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About the Tutorial 

TensorFlow is an open source machine learning framework for all developers. It is used 

for implementing machine learning and deep learning applications.  To develop and 

research on fascinating ideas on artificial intelligence, Google team created TensorFlow. 

TensorFlow is designed in Python programming language, hence it is considered an easy 

to understand framework.   

Audience 

This tutorial has been prepared for python developers who focus on research and 

development with various machine learning and deep learning algorithms. The aim of this 

tutorial is to describe all TensorFlow objects and methods. 

Prerequisites 

Before proceeding with this tutorial, you need to have a basic knowledge of any Python 

programming language. Knowledge of artificial intelligence concepts will be a plus point. 

Copyright & Disclaimer 

 Copyright 2018 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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TensorFlow is a software library or framework, designed by the Google team to implement 

machine learning and deep learning concepts in the easiest manner. It combines the 

computational algebra of optimization techniques for easy calculation of many 

mathematical expressions. 

The official website of TensorFlow is mentioned below: 

https://www.tensorflow.org/ 

 

Let us now consider the following important features of TensorFlow: 

 It includes a feature of that defines, optimizes and calculates mathematical 

expressions easily with the help of multi-dimensional arrays called tensors. 

 

 It includes a programming support of deep neural networks and machine learning 

techniques. 

 

 It includes a high scalable feature of computation with various data sets.  

 

 TensorFlow uses GPU computing, automating management. It also includes a 

unique feature of optimization of same memory and the data used. 

Why is TensorFlow So Popular? 

TensorFlow is well-documented and includes plenty of machine learning libraries. It offers 

a few important functionalities and methods for the same.  

TensorFlow is also called a “Google” product. It includes a variety of machine learning and 

deep learning algorithms. TensorFlow can train and run deep neural networks for 

1. TensorFlow — Introduction 

https://www.tensorflow.org/
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handwritten digit classification, image recognition, word embedding and creation of 

various sequence models. 
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To install TensorFlow, it is important to have “Python” installed in your system. Python 

version 3.4+ is considered the best to start with TensorFlow installation. 

Consider the following steps to install TensorFlow in Windows operating system. 

Step 1: Verify the python version being installed. 

 

Step 2: A user can pick up any mechanism to install TensorFlow in the system. We 

recommend  “pip” and “Anaconda”. Pip is a command used for executing and installing 

modules in Python. 

Before we install TensorFlow, we need to install Anaconda framework in our system.  

2. TensorFlow — Installation  
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After successful installation, check in command prompt through “conda” command. The 

execution of command is displayed below: 
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Step 3: Execute the following command to initialize the installation of TensorFlow: 

conda create --name tensorflow python=3.5 

It downloads the necessary packages needed for TensorFlow setup. 

Step 4: After successful environmental setup, it is important to activate TensorFlow 

module. 

activate tensorflow 

 

 

Step 5: Use pip to install “Tensorflow” in the system. The command used for installation 

is mentioned as below: 

pip install tensorflow 
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And, 

pip install tensorflow-gpu 

 

 

After successful installation, it is important to know the sample program execution of 

TensorFlow.  
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Following example helps us understand the basic program creation “Hello World” in 

TensorFlow. 

 

The code for first program implementation is mentioned below: 

>> activate tensorflow 

>> python (activating python shell) 

>> import tensorflow as tf 

>> hello = tf.constant(‘Hello, Tensorflow!’) 

>> sess = tf.Session() 

>> print(sess.run(hello)) 
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Artificial Intelligence includes the simulation process of human intelligence by machines 

and special computer systems. The examples of artificial intelligence include learning, 

reasoning and self-correction. Applications of AI include speech recognition, expert 

systems, and image recognition and machine vision. 

Machine learning is the branch of artificial intelligence, which deals with systems and 

algorithms that can learn any new data and data patterns. 

Let us focus on the Venn diagram mentioned below for understanding machine learning 

and deep learning concepts. 

 

 

 

 

 

 

 

 

 

 

 

Machine learning includes a section of machine learning and deep learning is a part of 

machine learning. The ability of program which follows machine learning concepts is to 

improve its performance of observed data. The main motive of data transformation is to 

improve its knowledge in order to achieve better results in the future, provide output closer 

to the desired output for that particular system. Machine learning includes “pattern 

recognition” which includes the ability to recognize the patterns in data. 

The patterns should be trained to show the output in desirable manner.  

Machine learning can be trained in two different ways: 

 Supervised training 

 Unsupervised training 

 

 

 

 

3. TensorFlow — Understanding Artificial 
Intelligence 
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Supervised Learning 

Supervised learning or supervised training includes a procedure where the training set is 

given as input to the system wherein, each example is labeled with a desired output value. 

The training in this type is performed using minimization of a particular loss function, which 

represents the output error with respect to the desired output system. 

After completion of training, the accuracy of each model is measured with respect to 

disjoint examples from training set, also called the validation set. 

 

The best example to illustrate “Supervised learning” is with a bunch of photos given with 

information included in them. Here, the user can train a model to recognize new photos. 

Unsupervised Learning 

In unsupervised learning or unsupervised training, include training examples, which are 

not labeled by the system to which class they belong. The system looks for the data, which 

share common characteristics, and changes them based on internal knowledge features. 

This type of learning algorithms are basically used in clustering problems. 
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The best example to illustrate “Unsupervised learning” is with a bunch of photos with no 

information included and user trains model with classification and clustering. This type of 

training algorithm works with assumptions as no information is given. 
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It is important to understand mathematical concepts needed for TensorFlow before 

creating the basic application in TensorFlow. Mathematics is considered as the heart of 

any machine learning algorithm. It is with the help of core concepts of Mathematics, a 

solution for specific machine learning algorithm is defined. 

Vector 

An array of numbers, which is either continuous or discrete, is defined as a vector. Machine 

learning algorithms deal with fixed length vectors for better output generation. 

Machine learning algorithms deal with multidimensional data so vectors play a crucial role. 

 

 

 

 

 

  

 

 

 

 

The pictorial representation of vector model is as shown below: 

 

 

 

 

 

 

 

 

 

 

 

4. TensorFlow — Mathematical Foundations 
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Scalar 

Scalar can be defined as one-dimensional vector. Scalars are those, which include only 

magnitude and no direction. With scalars, we are only concerned with the magnitude. 

Examples of scalar include weight and height parameters of children. 

Matrix 

Matrix can be defined as multi-dimensional arrays, which are arranged in the format of 

rows and columns. The size of matrix is defined by row length and column length. Following 

figure shows the representation of any specified matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the matrix with “m” rows and “n” columns as mentioned above, the matrix 

representation will be specified as “m*n matrix” which defined the length of matrix as well. 

Mathematical Computations 

In this section, we will learn about the different Mathematical Computations in TensorFlow. 

Addition of matrices 

Addition of two or more matrices is possible if the matrices are of the same dimension. 

The addition implies addition of each element as per the given position. 

Consider the following example to understand how addition of matrices works: 
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Subtraction of matrices 

The subtraction of matrices operates in similar fashion like the addition of two matrices. 

The user can subtract two matrices provided the dimensions are equal. 

Multiplication of matrices 

For two matrices A m*n and B p*q to be multipliable, n should be equal to p. The resulting 

matrix is: 

C m*q 

 

 

Transpose of matrix 

The transpose of a matrix A, m*n is generally represented by AT (transpose) n*m and is 

obtained by transposing the column vectors as row vectors. 
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Dot product of vectors 

Any vector of dimension n can be represented as a matrix v = R^n*1. 

The example of dot product of vectors is mentioned below: 
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Artificial Intelligence is one of the most popular trends of recent times. Machine learning 

and deep learning constitute artificial intelligence. The Venn diagram shown below explains 

the relationship of machine learning and deep learning: 

 

 

 

 

 

 

 

 

 

 

 

Machine Learning 

Machine learning is the art of science of getting computers to act as per the algorithms 

designed and programmed. Many researchers think machine learning is the best way to 

make progress towards human-level AI. Machine learning includes the following types of 

patterns: 

 Supervised learning pattern 

 Unsupervised learning pattern 

Deep Learning 

Deep learning is a subfield of machine learning where concerned algorithms are inspired 

by the structure and function of the brain called artificial neural networks. 

All the value today of deep learning is through supervised learning or learning from labelled 

data and algorithms. 

Each algorithm in deep learning goes through the same process. It includes a hierarchy of 

nonlinear transformation of input that can be used to generate a statistical model as 

output.  

 

Consider the following steps that define the Machine Learning process: 

5. TensorFlow — Machine Learning and Deep 
Learning 
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 Identifies relevant data sets and prepares them for analysis. 

 Chooses the type of algorithm to use. 

 Builds an analytical model based on the algorithm used. 

 Trains the model on test data sets, revising it as needed. 

 Runs the model to generate test scores. 

Difference between Machine Learning and Deep learning 

In this section, we will learn about the difference between Machine Learning and Deep 

Learning. 

Amount of data 

Machine learning works with large amounts of data. It is useful for small amounts of data 

too. Deep learning on the other hand works efficiently if the amount of data increases 

rapidly. The following diagram shows the working of machine learning and deep learning 

with the amount of data: 

Hardware Dependencies 

Deep learning algorithms are designed to heavily depend on high-end machines unlike the 

traditional machine learning algorithms. Deep learning algorithms perform a number of 

matrix multiplication operations, which require a large amount of hardware support. 
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Feature Engineering 

Feature engineering is the process of putting domain knowledge into specified features to 

reduce the complexity of data and make patterns that are visible to learning algorithms it 

works.  

Example: Traditional machine learning patterns focus on pixels and other attributes 

needed for feature engineering process. Deep learning algorithms focus on high-level 

features from data. It reduces the task of developing new feature extractor of every new 

problem. 

Problem Solving Approach 

The traditional machine learning algorithms follow a standard procedure to solve the 

problem. It breaks the problem into parts, solve each one of them and combine them to 

get the required result. Deep learning focusses in solving the problem from end to end 

instead of breaking them into divisions. 

Execution Time 

Execution time is the amount of time required to train an algorithm. Deep learning requires 

a lot of time to train as it includes a lot of parameters which takes a longer time than 

usual. Machine learning algorithm comparatively requires less execution time. 

Interpretability 

Interpretability is the major factor for comparison of machine learning and deep learning 

algorithms. The main reason is that deep learning is still given a second thought before its 

usage in industry. 

Applications of Machine Learning and Deep Learning 

In this section, we will learn about the different applications of Machine Learning and Deep 

Learning. 

 Computer vision which is used for facial recognition and attendance mark through 

fingerprints or vehicle identification through number plate. 

 

 Information Retrieval from search engines like text search for image search. 

 

 Automated email marketing with specified target identification. 

 

 Medical diagnosis of cancer tumors or anomaly identification of any chronic disease. 

 

 Natural language processing for applications like photo tagging. The best example 

to explain this scenario is used in Facebook. 

 

 Online Advertising. 
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Future Trends 

 With the increasing trend of using data science and machine learning in the 

industry, it will become important for each organization to inculcate machine 

learning in their businesses. 

 

 Deep learning is gaining more importance than machine learning. Deep learning is 

proving to be one of the best techniques in state-of-art performance. 

 

 Machine learning and deep learning will prove beneficial in research and academics 

field.  

Conclusion 

In this article, we had an overview of machine learning and deep learning with illustrations 

and differences also focusing on future trends. Many of AI applications utilize machine 

learning algorithms primarily to drive self-service, increase agent productivity and 

workflows more reliable. Machine learning and deep learning algorithms include an exciting 

prospect for many businesses and industry leaders. 
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In this chapter, we will learn about the basics of TensorFlow. We will begin by 

understanding the data structure of tensor. 

Tensor Data Structure 

Tensors are used as the basic data structures in TensorFlow language. Tensors represent 

the connecting edges in any flow diagram called the Data Flow Graph. Tensors are defined 

as multidimensional array or list. 

Tensors are identified by the following three parameters: 

Rank 

Unit of dimensionality described within tensor is called rank. It identifies the number of 

dimensions of the tensor. A rank of a tensor can be described as the order or n-dimensions 

of a tensor defined. 

Shape 

The number of rows and columns together define the shape of Tensor. 

Type 

Type describes the data type assigned to Tensor’s elements. 

A user needs to consider the following activities for building a Tensor:  

 Build an n-dimensional array 

 Convert the n-dimensional array. 

 

 

6. TensorFlow — Basics 
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Various Dimensions of TensorFlow 

TensorFlow includes various dimensions. The dimensions are described in brief below: 

One dimensional Tensor 

One dimensional tensor is a normal array structure which includes one set of values of the 

same data type. 

Declaration 

>>> import numpy as np 

>>> tensor_1d = np.array([1.3, 1, 4.0, 23.99]) 

>>> print tensor_1d 

The implementation with the output is shown in the screenshot below: 

The indexing of elements is same as Python lists. The first element starts with index of 0; 

to print the values through index, all you need to do is mention the index number. 
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>>> print tensor_1d[0] 

1.3 

>>> print tensor_1d[2] 

4.0 

 

Two dimensional Tensors 

Sequence of arrays are used for creating “two dimensional tensors”. 

The creation of two-dimensional tensors is described below: 

Following is the complete syntax for creating two dimensional arrays:  

>>> import numpy as np 

>>> tensor_2d=np.array([(1,2,3,4),(4,5,6,7),(8,9,10,11),(12,13,14,15)]) 

>>> print(tensor_2d) 

[[ 1 2 3 4] 

[ 4 5 6 7] 

[ 8 9 10 11] 
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[12 13 14 15]] 

>>> 

The specific elements of two dimensional tensors can be tracked with the help of row 

number and column number specified as index numbers. 

>>> tensor_2d[3][2] 

14 
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Tensor Handling and Manipulations 

In this section, we will learn about Tensor Handling and Manipulations. 

To begin with, let us consider the following code: 

import tensorflow as tf 

import numpy as np 

matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype='int32') 

matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype='int32') 

 

print (matrix1) 

 

print (matrix2) 

matrix1 = tf.constant(matrix1) 

matrix2 = tf.constant(matrix2) 

matrix_product = tf.matmul(matrix1, matrix2) 

matrix_sum = tf.add(matrix1,matrix2) 

matrix_3 = np.array([(2,7,2),(1,4,2),(9,0,2)],dtype='float32') 

 

print (matrix_3) 

matrix_det = tf.matrix_determinant(matrix_3) 

with tf.Session() as sess: 

    result1 = sess.run(matrix_product) 

    result2 = sess.run(matrix_sum) 

    result3 = sess.run(matrix_det) 

 

print (result1) 

print (result2) 

print (result3) 
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Output 

The above code will generate the following output: 

 

Explanation 

We have created multidimensional arrays in the above source code. Now, it is important 

to understand that we created graph and sessions, which manage the Tensors and 

generate the appropriate output. With the help of graph, we have the output specifying 

the mathematical calculations between Tensors. 
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After understanding machine-learning concepts, we can now shift our focus to deep 

learning concepts. Deep learning is a division of machine learning and is considered as a 

crucial step taken by researchers in recent decades. The examples of deep learning 

implementation include applications like image recognition and speech recognition. 

Following are the two important types of deep neural networks: 

 Convolutional Neural Networks 

 Recurrent Neural Networks 

In this chapter, we will focus on the CNN, Convolutional Neural Networks. 

Convolutional Neural Networks 

Convolutional Neural networks are designed to process data through multiple layers of 

arrays. This type of neural networks is used in applications like image recognition or face 

recognition. The primary difference between CNN and any other ordinary neural network 

is that CNN takes input as a two-dimensional array and operates directly on the images 

rather than focusing on feature extraction which other neural networks focus on. 

The dominant approach of CNN includes solutions for problems of recognition. Top 

companies like Google and Facebook have invested in research and development towards 

recognition projects to get activities done with greater speed.  

A convolutional neural network uses three basic ideas: 

 Local respective fields 

 Convolution 

 Pooling 

Let us understand these ideas in detail. 

CNN utilizes spatial correlations that exist within the input data. Each concurrent layer of 

a neural network connects some input neurons. This specific region is called local receptive 

field. Local receptive field focusses on the hidden neurons. The hidden neurons process 

the input data inside the mentioned field not realizing the changes outside the specific 

boundary. 

  

7. TensorFlow — Convolutional Neural 
Networks 
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Following is a diagram representation of generating local respective fields: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we observe the above representation, each connection learns a weight of the hidden 

neuron with an associated connection with movement from one layer to another. Here, 

individual neurons perform a shift from time to time. This process is called “convolution”.  

The mapping of connections from the input layer to the hidden feature map is defined as 

“shared weights” and bias included is called “shared bias”. 

CNN or convolutional neural networks use pooling layers, which are the layers, positioned 

immediately after CNN declaration. It takes the input from the user as a feature map that 

comes out of convolutional networks and prepares a condensed feature map. Pooling 

layers helps in creating layers with neurons of previous layers. 
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TensorFlow Implementation of CNN 

In this section, we will learn about the TensorFlow implementation of CNN. The steps, 

which require the execution and proper dimension of the entire network, are as shown 

below: 

Step 1: Include the necessary modules for TensorFlow and the data set modules, which 

are needed to compute the CNN model. 

import tensorflow as tf 

import numpy as np 

from tensorflow.examples.tutorials.mnist import input_data 

 

Step 2: Declare a function called run_cnn(), which includes various parameters and 

optimization variables with declaration of data placeholders. These optimization variables 

will declare the training pattern. 

def run_cnn(): 

    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 

    learning_rate = 0.0001 

    epochs = 10 

    batch_size = 50 

 

Step 3: In this step, we will declare the training data placeholders with input parameters 

- for 28 x 28 pixels = 784. This is the flattened image data that is drawn from 

mnist.train.nextbatch().  

We can reshape the tensor according to our requirements. The first value (-1) tells 

function to dynamically shape that dimension based on the amount of data passed to it.  

The two middle dimensions are set to the image size (i.e. 28 x 28). 

x = tf.placeholder(tf.float32, [None, 784]) 

x_shaped = tf.reshape(x, [-1, 28, 28, 1]) 

y = tf.placeholder(tf.float32, [None, 10]) 

 

Step 4: Now it is important to create some convolutional layers: 

layer1 = create_new_conv_layer(x_shaped, 1, 32, [5, 5], [2, 2], name='layer1') 

    layer2 = create_new_conv_layer(layer1, 32, 64, [5, 5], [2, 2], 

name='layer2') 
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Step 5: Let us flatten the output ready for the fully connected output stage - after two 

layers of stride 2 pooling with the dimensions of 28 x 28, to dimension of 14 x 14 or 

minimum 7 x 7 x,y co-ordinates, but with 64 output channels. To create the fully connected 

with "dense" layer, the new shape needs to be [-1, 7 x 7 x 64]. We can set up some 

weights and bias values for this layer, then activate with ReLU. 

    flattened = tf.reshape(layer2, [-1, 7 * 7 * 64]) 

 

    wd1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1000], stddev=0.03), 

name='wd1') 

    bd1 = tf.Variable(tf.truncated_normal([1000], stddev=0.01), name='bd1') 

    dense_layer1 = tf.matmul(flattened, wd1) + bd1 

    dense_layer1 = tf.nn.relu(dense_layer1) 

 

Step 6: Another layer with specific softmax activations with the required optimizer defines 

the accuracy assessment, which makes the setup of initialization operator. 

    wd2 = tf.Variable(tf.truncated_normal([1000, 10], stddev=0.03), name='wd2') 

    bd2 = tf.Variable(tf.truncated_normal([10], stddev=0.01), name='bd2') 

    dense_layer2 = tf.matmul(dense_layer1, wd2) + bd2 

    y_ = tf.nn.softmax(dense_layer2) 

 

    cross_entropy = 

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=dense_layer2, 

labels=y)) 

 

    optimiser = 

tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cross_entropy) 

 

    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

 

    init_op = tf.global_variables_initializer() 

 

 

Step 7: We should set up recording variables. This adds up a summary to store the 

accuracy of data.  

   tf.summary.scalar('accuracy', accuracy) 

 

    merged = tf.summary.merge_all() 
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    writer = tf.summary.FileWriter('E:\TensorFlowProject') 

    with tf.Session() as sess: 

 

        sess.run(init_op) 

        total_batch = int(len(mnist.train.labels) / batch_size) 

        for epoch in range(epochs): 

            avg_cost = 0 

            for i in range(total_batch): 

                batch_x, batch_y = 

mnist.train.next_batch(batch_size=batch_size) 

                _, c = sess.run([optimiser, cross_entropy], feed_dict={x: 

batch_x, y: batch_y}) 

                avg_cost += c / total_batch 

            test_acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: 

mnist.test.labels}) 

            summary = sess.run(merged, feed_dict={x: mnist.test.images, y: 

mnist.test.labels}) 

            writer.add_summary(summary, epoch) 

 

        print("\nTraining complete!") 

        writer.add_graph(sess.graph) 

        print(sess.run(accuracy, feed_dict={x: mnist.test.images, y: 

mnist.test.labels})) 

 

def create_new_conv_layer(input_data, num_input_channels, num_filters, 

filter_shape, pool_shape, name): 

  

    conv_filt_shape = [filter_shape[0], filter_shape[1], num_input_channels, 

num_filters] 

 

    weights = tf.Variable(tf.truncated_normal(conv_filt_shape, stddev=0.03), 

name=name+'_W') 

    bias = tf.Variable(tf.truncated_normal([num_filters]), name=name+'_b') 

 

#Out layer defines the output 

    out_layer = 

 tf.nn.conv2d(input_data, weights, [1, 1, 1, 1], padding='SAME') 

 

    out_layer += bias 
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    out_layer = tf.nn.relu(out_layer) 

    ksize = [1, pool_shape[0], pool_shape[1], 1] 

    strides = [1, 2, 2, 1] 

    out_layer = tf.nn.max_pool(out_layer, ksize=ksize, strides=strides, 

padding='SAME') 

 

    return out_layer 

 

if __name__ == "__main__": 

    run_cnn() 

 

 

Following is the output generated by the above code: 

See @{tf.nn.softmax_cross_entropy_with_logits_v2}. 

 

2018-09-19 17:22:58.802268: I 

T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:140] 

Your CPU supports instructions that this TensorFlow binary was not compiled to 

use: AVX2 

2018-09-19 17:25:41.522845: W 

T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation 

of 1003520000 exceeds 10% of system memory. 

2018-09-19 17:25:44.630941: W 

T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation 

of 501760000 exceeds 10% of system memory. 

Epoch: 1 cost = 0.676  test accuracy: 0.940 

2018-09-19 17:26:51.987554: W 

T:\src\github\tensorflow\tensorflow\core\framework\allocator.cc:101] Allocation 

of 1003520000 exceeds 10% of system memory. 
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Recurrent neural networks is a type of deep learning-oriented algorithm, which follows a 

sequential approach. In neural networks, we always assume that each input and output is 

independent of all other layers. These type of neural networks are called recurrent because 

they perform mathematical computations in sequential manner.  

Consider the following steps to train a recurrent neural network: 

Step 1: Input a specific example from dataset. 

Step 2: Network will take an example and compute some calculations using randomly 

initialized variables. 

Step 3: A predicted result is then computed. 

Step 4: The comparison of actual result generated with the expected value will produce 

an error.  

Step 5: To trace the error, it is propagated through same path where the variables are 

also adjusted. 

Step 6: The steps from 1 to 5 are repeated until we are confident that the variables 

declared to get the output are defined properly. 

Step 7: A systematic prediction is made by applying these variables to get new unseen 

input. 

The schematic approach of representing recurrent neural networks is described below: 

 

 

 

 

 

 

 

 

 

  

8. TensorFlow — Recurrent Neural Networks 
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Recurrent Neural Network Implementation with TensorFlow 

In this section, we will learn how to implement recurrent neural network with TensorFlow. 

Step 1: TensorFlow includes various libraries for specific implementation of the recurrent 

neural network module. 

#Import necessary modules 

from __future__ import print_function 

 

import tensorflow as tf 

from tensorflow.contrib import rnn 

from tensorflow.examples.tutorials.mnist import input_data 

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) 

 

As mentioned above, the libraries help in defining the input data, which forms the primary 

part of recurrent neural network implementation. 

Step 2: Our primary motive is to classify the images using a recurrent neural network, 

where we consider every image row as a sequence of pixels. MNIST image shape is 

specifically defined as 28*28 px. Now we will handle 28 sequences of 28 steps for each 

sample that is mentioned. We will define the input parameters to get the sequential pattern 

done. 

n_input = 28 # MNIST data input with img shape 28*28 

n_steps = 28  

n_hidden = 128  

n_classes = 10  

 

# tf Graph input 

x = tf.placeholder("float", [None, n_steps, n_input]) 

y = tf.placeholder("float", [None, n_classes] 

weights = { 

    'out': tf.Variable(tf.random_normal([n_hidden, n_classes])) 

} 

biases = { 

    'out': tf.Variable(tf.random_normal([n_classes])) 

} 
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Step 3: Compute the results using a defined function in RNN to get the best results. Here, 

each data shape is compared with current input shape and the results are computed to 

maintain the accuracy rate. 

def RNN(x, weights, biases): 

 

    x = tf.unstack(x, n_steps, 1) 

 

    # Define a lstm cell with tensorflow 

    lstm_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) 

 

    # Get lstm cell output 

    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32) 

 

    # Linear activation, using rnn inner loop last output 

    return tf.matmul(outputs[-1], weights['out']) + biases['out'] 

 

pred = RNN(x, weights, biases) 

 

# Define loss and optimizer 

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, 

labels=y)) 

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) 

 

# Evaluate model 

correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) 

accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) 

 

# Initializing the variables 

init = tf.global_variables_initializer() 

 

 

Step 4: In this step, we will launch the graph to get the computational results.  This also 

helps in calculating the accuracy for test results. 

with tf.Session() as sess: 

    sess.run(init) 

    step = 1 

    # Keep training until reach max iterations 
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    while step * batch_size < training_iters: 

        batch_x, batch_y = mnist.train.next_batch(batch_size) 

        batch_x = batch_x.reshape((batch_size, n_steps, n_input)) 

        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) 

        if step % display_step == 0: 

            # Calculate batch accuracy 

            acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) 

            # Calculate batch loss 

            loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) 

            print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \ 

                  "{:.6f}".format(loss) + ", Training Accuracy= " + \ 

                  "{:.5f}".format(acc)) 

        step += 1 

    print("Optimization Finished!") 

 

      test_len = 128 

    test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) 

    test_label = mnist.test.labels[:test_len] 

    print("Testing Accuracy:", \ 

        sess.run(accuracy, feed_dict={x: test_data, y: test_label})) 

 

 

The screenshots below show the output generated: 
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TensorFlow includes a visualization tool, which is called the TensorBoard. It is used for 

analyzing Data Flow Graph and also used to understand machine-learning models. The 

important feature of TensorBoard includes a view of different types of statistics about the 

parameters and details of any graph in vertical alignment.  

Deep neural network includes up to 36,000 nodes. TensorBoard helps in collapsing these 

nodes in high-level blocks and highlighting the identical structures. This allows better 

analysis of graph focusing on the primary sections of the computation graph. The 

TensorBoard visualization is said to be very interactive where a user can pan, zoom and 

expand the nodes to display the details.  

The following schematic diagram representation shows the complete working of 

TensorBoard visualization: 

 

The algorithms collapse nodes into high-level blocks and highlight the specific groups with 

identical structures, which separate high-degree nodes. The TensorBoard thus created is 

useful and is treated equally important for tuning a machine learning model. This 

visualization tool is designed for the configuration log file with summary information and 

details that need to be displayed. 

Let us focus on the demo example of TensorBoard visualization with the help of the 

following code: 

 

9. TensorFlow — TensorBoard Visualization 
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import tensorflow as tf 

# Constants creation for TensorBoard visualization 

a = tf.constant(10,name="a") 

b = tf.constant(90,name="b") 

y = tf.Variable(a+b*2,name='y') 

model = tf.initialize_all_variables() #Creation of model  

 

with tf.Session() as session: 

    merged = tf.merge_all_summaries() 

    writer = tf.train.SummaryWriter("/tmp/tensorflowlogs",session.graph) 

    session.run(model) 

    print(session.run(y)) 

The following table shows the various symbols of TensorBoard visualization used for the 

node representation: 
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Word embedding is the concept of mapping from discrete objects such as words to vectors 

and real numbers. It is important for input for machine learning. The concept includes 

standard functions, which effectively transform discrete input objects to useful vectors.  

The sample illustration of input of word embedding is as shown below: 

blue:  (0.01359, 0.00075997, 0.24608, ..., -0.2524, 1.0048, 0.06259) 

blues:  (0.01396, 0.11887, -0.48963, ..., 0.033483, -0.10007, 0.1158) 

orange:  (-0.24776, -0.12359, 0.20986, ..., 0.079717, 0.23865, -0.014213) 

oranges:  (-0.35609, 0.21854, 0.080944, ..., -0.35413, 0.38511, -0.070976) 

Word2vec 

Word2vec is the most common approach used for unsupervised word embedding 

technique. It trains the model in such a way that a given input word predicts the word’s 

context by using skip-grams.  

TensorFlow enables many ways to implement this kind of model with increasing levels of 

sophistication and optimization and using multithreading concepts and higher-level 

abstractions. 

import os 

import math 

import numpy as np 

import tensorflow as tf 

from tensorflow.contrib.tensorboard.plugins import projector 

 

 

batch_size = 64 

embedding_dimension = 5 

negative_samples = 8 

LOG_DIR = "logs/word2vec_intro" 

 

 

digit_to_word_map = {1: "One", 2: "Two", 3: "Three", 4: "Four", 5: "Five", 

                     6: "Six", 7: "Seven", 8: "Eight", 9: "Nine"} 

sentences = [] 

 

# Create two kinds of sentences - sequences of odd and even digits. 

for i in range(10000): 

    rand_odd_ints = np.random.choice(range(1, 10, 2), 3) 

    sentences.append(" ".join([digit_to_word_map[r] for r in rand_odd_ints])) 

    rand_even_ints = np.random.choice(range(2, 10, 2), 3) 

    sentences.append(" ".join([digit_to_word_map[r] for r in rand_even_ints])) 

 

# Map words to indices 

10. TensorFlow — Word Embedding 
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word2index_map = {} 

index = 0 

for sent in sentences: 

    for word in sent.lower().split(): 

        if word not in word2index_map: 

            word2index_map[word] = index 

            index += 1 

index2word_map = {index: word for word, index in word2index_map.items()} 

 

vocabulary_size = len(index2word_map) 

 

# Generate skip-gram pairs 

skip_gram_pairs = [] 

for sent in sentences: 

    tokenized_sent = sent.lower().split() 

    for i in range(1, len(tokenized_sent)-1): 

        word_context_pair = [[word2index_map[tokenized_sent[i-1]], 

                              word2index_map[tokenized_sent[i+1]]], 

                             word2index_map[tokenized_sent[i]]] 

        skip_gram_pairs.append([word_context_pair[1], 

                                word_context_pair[0][0]]) 

        skip_gram_pairs.append([word_context_pair[1], 

                                word_context_pair[0][1]]) 

 

 

def get_skipgram_batch(batch_size): 

    instance_indices = list(range(len(skip_gram_pairs))) 

    np.random.shuffle(instance_indices) 

    batch = instance_indices[:batch_size] 

    x = [skip_gram_pairs[i][0] for i in batch] 

    y = [[skip_gram_pairs[i][1]] for i in batch] 

    return x, y 

 

 

# batch example 

x_batch, y_batch = get_skipgram_batch(8) 

x_batch 

y_batch 

[index2word_map[word] for word in x_batch] 

[index2word_map[word[0]] for word in y_batch] 

 

# Input data, labels 

train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) 

train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) 

 

# Embedding lookup table currently only implemented in CPU 

with tf.name_scope("embeddings"): 

    embeddings = tf.Variable( 

        tf.random_uniform([vocabulary_size, embedding_dimension], 

                          -1.0, 1.0), name='embedding') 

    # This is essentialy a lookup table 

    embed = tf.nn.embedding_lookup(embeddings, train_inputs) 

 

# Create variables for the NCE loss 
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nce_weights = tf.Variable( 

        tf.truncated_normal([vocabulary_size, embedding_dimension], 

                            stddev=1.0 / math.sqrt(embedding_dimension))) 

nce_biases = tf.Variable(tf.zeros([vocabulary_size])) 

 

 

loss = tf.reduce_mean( 

  tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, inputs=embed, 

labels=train_labels, 

                 num_sampled=negative_samples, num_classes=vocabulary_size)) 

tf.summary.scalar("NCE_loss", loss) 

 

# Learning rate decay 

global_step = tf.Variable(0, trainable=False) 

learningRate = tf.train.exponential_decay(learning_rate=0.1, 

                                          global_step=global_step, 

                                          decay_steps=1000, 

                                          decay_rate=0.95, 

                                          staircase=True) 

train_step = tf.train.GradientDescentOptimizer(learningRate).minimize(loss) 

merged = tf.summary.merge_all() 

 

with tf.Session() as sess: 

    train_writer = tf.summary.FileWriter(LOG_DIR, 

                                         graph=tf.get_default_graph()) 

    saver = tf.train.Saver() 

 

    with open(os.path.join(LOG_DIR, 'metadata.tsv'), "w") as metadata: 

        metadata.write('Name\tClass\n') 

        for k, v in index2word_map.items(): 

            metadata.write('%s\t%d\n' % (v, k)) 

 

    config = projector.ProjectorConfig() 

    embedding = config.embeddings.add() 

    embedding.tensor_name = embeddings.name 

    # Link this tensor to its metadata file (e.g. labels). 

    embedding.metadata_path = os.path.join(LOG_DIR, 'metadata.tsv') 

    projector.visualize_embeddings(train_writer, config) 

 

    tf.global_variables_initializer().run() 

 

    for step in range(1000): 

        x_batch, y_batch = get_skipgram_batch(batch_size) 

        summary, _ = sess.run([merged, train_step], 

                              feed_dict={train_inputs: x_batch, 

                                         train_labels: y_batch}) 

        train_writer.add_summary(summary, step) 

 

        if step % 100 == 0: 

            saver.save(sess, os.path.join(LOG_DIR, "w2v_model.ckpt"), step) 

            loss_value = sess.run(loss, 

                                  feed_dict={train_inputs: x_batch, 

                                             train_labels: y_batch}) 

            print("Loss at %d: %.5f" % (step, loss_value)) 
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    # Normalize embeddings before using 

    norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) 

    normalized_embeddings = embeddings / norm 

    normalized_embeddings_matrix = sess.run(normalized_embeddings) 

 

ref_word = normalized_embeddings_matrix[word2index_map["one"]] 

 

cosine_dists = np.dot(normalized_embeddings_matrix, ref_word) 

ff = np.argsort(cosine_dists)[::-1][1:10] 

for f in ff: 

    print(index2word_map[f]) 

    print(cosine_dists[f]) 

 

Output 

The above code generates the following output: 
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For understanding single layer perceptron, it is important to understand Artificial Neural 

Networks (ANN). Artificial neural networks is the information processing system the 

mechanism of which is inspired with the functionality of biological neural circuits. An 

artificial neural network possesses many processing units connected to each other. 

Following is the schematic representation of artificial neural network: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram shows that the hidden units communicate with the external layer. While the 

input and output units communicate only through the hidden layer of the network. 

The pattern of connection with nodes, the total number of layers and level of nodes 

between inputs and outputs with the number of neurons per layer define the architecture 

of a neural network. 

There are two types of architecture. These types focus on the functionality artificial neural 

networks as follows: 

 Single Layer Perceptron 

 Multi-Layer Perceptron 

 

 

 

11. TensorFlow — Single Layer Perceptron 
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Single Layer Perceptron 

Single layer perceptron is the first proposed neural model created. The content of the local 

memory of the neuron consists of a vector of weights. The computation of a single layer 

perceptron is performed over the calculation of sum of the input vector each with the value 

multiplied by corresponding element of vector of the weights. The value which is displayed 

in the output will be the input of an activation function. 

Let us focus on the implementation of single layer perceptron for an image classification 

problem using TensorFlow. The best example to illustrate the single layer perceptron is 

through representation of “Logistic Regression”. 
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Now, let us consider the following basic steps of training logistic regression: 

 The weights are initialized with random values at the beginning of the training. 

 

 For each element of the training set, the error is calculated with the difference 

between desired output and the actual output. The error calculated is used to adjust 

the weights. 

 

 The process is repeated until the error made on the entire training set is not less 

than the specified threshold, until the maximum number of iterations is reached. 

The complete code for evaluation of logistic regression is mentioned below: 

# Import MINST data 

from tensorflow.examples.tutorials.mnist import input_data 

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) 

 

import tensorflow as tf 

import matplotlib.pyplot as plt 

 

# Parameters 

learning_rate = 0.01 

training_epochs = 25 

batch_size = 100 

display_step = 1 

 

# tf Graph Input 

x = tf.placeholder("float", [None, 784]) # mnist data image of shape 28*28=784 

y = tf.placeholder("float", [None, 10]) # 0-9 digits recognition => 10 classes 

 

# Create model 

 

# Set model weights 

W = tf.Variable(tf.zeros([784, 10])) 

b = tf.Variable(tf.zeros([10])) 

 

# Construct model 

activation = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax 

 

# Minimize error using cross entropy 

cross_entropy = y*tf.log(activation) 

cost = tf.reduce_mean\ 

       (-tf.reduce_sum\ 

        (cross_entropy,reduction_indices=1)) 

 

optimizer = tf.train.\ 

            GradientDescentOptimizer(learning_rate).minimize(cost) 

 

#Plot settings 

avg_set = [] 

epoch_set=[] 

 

# Initializing the variables 

init = tf.initialize_all_variables() 
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# Launch the graph 

with tf.Session() as sess: 

    sess.run(init) 

 

    # Training cycle 

    for epoch in range(training_epochs): 

        avg_cost = 0. 

        total_batch = int(mnist.train.num_examples/batch_size) 

        # Loop over all batches 

        for i in range(total_batch): 

            batch_xs, batch_ys = \ 

                      mnist.train.next_batch(batch_size) 

            # Fit training using batch data 

            sess.run(optimizer, \ 

                     feed_dict={x: batch_xs, y: batch_ys}) 

            # Compute average loss 

            avg_cost += sess.run(cost, \ 

                                 feed_dict={x: batch_xs, \ 

                                            y: batch_ys})/total_batch 

        # Display logs per epoch step 

        if epoch % display_step == 0: 

            print ("Epoch:", '%04d' % (epoch+1), "cost=", 

"{:.9f}".format(avg_cost)) 

        avg_set.append(avg_cost) 

        epoch_set.append(epoch+1) 

    print ("Training phase finished") 

 

    plt.plot(epoch_set,avg_set, 'o', label='Logistic Regression Training 

phase') 

    plt.ylabel('cost') 

    plt.xlabel('epoch') 

    plt.legend() 

    plt.show() 

 

    # Test model 

    correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1)) 

    # Calculate accuracy 

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 

    print ("Model accuracy:", accuracy.eval({x: mnist.test.images, y: 

mnist.test.labels})) 
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Output 

The above code generates the following output: 

 

The logistic regression is considered as a predictive analysis. Logistic regression is used to 

describe data and to explain the relationship between one dependent binary variable and 

one or more nominal or independent variables. 
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In this chapter, we will focus on the basic example of linear regression implementation 

using TensorFlow. Logistic regression or linear regression is a supervised machine learning 

approach for the classification of order discrete categories. Our goal in this chapter is to 

build a model by which a user can predict the relationship between predictor variables and 

one or more independent variables. 

The relationship between these two variables is considered linear. If y is the dependent 

variable and x is considered as the independent variable, then the linear regression 

relationship of two variables will look like the following equation: 

Y= Ax+b 

We will design an algorithm for linear regression. This will allow us to understand the 

following two important concepts: 

 Cost Function 

 Gradient descent algorithms 

The schematic representation of linear regression is mentioned below: 

 

  

 

 

 

 

 

 

The graphical view of the equation of linear regression is mentioned below: 

 

 

 

 

 

 

 

 

12. TensorFlow — Linear Regression 
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Steps to design an algorithm for linear regression 

We will now learn about the steps that help in designing an algorithm for linear regression. 

Step 1 

It is important to import the necessary modules for plotting the linear regression module. 

We start importing the Python library NumPy and Matplotlib. 

import numpy as np 

import matplotlib.pyplot as plt 

Step 2  

Define the number of coefficients necessary for logistic regression. 

number_of_points = 500 

x_point = [] 

y_point = [] 

a = 0.22 

b = 0.78 

 

Step 3 

Iterate the variables for generating 300 random points around the regression equation:  

Y=0.22x+0.78 

for i in range(number_of_points): 

    x = np.random.normal(0.0,0.5) 

    y = a*x + b +np.random.normal(0.0,0.1) 

    x_point.append([x]) 

    y_point.append([y]) 

 

Step 4 

View the generated points using Matplotlib. 

plt.plot(x_point,y_point, 'o', label='Input Data') 

plt.legend() 

plt.show() 
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The complete code for logistic regression is as follows: 

import numpy as np 

import matplotlib.pyplot as plt 

number_of_points = 500 

x_point = [] 

y_point = [] 

a = 0.22 

b = 0.78 

for i in range(number_of_points): 

    x = np.random.normal(0.0,0.5) 

    y = a*x + b +np.random.normal(0.0,0.1) 

    x_point.append([x]) 

    y_point.append([y]) 

 

plt.plot(x_point,y_point, 'o', label='Input Data') 

plt.legend() 

plt.show() 

The  number of points which is taken as input is considered as input data. 
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TFLearn can be defined as a modular and transparent deep learning aspect used in 

TensorFlow framework. The main motive of TFLearn is to provide a higher level API to 

TensorFlow for facilitating and showing up new experiments. 

Consider the following important features of TFLearn:  
 

 TFLearn is easy to use and understand. 

 

 It includes easy concepts to build highly modular network layers, optimizers and 

various metrics embedded within them. 

 

 It includes full transparency with TensorFlow work system. 

 

 It includes powerful helper functions to train the built in tensors which accept 

multiple inputs, outputs and optimizers. 

 

 It includes easy and beautiful graph visualization. 

 

 The graph visualization includes various details of weights, gradients and 

activations. 

 

Install TFLearn by executing the following command: 
 

pip install tflearn 

 
Upon execution of the above code, the following output will be generated: 

 
 
 

13. TensorFlow — TFLearn and its installation 



TensorFlow        

   51 

 

 
The following illustration shows the implementation of TFLearn with Random Forest 
classifier: 

from __future__ import division, print_function, absolute_import 

#TFLearn module implementation 

import tflearn 

from tflearn.estimators import RandomForestClassifier 

 

# Data loading and pre-processing with respect to dataset 

import tflearn.datasets.mnist as mnist 

X, Y, testX, testY = mnist.load_data(one_hot=False) 

 

m = RandomForestClassifier(n_estimators=100, max_nodes=1000) 

m.fit(X, Y, batch_size=10000, display_step=10) 

 

print("Compute the accuracy on train data:") 

print(m.evaluate(X, Y, tflearn.accuracy_op)) 

 

print("Compute the accuracy on test set:") 

print(m.evaluate(testX, testY, tflearn.accuracy_op)) 

 

print("Digits for test images id 0 to 5:") 

print(m.predict(testX[:5])) 

print("True digits:") 

print(testY[:5]) 
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In this chapter, we will focus on the difference between CNN and RNN: 

CNN RNN 

It is suitable for spatial data such as 

images. 

RNN is suitable for temporal data, also 

called sequential data. 

CNN is considered to be more powerful 

than RNN. 

RNN includes less feature compatibility 

when compared to CNN. 

This network takes fixed size inputs and 

generates fixed size outputs. 

RNN can handle arbitrary input/output 

lengths. 

CNN is a type of feed-forward artificial 

neural network with variations of 

multilayer perceptrons designed to use 

minimal amounts of preprocessing. 

RNN unlike feed forward neural networks - 

can use their internal memory to process 

arbitrary sequences of inputs. 

CNNs use connectivity pattern between the 

neurons. This is inspired by the 

organization of the animal visual cortex, 

whose individual neurons are arranged in 

such a way that they respond to 

overlapping regions tiling the visual field. 

Recurrent neural networks use time-series 

information - what a user spoke last will 

impact what he/she will speak next. 

CNNs are ideal for images and video 

processing. 

RNNs are ideal for text and speech 

analysis. 

 

Following illustration shows the schematic representation of CNN and RNN: 

 

 

 

14. TensorFlow — CNN and RNN Difference 
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Keras is compact, easy to learn, high-level Python library run on top of TensorFlow 

framework. It is made with focus of understanding deep learning techniques, such as 

creating layers for neural networks maintaining the concepts of shapes and mathematical 

details. The creation of freamework can be of the following two types:  

 Sequential API 

 Functional API 

Consider the following eight steps to create deep learning model in Keras: 

 Loading the data 

 Preprocess the loaded data 

 Definition of model 

 Compiling the model 

 Fit the specified model 

 Evaluate it 

 Make the required predictions 

 Save the model 

We will use the Jupyter Notebook for execution and display of output as shown below: 

Step 1: Loading the data and preprocessing the loaded data is implemented first to 

execute the deep learning model. 

import warnings 

warnings.filterwarnings('ignore') 

import numpy as np 

np.random.seed(123)  # for reproducibility 

from keras.models import Sequential 

from keras.layers import Flatten, MaxPool2D, Conv2D, Dense, Reshape, Dropout 

from keras.utils import np_utils 

Using TensorFlow backend. 

from keras.datasets import mnist 

  

# Load pre-shuffled MNIST data into train and test sets 

(X_train, y_train), (X_test, y_test) = mnist.load_data() 

X_train = X_train.reshape(X_train.shape[0], 28, 28, 1) 

X_test = X_test.reshape(X_test.shape[0], 28, 28, 1) 

X_train = X_train.astype('float32') 

15. TensorFlow — Keras 
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X_test = X_test.astype('float32') 

X_train /= 255 

X_test /= 255 

Y_train = np_utils.to_categorical(y_train, 10) 

Y_test = np_utils.to_categorical(y_test, 10) 

 

This step can be defined as “Import libraries and Modules” which means all the libraries 

and modules are imported as an initial step. 

Step 2: In this step, we will define the model architecture: 

model = Sequential() 

model.add(Conv2D(32, 3, 3, activation='relu', input_shape=(28,28,1))) 

model.add(Conv2D(32, 3, 3, activation='relu')) 

model.add(MaxPool2D(pool_size=(2,2))) 

model.add(Dropout(0.25)) 

model.add(Flatten()) 

model.add(Dense(128, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(10, activation='softmax')) 

 

 

Step 3: Let us now compile the specified model: 

model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

 

Step 4: We will now fit the model using training data: 

model.fit(X_train, Y_train, batch_size=32, epochs=10, verbose=1) 

 

The output of iterations created is as follows: 

Epoch 1/10 60000/60000 [==============================] - 65s - loss: 0.2124 - 

acc: 0.9345 Epoch 2/10 60000/60000 [==============================] - 62s - 

loss: 0.0893 - acc: 0.9740 Epoch 3/10 60000/60000 

[==============================] - 58s - loss: 0.0665 - acc: 0.9802 Epoch 4/10 

60000/60000 [==============================] - 62s - loss: 0.0571 - acc: 0.9830 

Epoch 5/10 60000/60000 [==============================] - 62s - loss: 0.0474 - 

acc: 0.9855 Epoch 6/10 60000/60000 [==============================] - 59s - 
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loss: 0.0416 - acc: 0.9871 Epoch 7/10 60000/60000 

[==============================] - 61s - loss: 0.0380 - acc: 0.9877 Epoch 8/10 

60000/60000 [==============================] - 63s - loss: 0.0333 - acc: 0.9895 

Epoch 9/10 60000/60000 [==============================] - 64s - loss: 0.0325 - 

acc: 0.9898 Epoch 10/10 60000/60000 [==============================] - 60s - 

loss: 0.0284 - acc: 0.9910 
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This chapter will focus on how to get started with distributed TensorFlow. The aim is to 

help developers understand the basic distributed TF concepts that are reoccurring, such 

as TF servers.  We will use the Jupyter Notebook for evaluating distributed TensorFlow. 

The implementation of distributed computing with TensorFlow is mentioned below: 

Step 1: Import the necessary modules mandatory for distributed computing: 

import tensorflow as tf 

 

Step 2: Create a TensorFlow cluster with one node. Let this node be responsible for a job 

that that has name "worker" and that will operate one take at localhost:2222. 

cluster_spec = tf.train.ClusterSpec({'worker' : ['localhost:2222']}) 

server = tf.train.Server(cluster_spec) 

server.target 

The above scripts generate the following output: 

'grpc://localhost:2222' 

The server is currently running.  

 

Step 3: The server configuration with respective session can be calculated by executing 

the following command: 

server.server_def 

The above command generates the following output: 

cluster { 

  job { 

    name: "worker" 

    tasks { 

      value: "localhost:2222" 

    } 

  } 

} 

job_name: "worker" 

16. TensorFlow — Distributed Computing  
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protocol: "grpc" 

 

Step 4: Launch a TensorFlow session with the execution engine being the server. Use 

TensorFlow to create a local server and use lsof to find out the location of the server. 

sess = tf.Session(target=server.target) 

server = tf.train.Server.create_local_server() 

 

Step 5: View devices available in this session and close the respective session. 

devices = sess.list_devices() 

for d in devices: 

    print(d.name) 

sess.close() 

 

The above command generates the following output: 

/job:worker/replica:0/task:0/device:CPU:0 
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Here, we will focus on MetaGraph formation in TensorFlow. This will help us understand 

export module in TensorFlow. The MetaGraph contains the basic information, which is 

required to train, perform evaluation, or run inference on a previously trained graph. 

Following is the code snippet for the same: 

def export_meta_graph(filename=None, collection_list=None, as_text=False): 

  """this code writes `MetaGraphDef` to save_path/filename. 

 

  Arguments: 

    filename: Optional meta_graph filename including the path. 

    collection_list: List of string keys to collect. 

    as_text: If `True`, writes the meta_graph as an ASCII proto. 

 

  Returns: 

    A `MetaGraphDef` proto. 

  """ 

 

One of the typical usage model for the same is mentioned below: 

# Build the model 

... 

with tf.Session() as sess: 

  # Use the model 

  ... 

# Export the model to /tmp/my-model.meta. 

meta_graph_def = tf.train.export_meta_graph(filename='/tmp/my-model.meta') 

 

  

17. TensorFlow — Exporting with TensorFlow 
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Multi-Layer perceptron defines the most complicated architecture of artificial neural 

networks. It is substantially formed from multiple layers of perceptron. 

The diagrammatic representation of multi-layer perceptron learning is as shown below: 

 

MLP networks are usually used for supervised learning format. A typical learning algorithm 

for MLP networks is also called back propagation’s algorithm. 

Now, we will focus on the implementation with MLP for an image classification problem. 

# Import MINST data 

from tensorflow.examples.tutorials.mnist import input_data 

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) 

 

import tensorflow as tf 

import matplotlib.pyplot as plt 

 

# Parameters 

learning_rate = 0.001 

training_epochs = 20 

batch_size = 100 

display_step = 1 

 

# Network Parameters 

n_hidden_1 = 256  # 1st layer num features 

18. TensorFlow — Multi-Layer Perceptron 
Learning 



TensorFlow        

   60 

 

n_hidden_2 = 256  # 2nd layer num features 

n_input = 784  # MNIST data input (img shape: 28*28) 

n_classes = 10  # MNIST total classes (0-9 digits) 

 

# tf Graph input 

x = tf.placeholder("float", [None, n_input]) 

y = tf.placeholder("float", [None, n_classes]) 

 

# weights layer 1 

h = tf.Variable(tf.random_normal([n_input, n_hidden_1])) 

# bias layer 1 

bias_layer_1 = tf.Variable(tf.random_normal([n_hidden_1])) 

# layer 1 

layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, h), bias_layer_1)) 

 

# weights layer 2 

w = tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])) 

# bias layer 2 

bias_layer_2 = tf.Variable(tf.random_normal([n_hidden_2])) 

# layer 2 

layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, w), bias_layer_2)) 

 

# weights output layer 

output = tf.Variable(tf.random_normal([n_hidden_2, n_classes])) 

# biar output layer 

bias_output = tf.Variable(tf.random_normal([n_classes])) 

# output layer 

output_layer = tf.matmul(layer_2, output) + bias_output 

 

# cost function 

 

cost = 

tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output_layer, 

labels=y)) 

#cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(output_layer, 

y)) 

# optimizer 

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) 

# optimizer = 

tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost) 

 

 

# Plot settings 

avg_set = [] 

epoch_set = [] 

 

# Initializing the variables 

init = tf.global_variables_initializer() 

 

# Launch the graph 

with tf.Session() as sess: 

    sess.run(init) 

 

    # Training cycle 
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    for epoch in range(training_epochs): 

        avg_cost = 0. 

        total_batch = int(mnist.train.num_examples / batch_size) 

        # Loop over all batches 

        for i in range(total_batch): 

            batch_xs, batch_ys = mnist.train.next_batch(batch_size) 

            # Fit training using batch data 

            sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) 

            # Compute average loss 

            avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / 

total_batch 

        # Display logs per epoch step 

        if epoch % display_step == 0: 

            print 

            "Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost) 

        avg_set.append(avg_cost) 

        epoch_set.append(epoch + 1) 

    print 

    "Training phase finished" 

 

    plt.plot(epoch_set, avg_set, 'o', label='MLP Training phase') 

    plt.ylabel('cost') 

    plt.xlabel('epoch') 

    plt.legend() 

    plt.show() 

 

    # Test model 

    correct_prediction = tf.equal(tf.argmax(output_layer, 1), tf.argmax(y, 1)) 

    # Calculate accuracy 

    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 

    print 

    "Model Accuracy:", accuracy.eval({x: mnist.test.images, y: 

mnist.test.labels}) 
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The above line of code generates the following output: 
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In this chapter, we will be focus on the network we will have to learn from known set of 

points called x and f(x). A single hidden layer will build this simple network. 

The code for the explanation of hidden layers of perceptron is as shown below: 

#Importing the necessary modules 

import tensorflow as tf 

import numpy as np 

import math, random 

import matplotlib.pyplot as plt 

 

 

np.random.seed(1000) 

function_to_learn = lambda x: np.cos(x) + 0.1*np.random.randn(*x.shape) 

layer_1_neurons = 10 

NUM_points = 1000 

#Training the parameters 

batch_size = 100 

NUM_EPOCHS = 1500 

 

 

all_x = np.float32(np.random.uniform(-2*math.pi, 2*math.pi, (1, NUM_points))).T 

np.random.shuffle(all_x) 

 

 

train_size = int(900) 

#Training the first 700 points in the given set 

x_training = all_x[:train_size] 

y_training = function_to_learn(x_training) 

 

#Training the last 300 points in the given set 

x_validation = all_x[train_size:] 

y_validation = function_to_learn(x_validation) 

 

plt.figure(1) 

plt.scatter(x_training, y_training, c='blue', label='train') 

plt.scatter(x_validation, y_validation, c='pink', label='validation') 

plt.legend() 

plt.show() 

 

X = tf.placeholder(tf.float32, [None, 1], name="X") 

Y = tf.placeholder(tf.float32, [None, 1], name="Y") 

 

#first layer 

#Number of neurons = 10 

w_h = tf.Variable(tf.random_uniform([1, layer_1_neurons],\ 

                                    minval=-1, maxval=1, dtype=tf.float32)) 

b_h = tf.Variable(tf.zeros([1, layer_1_neurons], dtype=tf.float32)) 

h = tf.nn.sigmoid(tf.matmul(X, w_h) + b_h) 

19. TensorFlow — Hidden Layers of Perceptron  
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#output layer 

#Number of neurons = 10 

w_o = tf.Variable(tf.random_uniform([layer_1_neurons, 1],\ 

                                    minval=-1, maxval=1, dtype=tf.float32)) 

b_o = tf.Variable(tf.zeros([1, 1], dtype=tf.float32)) 

 

#build the model 

model = tf.matmul(h, w_o) + b_o 

 

#minimize the cost function (model - Y) 

train_op = tf.train.AdamOptimizer().minimize(tf.nn.l2_loss(model - Y)) 

 

#Start the Learning phase 

sess = tf.Session() 

sess.run(tf.initialize_all_variables()) 

 

errors = [] 

for i in range(NUM_EPOCHS): 

    for start, end in zip(range(0, len(x_training), batch_size),\ 

                          range(batch_size, len(x_training), batch_size)): 

        sess.run(train_op, feed_dict={X: x_training[start:end],\ 

                                      Y: y_training[start:end]}) 

    cost = sess.run(tf.nn.l2_loss(model - y_validation),\ 

                    feed_dict={X:x_validation}) 

    errors.append(cost) 

    if i%100 == 0: 

        print("epoch %d, cost = %g" % (i, cost)) 

 

plt.plot(errors,label='MLP Function Approximation') 

plt.xlabel('epochs') 

plt.ylabel('cost') 

plt.legend() 

plt.show() 
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Output  

Following is the representation of function layer approximation: 

Here two data are represented in shape of W. The two data are: train and validation which 

are represented in distinct colors as visible in legend section. 
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Optimizers are the extended class, which include added information to train a specific 

model. The optimizer class is initialized with given parameters but it is important to 

remember that no Tensor is needed. The optimizers are used for improving speed and 

performance for training a specific model. 

The basic optimizer of TensorFlow is: 

tf.train.Optimizer 

This class is defined in the specified path of “tensorflow/python/training/optimizer.py”. 

Following are some optimizers in Tensorflow: 

 Stochastic Gradient descent 

 Stochastic Gradient descent with gradient clipping 

 Momentum 

 Nesterov momentum 

 Adagrad 

 Adadelta 

 RMSProp 

 Adam 

 Adamax 

 SMORMS3 

We will focus on the Stochastic Gradient descent. The illustration for creating optimizer for 

the same is mentioned below: 

def sgd(cost, 

params, 

lr=np.float32(0.01)): 
 

    g_params = tf.gradients(cost, params) 
 

    updates = [] 
 

    for param, g_param in zip(params, g_params): 
 

        updates.append(param.assign(param - 

lr*g_param)) 
 

    return updates 
 

The basic parameters are defined within the specific function. In our subsequent chapter, 

we will focus on Gradient Descent Optimization with implementation of optimizers. 

20. TensorFlow — Optimizers in TensorFlow 

https://www.github.com/tensorflow/tensorflow/blob/r1.11/tensorflow/python/training/optimizer.py
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In this chapter, we will learn about the XOR implementation using TensorFlow. Before 

starting with XOR implementation in TensorFlow, let us see the XOR table values. This will 

help us understand encryption and decryption process. 

 

 

 

 

 

 

 

 

 

 

 

XOR Cipher encryption method is basically used to encrypt data which is hard to crack 

with brute force method, i.e., by generating random encryption keys which match the 

appropriate key. 

The concept of implementation with XOR Cipher is to define a XOR encryption key and 

then perform XOR operation of the characters in the specified string with this key, which 

a user tries to encrypt. Now we will focus on XOR implementation using TensorFlow, which 

is mentioned below: 

#Declaring necessary modules 

import tensorflow as tf 

import numpy as np 

""" 

A simple numpy implementation of a XOR gate to understand the backpropagation 

algorithm 

""" 

 

x=tf.placeholder(tf.float64,shape=[4,2],name="x")#declaring a place holder for 

input x 

y=tf.placeholder(tf.float64,shape=[4,1],name="y")#declaring a place holder for 

desired output y 

21. TensorFlow — XOR Implementation  
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m=np.shape(x)[0]#number of training examples 

n=np.shape(x)[1]#number of features 

hidden_s = 2 #number of nodes in the hidden layer 

l_r =1#learning rate initialization 

 

theta1=tf.cast(tf.Variable(tf.random_normal([3,hidden_s]),name="theta1"),tf.flo

at64) 

theta2=tf.cast(tf.Variable(tf.random_normal([hidden_s+1,1]),name="theta2"),tf.f

loat64) 

 

#conducting forward propagation 

 

a1=tf.concat([np.c_[np.ones(x.shape[0])],x],1) 

#the weights of the first layer are multiplied by the input of the first layer 

z1=tf.matmul(a1,theta1) 

#the input of the second layer is the output of the first layer, passed through 

the activation function and column of biases is added 

a2=tf.concat([np.c_[np.ones(x.shape[0])],tf.sigmoid(z1)],1) 

#the input of the second layer is multiplied by the weights 

z3=tf.matmul(a2,theta2) 

#the output is passed through the activation function to obtain the final 

probability 

h3=tf.sigmoid(z3) 

 

cost_func=-tf.reduce_sum(y*tf.log(h3)+(1-y)*tf.log(1-h3),axis=1) 

 

#built in tensorflow optimizer that conducts gradient descent using specified 

learning rate to obtain theta values 

optimiser = 

tf.train.GradientDescentOptimizer(learning_rate=l_r).minimize(cost_func) 

 

#setting required X and Y values to perform XOR operation 

X=[[0,0],[0,1],[1,0],[1,1]] 

Y=[[0],[1],[1],[0]] 

 

#initializing all variables, creating a session and running a tensorflow 

session 

init=tf.global_variables_initializer() 
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sess=tf.Session() 

sess.run(init) 

 

#running gradient descent for each iteration and printing the hypothesis 

obtained using the updated theta values 

for i in range(100000): 

    sess.run(optimiser, feed_dict={x:X,y:Y})#setting place holder values using 

feed_dict 

    if i%100==0: 

        print("Epoch:",i) 

        print("Hyp:",sess.run(h3,feed_dict={x:X,y:Y})) 

 

The above line of code generates an output as shown in the screenshot below: 
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Gradient descent optimization is considered to be an important concept in data science.  

Consider the steps shown below to understand the implementation of gradient descent 

optimization: 

Step 1 

Include necessary modules and declaration of x and y variables through which we are 

going to define the gradient descent optimization. 

import tensorflow as tf 

 

x = tf.Variable(2, name='x', dtype=tf.float32) 

log_x = tf.log(x) 

log_x_squared = tf.square(log_x) 

 

optimizer = tf.train.GradientDescentOptimizer(0.5) 

train = optimizer.minimize(log_x_squared) 

 

Step 2 

Initialize the necessary variables and call the optimizers for defining and calling it with 

respective function. 

init = tf.initialize_all_variables() 

 

def optimize(): 

  with tf.Session() as session: 

    session.run(init) 

    print("starting at", "x:", session.run(x), "log(x)^2:", 

session.run(log_x_squared)) 

    for step in range(10):   

      session.run(train) 

      print("step", step, "x:", session.run(x), "log(x)^2:", 

session.run(log_x_squared)) 

         

 

22. TensorFlow — Gradient Descent Optimization 
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optimize() 

 

The above line of code generates an output as shown in the screenshot below: 

 

We can see that the necessary epochs and iterations are calculated as shown in the output. 
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A partial differential equation (PDE) is a differential equation, which involves partial 

derivatives with unknown function of several independent variables. With reference to 

partial differential equations, we will focus on creating new graphs. 

Let us assume there is a pond with dimension 500*500 square: 

N=500 

Now, we will compute partial differential equation and form the respective graph using it. 

Consider the steps given below for computing graph. 

Step 1: Import libraries for simulation. 

import tensorflow as tf 

import numpy as np 

import matplotlib.pyplot as plt 

 

Step 2: Include functions for transformation of a 2D array into a convolution kernel and 

simplified 2D convolution operation. 

def make_kernel(a): 

  a = np.asarray(a) 

  a = a.reshape(list(a.shape) + [1,1]) 

  return tf.constant(a, dtype=1) 

 

def simple_conv(x, k): 

  """A simplified 2D convolution operation""" 

  x = tf.expand_dims(tf.expand_dims(x, 0), -1) 

  y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME') 

  return y[0, :, :, 0] 

 

def laplace(x): 

  """Compute the 2D laplacian of an array""" 

  laplace_k = make_kernel([[0.5, 1.0, 0.5], 

                           [1.0, -6., 1.0], 

                           [0.5, 1.0, 0.5]]) 

  return simple_conv(x, laplace_k) 

 

23. TensorFlow — Forming Graphs 
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sess = tf.InteractiveSession() 

 

Step 3: Include the number of iterations and compute the graph to display the records 

accordingly. 

N = 500 

 

# Initial Conditions -- some rain drops hit a pond 

 

# Set everything to zero 

u_init = np.zeros([N, N], dtype=np.float32) 

ut_init = np.zeros([N, N], dtype=np.float32) 

 

# Some rain drops hit a pond at random points 

for n in range(100): 

  a,b = np.random.randint(0, N, 2) 

  u_init[a,b] = np.random.uniform() 

 

plt.imshow(u_init) 

plt.show() 

 

# Parameters: 

# eps -- time resolution 

# damping -- wave damping 

eps = tf.placeholder(tf.float32, shape=()) 

damping = tf.placeholder(tf.float32, shape=()) 

 

# Create variables for simulation state 

U  = tf.Variable(u_init) 

Ut = tf.Variable(ut_init) 

 

# Discretized PDE update rules 

U_ = U + eps * Ut 

Ut_ = Ut + eps * (laplace(U) - damping * Ut) 

 

# Operation to update the state 
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step = tf.group( 

  U.assign(U_), 

  Ut.assign(Ut_)) 

 

# Initialize state to initial conditions 

tf.initialize_all_variables().run() 

 

# Run 1000 steps of PDE 

for i in range(1000): 

  # Step simulation 

  step.run({eps: 0.03, damping: 0.04}) 

  # Visualize every 50 steps 

  if i % 500 == 0: 

      plt.imshow(U.eval()) 

      plt.show() 
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The graphs are plotted as shown below: 
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TensorFlow includes a special feature of image recognition and these images are stored in 

a specific folder. With relatively same images, it will be easy to implement this logic for 

security purposes.  

The folder structure of image recognition code implementation is as shown below: 

 

The dataset_image includes the related images, which need to be loaded. We will focus on 

image recognition with our logo defined in it. The images are loaded with “load_data.py” 

script, which helps in keeping a note on various image recognition modules within them. 

import pickle 

from sklearn.model_selection import train_test_split 

from scipy import misc 

import numpy as np 

import os 

 

 

label = os.listdir("dataset_image") 

label=label[1:] 

dataset=[] 

for image_label in label: 

 

    images = os.listdir("dataset_image/"+image_label) 

 

24.  TensorFlow — Image Recognition using 
TensorFlow 



TensorFlow        

   78 

 

    for image in images: 

        img = misc.imread("dataset_image/"+image_label+"/"+image) 

        img = misc.imresize(img, (64, 64)) 

        dataset.append((img,image_label)) 

 

 

 

X=[] 

Y=[] 

 

for  input,image_label in dataset: 

 

    X.append(input) 

 

    Y.append(label.index(image_label)) 

 

 

X=np.array(X) 

Y=np.array(Y) 

 

 

X_train,y_train,  = X,Y 

 

 

data_set=(X_train,y_train) 

 

 

 

save_label = open("int_to_word_out.pickle","wb") 

pickle.dump(label, save_label) 

save_label.close() 
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The training of images helps in storing the recognizable patterns within specified folder. 

import numpy 

 

import matplotlib.pyplot as plt 

 

from keras.layers import Dropout 

from keras.layers import Flatten 

from keras.constraints import maxnorm 

from keras.optimizers import SGD 

from keras.layers import Conv2D 

 

from keras.layers.convolutional import MaxPooling2D 

from keras.utils import np_utils 

from keras import backend as K 

import load_data 

from keras.models import Sequential 

from keras.layers import Dense 

 

import keras 

K.set_image_dim_ordering('tf') 

# fix random seed for reproducibility 

seed = 7 

numpy.random.seed(seed) 

# load data 

(X_train,y_train)=load_data.data_set 

 

 

# normalize inputs from 0-255 to 0.0-1.0 

X_train = X_train.astype('float32') 

#X_test = X_test.astype('float32') 

X_train = X_train / 255.0 

#X_test = X_test / 255.0 

# one hot encode outputs 

y_train = np_utils.to_categorical(y_train) 

#y_test = np_utils.to_categorical(y_test) 

num_classes = y_train.shape[1] 

# Create the model 
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model = Sequential() 

model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), padding='same', 

activation='relu', kernel_constraint=maxnorm(3))) 

model.add(Dropout(0.2)) 

model.add(Conv2D(32, (3, 3), activation='relu', padding='same', 

kernel_constraint=maxnorm(3))) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Flatten()) 

model.add(Dense(512, activation='relu', kernel_constraint=maxnorm(3))) 

model.add(Dropout(0.5)) 

model.add(Dense(num_classes, activation='softmax')) 

# Compile model 

epochs = 10 

lrate = 0.01 

decay = lrate/epochs 

sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False) 

model.compile(loss='categorical_crossentropy', optimizer=sgd, 

metrics=['accuracy']) 

print(model.summary()) 

#callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, 

patience=0, verbose=0, mode='auto')] 

callbacks=[keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=0, 

batch_size=32, write_graph=True, write_grads=False, write_images=True, 

embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)] 

# Fit the model 

model.fit(X_train, y_train, epochs=epochs, 

batch_size=32,shuffle=True,callbacks=callbacks) 

 

# Final evaluation of the model 

scores = model.evaluate(X_train, y_train, verbose=0) 

print("Accuracy: %.2f%%" % (scores[1]*100)) 

 

# serialize model to JSONx 

model_json = model.to_json() 

with open("model_face.json", "w") as json_file: 

    json_file.write(model_json) 

# serialize weights to HDF5 

model.save_weights("model_face.h5") 

print("Saved model to disk") 
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The above line of code generates an output as shown below: 
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In this chapter, we will understand the various aspects of neural network training which 

can be implemented using TensorFlow framework.  

Following are the ten recommendations, which can be evaluated: 

Back Propagation 

Back propagation is a simple method to compute partial derivatives, which includes the 

basic form of composition best suitable for neural nets. 

 

Stochastic Gradient Descent 

In stochastic gradient descent, a batch is the total number of examples, which a user uses 

to calculate the gradient in a single iteration. So far, it is assumed that the batch has been 

the entire data set. The best illustration is working at Google scale; data sets often contain 

billions or even hundreds of billions of examples. 

25. TensorFlow — Recommendations for Neural 
Network Training 
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Learning Rate Decay 

Adapting the learning rate is one of the most important features of gradient descent 

optimization. This is crucial to TensorFlow implementation. 
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Dropout 

Deep neural nets with a large number of parameters form powerful machine learning 

systems. However, over fitting is a serious problem in such networks. 
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Max Pooling 

Max pooling is a sample-based discretization process. The object is to down-sample an 

input representation, which reduces the dimensionality with the required assumptions. 
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Long Short Term Memory (LSTM) 

LSTM controls the decision on what inputs should be taken within the specified neuron. It 

includes the control on deciding what should be computed and what output should be 

generated. 

 

 


