the address bar. Select

the GET method and click on Send.

Response

Once a request has been sent, we can see the response code 200 OK populated in the

Response. This signifies a successful request and a correct endpoint.

Postman

 62

Postman

 63

Postman Collection Runner is used to execute a Collection having multiple requests

together. All the requests within a Collection will be executed simultaneously. The

Collection Runner does not produce any Response Body.

The Collection Runner console displays the test results for individual requests. It is

mandatory to have more than one request within the Collection to work with Collection

Runner.

The details on how to create a Collection is discussed in detail in the Chapter on Create

Collections.

Execute Tests with Collection Runner

Follow the steps given below to execute the tests with Collection Runner in Postman:

Step 1: Click on the Runner menu present at the top of the Postman application.

Step 2: The Collection Runner screen shall appear.

13. Postman — Collection Runner

Postman

 64

Step 3: Select the Collection name from Choose a collection or folder.

Step 4: Select an environment from the Environment dropdown to run the requests in a

particular environment. Then, specify the number of times we need to iterate the

request. We can also set a delay time in milliseconds for the requests.

Step 5: If we have data in a file, then we have to choose the file type from Data. Then,

click on the Run Collection1 button.

Postman

 65

Step 6: The Run Results page shall come up. Depending on the delay time provided, the

tests should get executed.

The test results (Pass/Fail) should be displayed for each iteration. The pass status is

represented in green and failed ones are represented in red. If there is no test

implemented for a particular request, then it shall display the message as - This

request does not have any tests.

This is the environment in which the tests are executed and the Collection names are

visible at the top of the Collection Runner. For each request, the status code, time taken,

payload size, and test verification are also displayed.

Postman

 66

Assertions are used to verify if the actual and expected values have matched after the

execution of a test. If they are not matching, the test shall fail and we shall get the

reason for failure from the output of the test.

An assertion returns a Boolean value of either true or false. In Postman, we can take the

help of JavaScript Chai Assertion Library to add assertions in our tests. It is available in

the Postman application automatically.

The Chai – Assertions are easily comprehensible as they are defined in a human

readable format. The Assertions in Postman are written within the Tests tab under the

address bar.

The documentation for Chai is available in the following link:

https://www.chaijs.com/

Writing Assertions

Let us write an assertion to check if a particular text - Postman is within an array

of strings.

pm.test["Text is present"], function(){

 pm.expect(['Java', 'Postman']).to.include('Postman')

 })

Output

The output is as follows:

14. Postman — Assertion

Postman

 67

Let us write an Assertion to check if an array is empty.

pm.test["Array contains element"], function(){

 pm.expect(['Java', 'Postman']).to.be.an('array').that.is.not .empty

 })

Output

The output is given below:

Postman

 68

Assertion for Object Verification

Let us write an Assertion for object verification with eql. It is used to compare the

properties of the object i and j in the below example.

pm.test("Equality", function(){

let i = {

"subject" : "Postman"

};

let j= {

"subject" : "Cypress"

};

pm.expect(i).to.not.eql(j);

Output

The output is mentioned below:

The property defined for object i is Postman while the property defined for j is Cypress.

Hence, not.eql Assertion got passed.

Postman

 69

Assertion Types

In Postman, we can apply assertions on different parts of Response. These are explained

below:

Status Code

The assertion for status code is as follows:pm.test["Status Code is 401"],

function(){

 pm.response.to.have.status(401)

 })

The above assertion passes if the Response status code obtained is 401.

pm.test["Status is Forbidden"], function(){

 pm.response.to.have.property('status', ' Forbidden')

 })

The above assertion is applied on the Response property – status having the value

Forbidden.

Time taken by Response

The assertion for time taken by response is as follows:

pm.test("Response time above 500 milliseconds", function () {

 pm.expect(pm.response.responseTime).to.be.above(500)

})

The above assertion passes if the Response time is above 500ms.

Type of Response Format

The assertion for type of response format is as follows:

 pm.test("Response type is JSON", function(){

 pm.response.to.be.json;

 })

The above assertion passes if the Response is of JSON type.

Header of Response

The assertion for header of response is as follows:

pm.test("Header Content-Encoding is available", function () {

 pm.response.to.have.header("Content-Encoding")

})

Postman

 70

The above assertion passes if the Response has a header Content-Encoding.

Text of Response

The assertion for text of response is as follows:

pm.test("Response Text", function () {

 pm.expect(pm.response.text()).to.include("Tutorialspoint")

})

The above assertion passes if the Response text contains the text Tutorialspoint.

Postman

 71

A mock server is not a real server and it is created to simulate and function as a real

server to verify APIs and their responses. These are commonly used if certain responses

need to be verified but are not available on the web servers due to security concerns on

the actual server.

Purpose of Mock Server

A Mock Server is created for the reasons listed below:

 A Mock Server is created if the APIs to be used in Production are still in

development.

 A Mock Server is used if we want to avoid sending requests on real time data.

Benefits of Mock Server

The benefits of Mock Server are listed below:

 Simulation of real API features with examples.

 Mock server can be appended to a Collection.

 Verify APIs with mocking data.

 To identify errors and defects early.

 To identify dependencies in API before it is released for actual usage.

 It is used by engineers to build a prototype for a concept and showcase it to

higher management.

 While developing the front end of an application, the developer should have some

idea on the response features that shall be obtained from the real server on

sending a request. A Mock Server can be really helpful at this time.

Mock Server Creation

Follow the steps given below for creation of mock server in Postman:

Step 1: Click on the New icon from the Postman application. Then, click on Mock

Server.

15. Postman — Mock Server

Postman

 72

Step 2: Select GET from the Method dropdown, enter a Request Path as /user/home,

Response Code as 200, and a Response Body. Then, click on Next.

Step 3: Enter a Mock Server name and click on the Create Mock Server button.

Step 4: The Mock Server gets created along with the Mock URL. The Copy Mock URL

button is used to copy the Mock link. Click on the Close button to proceed.

Postman

 73

Step 5: Select Mock Server as the Environment from the No Environment dropdown

and click on Send. The Response code obtained is 200 OK which means that the request

is successful.

Also the Response Body shows the message – This is Postman Tutorial for

Tutorialspoint which is the same as we passed as a Response Body in the Step 2.

Step 6: The value of URL can be obtained by clicking on the eye icon at the right upper

corner of the screen.

Postman

 74

So the complete request Mock URL should be: https://05303abe-b842-4c47-ab8c-

db2af9334f57.mock.pstmn.io/user/home(represented by {{url}}/user/home in the

address bar in Step 5). We have appended /user/home at the end of the url value since

it is the Request Path we have set for the Mock Server in Step2.

Step 7: We have seen that the Response Body is in text format. We can get the

response in JSON format as well. To achieve this select the option Save as example from

the Save Response dropdown.

Step 8: Provide an Example name and select JSON from the Response Body section.

https://05303abe-b842-4c47-ab8c-db2af9334f57.mock.pstmn.io/user/home
https://05303abe-b842-4c47-ab8c-db2af9334f57.mock.pstmn.io/user/home

Postman

 75

Step 9: Add the below Response Body in JSON format. Then click on Save Example.

{

 "name": "Tutorialspoint",

 "subject": "Postman"

}

Postman

 76

Step 10: Finally, send the GET request on the same endpoint, and we shall receive the

same Response Body as we have passed in the Example request.

The below image shows Response is in HTML format:

The below image shows Response is in JSON format:

Postman

 77

Example Request

Follow the steps given below for Mock Server Creation by example request:

Step 1: Create a Collection and add a request to it.

The details on how to create a Collection is discussed in detail in the Chapter – Postman

Create Collections.

Step 2: Add the endpoint https://postman-echo.com/get?test=123 and send a GET

request.

https://postman-echo.com/get?test=123

Postman

 78

Step 3: From Response Body, select the option Save as Example from the Save

Response dropdown.

Step 4: Give an Example name and click on the Save Example button.

Step 5: Click on the Collection name Mock Server (that we have created) and click on

the Mock tab. Then, click on Create a mock server.

Postman

 79

Step 6: The Create mock server pop-up comes up. Provide a name to the Mock Server

and then click on the Create Mock Server button.

Please note: We can make a Mock Server private or public. To make a Mock Server

private, we have to check the checkbox Make this mock server private. Then, we

need to utilise the Postman API key.

Postman

 80

Step 7: The message – Mock server created shall come up. Also, we shall get the Mock

URL. We can copy it with the Copy Mock URL button. Then, click on Close.

Step 8: The Mock Server which we have created gets reflected under the Mock tab in

the Collections sidebar. Click on the same.

Step 9: We shall add a new request and paste the URL we have copied in Step 7. To

send a GET request, we shall append the value - /get at the end of the pasted URL.

For example, here, the Mock URL generated is: https://f270f73a-6fdd-4ae2-aeae-

cb0379234c87.mock.pstmn.io.

Now to send a GET request, the endpoint should be: https://f270f73a-6fdd-4ae2-aeae-

cb0379234c87.mock.pstmn.io/get.

https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/
https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/
https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/get
https://f270f73a-6fdd-4ae2-aeae-cb0379234c87.mock.pstmn.io/get

Postman

 81

The Response Body received by mocking the server is the same as the Example request.

Response obtained in the Example request is as follows:

Postman

 82

Postman

 83

The cookies are information sent by the server and stored in the browser. As soon as a

request is sent, the cookies are returned by the server. In Postman, the cookies are

mentioned under the Headers and Cookies tab in the Response.

Let us apply a GET request on an endpoint and find the cookies.

In the Headers tab, the cookie sent by the server is set with the key - set-cookie.

In the Cookies tab, the same cookie details will also get displayed.

Cookies Management

In Postman, we can manage cookies by addition, deletion, and modification of cookies.

Under the Params tab, we have the Cookies link to perform operations on cookies.

16. Postman — Cookies

Postman

 84

Click on the Cookies link. MANAGE COOKIES pop-up shall open where all the available

cookies are present with the option to add and delete a cookie.

Cookies Addition

Follow the steps given below for adding cookie in Postman:

Step 1: Click on the Add Cookie button. A text box shall open up with pre-existing

values inside it. We can modify its values and then click on Save.

Step 2: Send the request again to the server.

The Response code obtained is 200 OK. Also, the Cookies tab in the Response now

shows the newly added cookie – Cookie_Postman.

Postman

 85

Access Cookies via Program

Cookies can be handled programmatically without using the GUI in Postman. To work

with cookies, we have to first generate a Cookie jar. It is an object which has all the

cookies and methods to access them.

Cookie Jar Creation

The syntax for Cookie Jar Creation is as follows:

const c = pm.cookies.jar();

Cookie Creation

We can create a cookie with the .set() function. It accepts URL, name of cookie, value of

cookie as parameters.

The syntax for cookie creation is as follows:

const c = pm.cookies.jar();

c.set(URL, name of cookie, value of cookie, callback(error, cookie));

Get Cookie

We can get a cookie with the .get() function. It accepts the URL, name of cookie as

parameters. It yields the cookie value.

The syntax for getting a cookie is as follows:

const c = pm.cookies.jar();

c.set(URL, name of cookie, value of cookie, callback(error, cookie));

c.get(URL, name of cookie, callback(error, cookie));

Postman

 86

Get All Cookies

We can get all cookies of a specific URL within a Cookie jar with the .getAll() function. It

accepts a URL as a parameter. It yields all the cookie values for that URL.

The syntax for getting all cookies is as follows:

const c = pm.cookies.jar();

c.set(URL, name of first cookie, value of first cookie, callback(error,

cookie));

c.set(URL, name of second cookie, value of second cookie, callback(error,

cookie));

c.getAll(URL, callback(error, cookie));

Delete Cookie

We can delete a cookie with the .unset() function. It accepts the URL, name of cookie to

be deleted as parameters.

The syntax for deleting cookie is as follows:

const c = pm.cookies.jar();

c.set(URL, name of cookie, value of cookie, callback(error, cookie));

c.unset(URL, name of cookie, callback(error, cookie));

Delete All Cookies

We can delete all cookies of a specific URL with the .clear() function. It accepts a URL as

a parameter. It removes all the cookie values for that URL.

The syntax for deleting all cookies is as follows:

const c = pm.cookies.jar();

c.set(URL, name of first cookie, value of first cookie, callback(error,

cookie));

c.set(URL, name of second cookie, value of second cookie, callback(error,

cookie));

c.clear(URL, callback(error, cookie));

Postman

 87

A session is a temporary fold that stores values of variables. They are used for the

present instance and have a local scope. In Postman, we can modify the session variable

value to share workspace among teams.

Postman gives the feature of local session share. Even if a Collection can be shared

among teams, the sessions are never shared. Different tokens have to be generated

while a task is to be carried out in a team structure.

A session has a local scope for a user within his Workspace and any modifications he

makes shall not be reflected in the server. In Postman, a session can store Environment

variables, global variables and so on.

We can assign current values to Collection variables and to the global and Environment

variables. To assign a current value to the Collection, click on the three dots appearing

beside the Collection name, then click on Edit.

In the EDIT COLLECTION pop-up, move to the Variables tab.

The CURRENT VALUE is local to the user and never in sync with the server of Postman.

We can also replace or modify the INITIAL VALUE with CURRENT VALUE.

17. Postman — Sessions

Postman

 88

Also, it must be remembered that the INITIAL VALUE gets impacted only if we apply the

option Persist on a variable. After that, it gets in sync with the server of Postman.

Postman

 89

Newman is a potential command-line runner used in Postman. We can execute and

verify a Postman Collection from the command-line as well. Newman has features which

are consistent with Postman.

We can run the requests within a Collection from Newman in the same way as in the

Collection Runner. Newman can occupy both the NPM registry and GitHub. We can also

perform Continuous Integration or Deployment with Newman.

A status code of 0 is thrown by Newman if all the execution is done without errors. The

Continuous Integration tools read the status code and accordingly fail/pass a build.

We can add the flag --bail to the Newman to pause on an error encountered in a test

with a status code of 1. This can be interpreted by the CI tools. Newman is based on

node.js and uses npm as a package manager.

Newman Installation

The installation of Newman requires Node.js and npm. Follow the steps given below to

install Newman:

Step 1: Navigate to the link: https://nodejs.org/en/download/current/ for downloading

the Node.js.

18. Postman — Newman Overview

https://nodejs.org/en/download/current/

Postman

 90

Step 2: Once the download is completed, execute the below command to verify that the

Node.js is installed properly.

The command for verifying the installation in Windows is as follows:

node --v

The command for verifying the installation in Linux is as follows:

node --version

The below image shows the version v10.15.2 of the Node.js is installed in the system.

Step 3: The npm is allocated with Node.js so once we download the Node.js then npm

gets downloaded by default. To verify if npm is available in our system, run the below

command:

The command for verifying the installation in Windows is as follows:

npm --v

The command for verifying the installation in Linux is as follows:

npm --version

The below image shows the version 5.8.0 of the npm installed in the system:

Step 4: For installation of Newman, run the below mentioned command:

npm install -g newman.

Step 5: To verify the version of newman, run the below commands:

The command for verifying the installation in Windows is as follows:

newman --v

The command for verifying the installation in Linux is as follows:

newman --version

Postman

 91

To run Collections using Newman, we have to first launch the Postman application and

click on the three dots available beside the Collection name. The details on how to create

a Collection are discussed in detail in the Chapter – Postman Create Collections.

Run Collections

Follow the steps given below to run collections using Newman:

Step 1: Click on Export.

Step 2: Select the option Collection v2.1(recommended) from the EXPORT

COLLECTION pop-up. Click on Export.

19. Postman — Run Collections using Newman

Postman

 92

Step 3: Choose a location and then click on Save.

Step 4: Next, we shall export the Environment. Click on the eye icon to the right of the

No Environment dropdown.

Step 5: Click on the Edit link in the Globals section.

Postman

 93

Step 6: MANAGE ENVIRONMENTS pop-up comes up. Enter URL for the VARIABLE

field and https://www.tutorialspoint.com for INITIAL VALUE. Then, click on Download as

JSON.

Finally, choose a preferred location and click on Save.

Step 7: Export the Environment to the same location where the Collection resides.

Step 8: From the command-line move to the directory path where the Collection and the

Environment is stored. Then, execute the command given below:

newman run <"file name">.

The file name should always be in inverted quotes; else it shall be taken as a directory

name.

Common command-line arguments for Newman

The common command-line arguments for Newman are given below:

 To execute a Collection in an Environment, the command is as follows:

newman run <name of Collection> -e <name of Environment>

 To execute a Collection for a number of iterations, the command is as follows:

newman run <name of Collection> -n <iteration count>

 To execute a Collection with data file, the command is as follows:

newman run <name of Collection> --data <name of file> -n <iteration count> -e

<name of Environment>

Postman

 94

 Configure delay time in between requests, the command is as follows:

newman run <name of Collection> -d <time of delay>

Postman

 95

The OAuth 2.0 is an authorization technique available in Postman. Here, we first obtain a

token for accessing the API and then utilise the token to authenticate a request. A token

is used to ensure that a user is authorised to access a resource in the server.

If we make an attempt to access a secured URL without the token, a Response code 401

Unauthorized shall be obtained. To start with, the application passes an authorization

request for the end user to access a resource.

As the application allows the user access, it asks for an access token from the server by

providing user information. In turn, the server yields an access token. The client can

then access the secured data via the access token.

20. Postman — OAuth 2.0 Authorization

