Xpy

tutor‘lalspolnt

R

www.tutorialspoint.com

"

"a https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint



RxPY

About the Tutorial

RxPY is a python library to support Reactive Programming. RxPy stands for Reactive
Extensions for Python. It is a library that uses observables to work with reactive
programming that deals with asynchronous data calls, callbacks and event-based
programs. This tutorial will give you enough understanding on various functionalities of
RxPY with suitable examples.

Audience

The tutorial is designed for software programmers who want to learn the basics of RxPY
i.e. Reactive extension for Python and its programming concepts in simple and easy ways.

Prerequisites

We suggest you to go through tutorials related to Python, before proceeding with this
tutorial.

Copyright & Disclaimer

© Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

tutorialspoint

EIMPLYEAGSY LEARMNING



mailto:contact@tutorialspoint.com

RxPY

Table of Contents

ADOUL the TULOTTAl ...ttt et sttt et e bt e sar e saeesreesreenbeeneeenneennens ii

LA e 1= o T OO PP U PP SRVt ii

P T B QUISIEES .ttt e s s e e e e s a e e s e e e s rae e e s raeeeeas i
COPYFIBNE & DISCIAIMET ...ttt sttt et e et e st e et e st e e e bt e sabeeeabeesabeeeseesabeeenneesane i
TabIE OFf CONTENES ..ttt e s e s e e et e e sa b e e et e e st e e e bt e sabeeeabeesabeeeseesares iii

L. RXPY = OVEIVIEW coiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiiiisiisisisisisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsens 1
What is REACtIVE PrOZramImMING? ......coooiiiieiiiiieeeciie e ctee e ettt e e tae e e st e e e e sata e e e enaeeessaaeeesstaeesenssaeesnseesenssseesnnnns 1
WAt S RXPY? ..o cttee ettt e st e e ettt e e e ettt e e e s abbe e e et teeeeaataeeesassaeeastaeeeanssaeesassaaeanssaaesanstaeesssasasanssesennses 2
FEATUIES OF RXPY ..eiiiiiiieeiitieeeeitee ettt e ettt e e ettt e e e tte e e sta e e e e tteeeeaabaaeessbaaaastasesenssasesssaaeeansaeseanssaeesassaneesssenaans 2
AdVantages Of USING RXPY ..ottt e ettt e e e tte e e st e e e e s ate e e e eaaaeeesbbaeeesstaeeeenstaessssasaansteeeennses 3
Disadvantage Of USING RXPY ......uuiiiiiiieeiiiie e ettt e ettt e st e e e e te e e e e tae e e stbeeessabaeeeeastaeesssaaeesnsaeeeessaeeeansaneessseaaans 3

2. RXPY — ENVIroNMENT SETUP ..cciiviiueiiiiiiiiiiiiiiiiiiiiiiiniissiiisiiiinssssssssssiimssssssssssssimssssssssssssssssssssssssssssssssssssssss 4
INSTAITING PYLNON ...ttt ettt st e st e st e s bt e sabeesabeesabeesaseesabeesaneesabeeenseess 4
INSTAII RXPY .ottt ettt ettt e sttt e e et e e et e e e ste e e e e ateeeesaseeeesasaeeeeasbaeesansseeessaeeeesnsaeeeassaeesnnsnaesssseaenns 7

3. RXPY — Latest Release UPdates .......cccccceeeeeeeeeerenienneeeeeeeeeeeeeeeeeeeeeesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 9
OBSEIVADIE IN RXPY ..ttt ettt st e st e sa e s bt e s b e e st e e s b e e s bt e s b e e e bt e s b e e e reesane 9
OPEIAtOrS N RXPY i 9

4. RXPY — Working with ObServables...........coiiiiicccccrccrcccrrrssssssssssssss s sssssssssssssssssnnnnnnnns 11
Create ODSEIVADIES ......eieee e e e e esaree s 11
Subscribe and Execute an ObServable..........cocooiiiiiiiiiii e 11

LT 19 o (el 0« =T - o1 13
WOTKING WIth OPEIATOIS ..uviiiiiiiiieeiiie ettt ee et e e ete e e st e e e e e e e esaeeeeessbaeeesateeesanseaeesnsaeeeasseeesasseeessnsseeanns 13
Creating OBSEIVADIES. ......coo ettt e et e e s e e e st e e e s see e e s areeeeastaeeeanteeesanteeeennraeenanes 14

o] =T PP 15
11141 o1 AV AR P PP PP PPNt 16
LTSN TP PP PPPPP 16

iii

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

BFOW ettt et ettt h e bt e Rttt e s e she e nR e n et ae e neenr e e reeare s 17
100 o o TSP 18
TNEEIVAL ettt st bt b e bt ettt et e h e Rt e b e e Rt e R e e an e s eeesheesheenreeneeneeneeene 19
JUST e e e e e s a e e e s a e e e e e s s raaaee 20
L 1= =TT OPPPPTPTTPPIN 21
FEPEAT_VAIUEB ... ettt ettt et b e sttt e b e e bt e e bt e s bt e e bt e s bt e e bt e s b et e bt e s beeeneeeabeeennne et 22
] = o SO PPN 23
110 2 =T PPN 24
RETUIN VAIUE ettt s s e s bt e s bt e bt et e e ae e e ae e s b e e b e e reeareeanesanesmeeneie 24
T [ 4 o L= U R 24
Y EYd a1l LA Tor-] WoY o 1T - o] 4R 25
NV =T Y- PP PP PP PP PPPPPPPPPPPPRY 26
[ ] T ) S PP PO PPPPPTPPPN 26
[ 1V o | PP P PPPPTPRPN 28
L= G PP PPPTPPPN 29
101 PP PPPTPPP 30
L To TU Lol TP PP PP P PPUPPTPPPPPROt 31
L= N PP PPPPPPPPPRY 31
LR L= 0 0 1= T PPN 31
RETUIN VAIUE .ttt ettt e st e s et e s ba e e be e e s sbe s be e e sbbeeenteesmneennes 32
Y211 o] LT SRR 32
] 0P 32
TranSTOrMAtioN OPEIATOIS ...eiiieiiiieeciee ettt ee e et e e eet e e e st ae e e e st teeessateeessseeeessteeeeansaeeesasseeeeanteeeeansseessnnsnes 33
o1V =T TP PP P OO PRPRRPRRPO 34
L= oYU LYo [ <Y 35
0= o RO 36
=] o TP PRSPPI TP PPN 37
1LY g Lo T o] o1<T = | o U URR 38

iv

MPLYEAGSYLEARMNINIG

w Mtutorialspoint



RxPY

(o =] oYL U] ol TSP P TR P PRSPPI 39
(o |1 4 ot AT P PP PRSPPI 39
L1 =Y 3 0= o - | USSR 40
L1 L= TP TP ST P T PP PSP ST PPRTOPPTRPRTOP 41
LT P TSP P TP T PO PPRTOPPTRPPTOP 42
TBNIOIE _EIBMEBNTS. ...ttt ettt ettt s bt e e b e et e e bt e sttt et e e s b et e bt e s b et e bt e s beeebee s beeenneenane 43
T OO OO PO PP P PP UPPTPPPRPPPRIOt 44
(] RS SSRRNE 45
(0 = 1 USSR 46
BB ettt ettt st s h e b e bttt he e bt e b e e bt e a e e et e e Rt e sheesheenbe e bt et eneeebeenbe e beearens 47
1= 1 I = 1] AP 48
[ g oYl o= Ya Vo T Y=o T o= =1 o f SRR 48
[oF- | ol o TSP PURTRRNE 49
1= 50
UTHTITY OPEIALOIS ..ottt ettt ettt sttt s bt e st e e s bt e sabeeebeesabee e bt e sabeeeseesbeeenneennne 51
Lo 1= - Y T O TP T SO U P TUTRPPPTOPPPROUPN 52
MATEITAIIZE .o s b e bt s b e b e s reesneenane 53
LA T0 0T [ L (=T VY PSPPSR 54
110 =T TU PPN 55
L] 4TI =10 o] o R PP PPPPPRY 55
Conditional and BooIEan OPEIrators .........ciiiiiiiiiiiiiee e cecctree e e e serrre e e e e e sertarr e e e e e s setbataeeesessesssstneesesssanssnsees 57
Al e e e ettt e h e r e r e s sen e saeesreesae et eneen 57
(o] a1 =1 o TP PTOTIN 58
(o 1= =10 L =0 Yo USSR 60
3 =Te LU= oYl =T [ U £ SRR 61
£ 14 < T [ L1 PP SURPNS 62
SKID WHIIE et e e e e e st r e e e e e e s ettt aeeeeeeesatbaaaeaaeaesaasbataeaeaessenssssaeasasesansnrens 63
=1 ST 02 o | PSPPSR 64

\Y

MPLYEAGSYLEARMNINIG

w Mtutorialspoint



RxPY

[@foT Y Y=o =] o] 1o @ T o T=T = o] 3RS 66
T8 o] 11 o S 67

=] oo 10 ) SO 68
LT T 1 TP P O PP PP PP UPPTPPPRRPPPROt 68
COMDINING OPEIALOIS ...eiueiiiiiiieiteeitte ettt ettt et et e sh e e et esa bt e s ab e e sab e e s abeesab e e s abeesabeeeabeesabeeenbeesabeesnneesaseennneens 69
COMBDINE_AEEST ..ttt sttt e sat e et e e s a b e e e ab e e s et e e e ab e e sabeeeab e e sabeeeateesabeesaree s 70
0] = (O 71

] =L Y7 L TSRS 72

74| o J OO P PP PP PP PP PPPPPPPPPPPPPPPRY 73
6.RXPY — Working With SUDJECL ........cceeeeeeeeeiieeiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesesse s s s s s sssssssssssassssssssnsssnnnnnnnnns 75
(O 7CT Y T T U] o =T ox TSP SUURRNE 75

0 ool g1 o Tl o I T YU ][] 1 AU 75
PasSSING DAta tO SUDJECT ..eeueiiiiiiieeee et sttt e sttt e st e e e e sar e re e nareeneas 76
BENAVIOISUDJECT....e ettt et at e s h bt e st e s b e e h et e s ab e e ae e snb e e br e e sareenaees 78
AT o] N AT U] o] 1Tt AR O P T PP PP P TOPPOPRPOPPTO 79
ASYNCSUDJECT ettt ettt ettt e e bt s bt e sttt et e e s b et e bt e s b et e bt e e b et e ese e e bt e e sabe e beeesaneeneas 80

7. RXPY — Concurrency USING SCREAUIEK ......ceeeeeeciirieeeec ettt sccn e sse s e s s sennnsssse s s s s sennnssssssssssennanssnnns 81
8. RXPY — EXAMPIES...ceeeeiiiiiiiiieiieiciisiieeneeeseeeteseennnssssssssseennnssssssssessnnssssssssseesnnnsssssssssssnnnnssssssssssnnnnsssssssanes 88
Difference between observable and SUDJECT...........iiiiiiii et e st e aae e e e are e 89
Understanding Cold and Hot ObSErvables ...........eeiii it e e e e s e e e e e e s earanees 91

Vi

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



1. RxPY - Overview

This chapter explains what is reactive programming, what is RxPY, its operators, features,
advantages and disadvantage.

What is Reactive Programming?

Reactive programming is a programming paradigm, that deals with data flow and the
propagation of change. It means that, when a data flow is emitted by one component, the
change will be propagated to other components by a reactive programming library. The
propagation of change will continue until it reaches the final receiver.

By using RxPY, you have good control on the asynchronous data streams, for example, a
request made to URL can be traced by using observable, and use the observer to listen to
when the request is complete for response or error.

RxPY offers you to handle asynchronous data streams using Observables, query the data
streams using Operators i.e. filter, sum, concat, map and also make use of concurrency
for the data streams using Schedulers. Creating an Observable, gives an observer object
with on_next(v), on_error(e) and on_completed() methods, that needs to be subscribed
so that we get a notification when an event occurs.

Observable
Operator
on_next(v)
Subscriber | ——— Observer —| on_error(e)
on_completed()

The Observable can be queried using multiple operators in a chain format by using the
pipe operator.

@ tutorialspoint

EIMPLYEAGSY LEARMNING



RxPY

RxPY offers operators in various categories like: -

e Mathematical operators

e Transformation operators
e Filtering operators

e Error handling operators
e Utility operators

e Conditional operators

e Creation operators

e Connectable operators

These operators are explained in detail in this tutorial.

What is RxPy?

RxPY is defined as a library for composing asynchronous and event-based
programs using observable collections and pipable query operators in Python as
per the official website of RxPy, which is https://rxpy.readthedocs.io/en/latest/.

RxPY is a python library to support Reactive Programming. RxPy stands for Reactive
Extensions for Python. It's a library that uses observables to work with reactive
programming that deals with asynchronous data calls, callbacks and event-based
programs.

Features of RxPy

In RxPy, following concepts take care of handling the asynchronous task:

Observable

An observable is a function that creates an observer and attaches it to the source having
data streams that are expected from, for example, Tweets, computer-related events, etc.

Observer

It is an object with on_next(), on_error() and on_completed() methods, that will get called
when there is interaction with the observable i.e. the source interacts for an example
incoming Tweets, etc.

Subscription

When the observable is created, to execute the observable we need to subscribe to it.

Operators

An operator is a pure function that takes in observable as input and the output is also an
observable. You can use multiple operators on an observable data by using the pipe
operator.

tutorialspoint

EIMPLYEAGSY LEARMNING



https://rxpy.readthedocs.io/en/latest/

RxPY

Subject

A subject is an observable sequence as well as an observer that can multicast, i.e. talk to
many observers that have subscribed. The subject is a cold observable, i.e. the values will
be shared between the observers that have been subscribed.

Schedulers

One important feature of RxPy is concurrency i.e. to allow the task to execute in parallel.
To make that happen RxPy has two operators subscribe_on() and observe_on() that works
with schedulers and will decide the execution of the subscribed task.

Advantages of using RxPY

The following are the advantages of RxPy:

e RxPY is an awesome library when it comes to the handling of async data streams
and events. RxPY uses observables to work with reactive programming that deals
with asynchronous data calls, callbacks and event-based programs.

e RxPY offers a huge collection of operators in mathematical, transformation,
filtering, utility, conditional, error handling, join categories that makes life easy
when used with reactive programming.

e Concurrency i.e. working of multiple tasks together is achieved using schedulers in
RxPY.

e The performance is improved using RxPY as handling of async task and parallel

processing is made easy.

Disadvantage of using RxPY

¢ Debugging the code with observables is a little difficult.

tutorialspoint

EIMPLYEAGSY LEARMNING




2. RxPY — Environment Setup

In this chapter, we will work on the installation of RxPy. To start working with RxPY, we
need to install Python first. So, we are going to work on the following:

e Install Python
e Install RxPy

Installing Python

Go to the Python official site: https://www.python.org/downloads/ as shown below, and
click on the latest version available for Windows, Linux/Unix, and mac os. Download Python
as per your 64 or 32-bit OS available with you.

& G @ Python Software Foundation [US] | https://www.python.org/downloads/ * @

i Apps ™} AdSamples|Sport.. € Free Online Tutorial...

Python

e python’ . I

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows V |

Download Python 3.7.3

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, Mac OS X, Other

Want to help test development versions of Python? Pre-releases, Docker

images

Looking for Python 2.72 See below for specific releases

Once you have downloaded, click on the .exe file and follow the steps to install python
on your system.

@ tutorialspoint

EIMPLYEAGSY LEARMNING


https://www.python.org/downloads/

RxPY

% Python 3.7.3 (32-bit) Setup lal=

Setup Progress

Installing:

Python 3.7.3 Add to Path (32-bit)

python

for

windows

The python package manager, i.e. pip will also get installed by default with the above
installation. To make it work globally on your system, directly add the location of python
to the PATH variable, the same is shown at the start of the installation, to remember to
check the checkbox, which says ADD to PATH. In case, you forget to check it, please follow
the below given steps to add to PATH.

To add to PATH follow the below steps:
Right-click on your Computer icon and click on properties -> Advanced System Settings.

It will display the screen as shown below:

@ tutorialspoint

EIMPLYEAGSY LEARMNING



RxPY

System Properties

Computer Name | Hardware | Advanced | System Protection | Remote

You must be logged on as an Administrator to make most of these changes.

Performance

Visual effects, processor scheduling, memory usage, and virtual memony

Settings...
IUser Profiles
Desktop settings related to your signdn

Settings...
Startup and Recovery
System startup. system failure, and debugging irformation

Settings...

Environmert Variables...

QK Cancel Apphy

Click on Environment Variables as shown above. It will display the screen as shown below:

w tutorialspoint

EIMPLYEAEGBYLEARNINTIEG



RxPY

Environment Variables

User variables for Kamat

Variable Value &

Path C:\sershAppDataiLocal\Progra. .

PATHEXT SoPATHEXT $: RA: REW

PSModulePath +C\Wserst\AppDatalLocal{Google. ..

RubyMine C:'Program Files\JetBrains\RubyMine 2.., ¥
Mew. .. Edit. .. Delete

System variables

Variable Value i

ComSpec C:YWindows'systern32\cmd. exe

FP_NO_HOST ... NO

NUMBER_OF P... 2

s Windows_NT b
Mew. .. Edit... Delete

oK Cancel

Select Path and click on Edit button, add the location path of your python at the end. Now,
let’s check the python version.

Checking for python version

E:\pyrx>python --version

Python 3.7.3

Install RxPY

Now, that we have python installed, we are going to install RxPy.

Once python is installed, python package manager, i.e. pip will also get installed. Following
is the command to check pip version:

E:\pyrx>pip --version

pip 19.1.1 from c:\users\xxxx\appdatallocal\programs\python\python37\1lib\site-
packages\pip (python 3.7)

We have pip installed and the version is 19.1.1. Now, we will use pip to install RxPy

The command is as follows:

pip install rx

w tutorialspoint



RxPY

E-“pyrx>pip install ex
ollecting rx
Downloading https:/sfiles.pythonhosted.org/packagesShsad-d?3165haddoeB2f6Ff6c?
ed4262444b62hb46d5dd?dIa2?f1653RaZbhlaBes Rx—3.8.1-pyd—none—any.whl C195kB>
i i 284kB 437kB/=

1
Installing collected packages: rx
Cuccessfully installed »x—3.8.1

w tutorialspoint




3. RXxPY — Latest Release Updates

In this tutorial, we are using RxPY version 3 and python version 3.7.3. The working of
RxPY version 3 differs a little bit with the earlier version, i.e. RxPY version 1.

In this chapter, we are going to discuss the differences between the 2 versions and
changes that need to be done in case you are updating Python and RxPY versions.

Observable in RxPY

In RxPy version 1, Observable was a separate class:

from rx import Observable

To use the Observable, you have to use it as follows:

Observable.of(1,2,3,4,5,6,7,8,9,10)

In RxPy version 3, Observable is directly a part of the rx package.

Example:

import rx

rx.of(1,2,3,4,5,6,7,8,9,10)

Operators in RxPy

In version 1, the operator was methods in the Observable class. For example, to make
use of operators we have to import Observable as shown below:

from rx import Observable

The operators are used as Observable.operator, for example, as shown below:

Observable.of(1,2,3,4,5,6,7,8,9,10)\
.filter(lambda i: i %2 == @) \
.sum() \
.subscribe(lambda x: print("Value is {@}".format(x)))

In the case of RxPY version 3, operators are function and are imported and used as follows:

import rx

from rx import operators as ops

@ tutorialspoint

EIMPLYEAGSY LEARMNING



RxPY

rx.of(1,2,3,4,5,6,7,8,9,10).pipe(
ops.filter(lambda i: i %2 == @),
ops.sum()

).subscribe(lambda x: print("Value is {@}".format(x)))

Chaining Operators Using Pipe() method

In RxPy version 1, in case you had to use multiple operators on an observable, it had to
be done as follows:

Example

from rx import Observable

Observable.of(1,2,3,4,5,6,7,8,9,10)\
.filter(lambda i: i %2 == @) \
.sum() \
.subscribe(lambda x: print("Value is {@}".format(x)))

But, in case of RxPY version 3, you can use pipe() method and multiple operators as shown
below:

Example

import rx

from rx import operators as ops

rx.of(1,2,3,4,5,6,7,8,9,10).pipe(
ops.filter(lambda i: i %2 == @),
ops.sum()

).subscribe(lambda x: print("Value is {@}".format(x)))

10

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



4. RxPY — Working with Observables

An observable, is a function that creates an observer and attaches it to the source where
values are expected, for example, clicks, mouse events from a dom element, etc.

The topics mentioned below will be studied in detail in this chapter.
e Create Observables

e Subscribe and Execute an Observable

Create observables

To create an observable we will use create() method and pass the function to it that has
the following items.

e on_next(): This function gets called when the Observable emits an item.
e on_completed(): This function gets called when the Observable is complete.

e on_error(): This function gets called when an error occurs on the Observable

To work with create() method first import the method as shown below:

from rx import create

Here is a working example, to create an observable:
testrx.py

from rx import create

deftest_observable(observer, scheduler):
observer.on_next("Hello")
observer.on_error("Error")

observer.on_completed()

source = create(test_observable).

Subscribe and Execute an Observable

To subscribe to an observable, we need to use subscribe() function and pass the callback
function on_next, on_error and on_completed.

Here is a working example:
testrx.py

from rx import create

11

@ tutorialspoint

EIMPLYEAGSY LEARMNING



RxPY

deftest_observable(observer, scheduler):
observer.on_next("Hello")

observer.on_completed()

source = create(test_observable)

source.subscribe(
on_next = lambda i: print("Got - {@}".format(i)),
on_error = lambda e: print("Error : {@}".format(e)),

on_completed = lambda: print("Job Done!"),

)

The subscribe() method takes care of executing the observable. The callback
function on_next, on_error and on_completed has to be passed to the subscribe
method. Call to subscribe method, in turn, executes the test_observable() function.

It is not mandatory to pass all three callback functions to the subscribe() method. You can
pass as per your requirements the on_next(), on_error() and on_completed().

The lambda function is used for on_next, on_error and on_completed. It will take in the
arguments and execute the expression given.

Here is the output, of the observable created:

E:\pyrx>python testrx.py
Got - Hello

Job Done!

12

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



5. RXPY — Operators

This chapter explains about the operators in RxPY in detail. These operators include: -

e Working with Operators
¢ Mathematical operators

e Transformation operators
e Filtering operators

e Error handling operators
e Utility operators

¢ Conditional operators

e Creation operators

e Connectable operators

e Combining operators

Reactive (Rx) python has almost lots of operators, that make life easy with python coding.
You can use these multiple operators together, for example, while working with strings
you can use map, filter, merge operators.

Working with Operators

You can work with multiple operators together using pipe() method. This method allows
chaining multiple operators together.

Here, is a working example of using operators:

test = of(1,2,3) // an observable

subscriber = test.pipe(
op1(),
op2(),
op3()

)

In the above example, we have created an observable using of() method that takes in
values 1, 2 and 3. Now, on this observable, you can perform a different operation, using
any numbers of operators using pipe() method as shown above. The execution of operators
will go on sequentially on the observable given.

To work with operators, first import it as shown below:

from rx import of, operators as op

Here, is a working example:
13

@ tutorialspoint

EIMPLYEAGSY LEARMNING



testrx.py

RxPY

from rx import of, operators as op

test

subl

test.pipe(
op.filter(lambda s: s%2==0),
op.reduce(lambda acc, x: acc + x)

)

of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

subl.subscribe(lambda x: print("Sum of Even numbers is {0}".format(x)))

In the above example, there is a list of numbers, from which we are filtering even numbers
using a filter operator and later adding it using a reduce operator.

Output

E:\pyrx>python testrx.py

Sum of Even numbers is 30

Here is a list of Operators, that we are going to discuss:

e Creating Observables

¢ Mathematical operators

e Transformation operators
e Filtering operators

e Error handling operators
e Utility operators

e Conditional

e Connectable

e Combining Observables

Creating Observables

Following are the observables, we are going to discuss in Creation category

Observable

Description

create This method is wused to create an
observable.

empty This observable will not output anything
and directly emit the complete state.

never This method creates an observable that

will never reach the complete state.

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint

14



RxPY

throw This method will create an observable that
will throw an error.

from_ This method will convert the given array or
object into an observable.

interval This method will give a series of values
produced after a timeout.

just This method will convert given value into
an observable.

range This method will give a range of integers
based on the input given.

repeat_value This method will create an observable that
will repeat the given value as per the count
is given.

start This method takes in a function as an input

and returns an observable that will return
value from the input function.

timer This method will emit the values in
sequence after the timeout is done.

create

This method is used to create an observable. It will have the observer method, i.e.

e on_next(): This function gets called, when the Observable emits an item.
e on_completed(): This function gets called, when the Observable is complete.

e on_error(): This function gets called, when an error occurs on the Observable.
Here, is a working example:

testrx.py

from rx import create

def test_observable(observer, scheduler):
observer.on_next("Hello")
observer.on_error("Error occured")

observer.on_completed()

source = create(test_observable)

source.subscribe(

15

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

on_next = lambda i: print("Got - {@}".format(i)),
on_error = lambda e: print("Error : {0}".format(e)),

on_completed = lambda: print("Job Done!"),

)

Here, is the output of the observable created:

E:\pyrx>python testrx.py
Got - Hello

Job Done!

empty

This observable will not output anything and directly emit the complete state.

Syntax

empty ()

Return value

It will return an observable with no elements.

Example

from rx import empty

test = empty()

test.subscribe(
lambda x: print("The value is {@}".format(x)),
on_error = lambda e: print("Error : {0}".format(e)),

on_completed = lambda: print("Job Done!™")

)

Output

E:\pyrx>python testrx.py

Job Done!

never

This method creates an observable that will never reach the complete state.

16

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

Syntax

never()

Return value

It will return an observable that will never complete.

Example

from rx import never

test = never()

test.subscribe(

lambda x: print("The value is {@}".format(x)),
on_error = lambda e: print("Error : {0}".format(e)),
on_completed = lambda: print("Job Done!")

)

Output

It does not show any output.

throw

This method will create an observable that will throw an error.

Syntax

throw(exception)

Parameters

exception: an object that has error details.

Return value

An observable is returned with error details.

Example

from rx import throw

test = throw(Exception('There is an Error!'))

-
N

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

test.subscribe(
lambda x: print("The value is {@}".format(x)),
on_error = lambda e: print("Error : {0}".format(e)),

on_completed = lambda: print("Job Done!™")

)

Output

E:\pyrx>python testrx.py

Error: There is an Error!

from

This method will convert the given array or object into an observable.

Syntax

from_(iterator)

Parameters

iterator: This is an object or array.

Return value

This will return an observable for the given iterator.

Example

from rx import from_

test = from_([1,2,3,4,5,6,7,8,9,10])

test.subscribe(
lambda x: print("The value is {@}".format(x)),
on_error = lambda e: print("Error : {0}".format(e)),

on_completed = lambda: print("Job Done!")

)

Output

E:\pyrx>python testrx.py

The value is 1

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

18



RxPY

The value is
The value is
The value 1is
The value is
The value is
The value is

The value is

O 00 N oo U1 b W N

The value is

=
(]

The value is

Job Done!

interval

This method will give a series of values produced after a timeout.

Syntax

interval(period)

Parameters

period: to start the integer sequence.

Return value

It returns an observable with all the values in sequential order.

Example

import rx

from rx import operators as ops
rx.interval(1l).pipe(
ops.map(lambda i: i * i)

).subscribe(lambda x: print("The value is {@}".format(x)))

input("Press any key to exit\n")

Output

E:\pyrx>python testrx.py
Press any key to exit

The value is ©

19

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

The value is 1
The value is 4
The value is 9
The value is 16
The value is 25
The value is 36
The value is 49
The value is 64
The value is 81
The value is 100
The value is 121
The value is 144
The value is 169
The value is 196
The value is 225
The value is 256
The value is 289

The value is 324
The value is 361
The value is 400

just

This method will convert given value into an observable.

Syntax

just(value)

Parameters

value: to be converted to an observable.

Return value

It will return an observable with the given values.

Example

from rx import just

N
[em)

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

test = just([15, 25,50, 55])

test.subscribe(
lambda x: print("The value is {@}".format(x)),
on_error = lambda e: print("Error : {0}".format(e)),

on_completed = lambda: print("Job Done!™")

)

Output

E:\pyrx>python testrx.py
The value is [15, 25, 50, 55]

Job Done!

range

This method will give a range of integers based on the input given.

Syntax

range(start, stop=None)

Parameters

start: the first value from which the range will start.

stop: optional, the last value for the range to stop.

Return value

This will return an observable with integer value based on the input given.

Example

from rx import range

test = range(90,10)

test.subscribe(

lambda x: print("The value is {@}".format(x)),
on_error = lambda e: print("Error : {0}".format(e)),
on_completed = lambda: print("Job Done!")

)

21

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



Output

RxPY

E:\pyrx>python testrx.py

The value is

The
The
The
The
The
The
The
The
The
Job

value
value
value
value
value
value
value
value
value

Done!

is
is
is
is
is
is
is
is

is

0

O 00 N o0 U M W N R

repeat _value

This method will create an observable that will repeat the given value as per the count is
given.

Syntax

repeat_value(value=None, repeat_count=None)

Parameters

value: optional. The value to be repeated.

repeat_count: optional. The humber of times the given value to be repeated.

Return value

It will return an observable that will repeat the given value as per the count is given.

Example

from rx import repeat_value

test

test.subscribe(

= repeat_value(44,10)

L

B

I »

PLYEAGSYLEARMNIN

@' \tutorialspoint

22



RxPY

lambda x: print("The value is {@}".format(x)),
on_error = lambda e: print("Error : {0}".format(e)),

on_completed = lambda: print("Job Done!™")

)

Output

E:\pyrx>python testrx.py
The value is 44
The value is 44
The value 1is 44
The value is 44
The value is 44
The value is 44
The value is 44
The value is 44
The value is 44
The value is 44

Job Done!

start

This method takes in a function as an input, and returns an observable that will return
value from the input function.

Syntax

start(func)

Parameters

func: a function that will be called.

Return value

It returns an observable that will have a return value from the input function.

Example

from rx import start

N
w

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

test = start(lambda : "Hello World")

test.subscribe(
lambda x: print("The value is {@}".format(x)),
on_error = lambda e: print("Error : {0}".format(e)),

on_completed = lambda: print("Job Done!")

)

Output

E:\pyrx>python testrx.py
The value is Hello World

Job Done!

timer

This method will emit the values in sequence after the timeout is done.

Syntax

timer(duetime)

Parameters

duetime: time after which it should emit the first value.

Retum value

It will return an observable with values emitted after duetime.

Example

import rx

from rx import operators as ops

rx.timer(5.0, 10).pipe(

ops.map(lambda i: i * i)

) .subscribe(lambda x: print("The value is {@}".format(x)))

input("Press any key to exit\n")

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

24



RxPY

Output

E:\pyrx>python testrx.py
Press any key to exit

The value is ©

The value is 1
The value is 4

The value is 9

The value is 16
The value is 25
The value is 36
The value is 49

The value is 64

Mathematical operators
The operators we are going to discuss in Mathematical operator category are as follows: -
Operator Description
average This operator will calculate the average

from the source observable given and
output an observable that will have the
average value.

concat This operator will take in two or more
observables and given a single observable
with all the values in the sequence.

count This operator takes in an Observable with
values and converts it into an Observable
that will have a single value. The count
function takes in predicate function as an
optional argument.

The function is of type boolean and will add
value to the output only if it satisfies the
condition.

max This operator will give an observable with
max value from the source observable.

min This operator will give an observable with
min value from the source observable.

25

tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

reduce

This operator takes in a function called
accumulator function that is used on the
values coming from the source observable,
and it returns the accumulated values in
the form of an observable, with an optional
seed value passed to the accumulator
function.

sum

This operator will return an observable with
the sum of all the values from source
observables.

average

This operator will calculate the average from the source observable given and output an

observable that will have the average value.

Syntax

average()

Return value

It returns an observable that will have the average value.

Example

from rx import of, operators as op

test

subl = test.pipe(
op.average()

)

of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

subl.subscribe(lambda x: print("Average is {0}".format(x)))

Output

E:\pyrx>python testrx.py

Average is 5.5

concat

This operator will take in two or more observables and give a single observable with all

the values in the sequence.

@ tutorialspoint

26




RxPY

Syntax

concat(observablel, observable2...)

Parameters

Observables: List of observables to be concatenated.

Return value

An observable is returned with a single value merged from the values of the source
observable.

Example

testrx.py

from rx import of, operators as op

test = of(2, 4, 6, 8, 10)
test2 = of(3,6,9,12,15)

subl = test.pipe(
op.concat(test2)

)
subl.subscribe(lambda x: print("Final value is {@}".format(x)))

Output

E:\pyrx>python testrx.py
Final value is 2

Final value is 4

Final value is 6

Final value is 8

Final value is 1@

Final value is 3

Final value is 6

Final value is 9

Final value is 12

Final value is 15

27

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

count

This operator takes in an observable with values, and converts it into an observable that
will have a single value. The count function takes in predicate function as an optional
argument. The function is of type Boolean, and will add value to the output only, if it
satisfies the condition.

Syntax

count(predicate_function=None)

Parameters

The count function takes in predicate function as an optional argument. The function is of
type Boolean, and will add value to the output only, if it satisfies the condition.

Return value

It will return an observable with a single value, i.e. the count from the source observable.

Example 1

from rx import of, operators as op

test = of(1,2,3, 4,5, 6,7, 8,9, 10)
subl = test.pipe(

op.count()
)

subl.subscribe(lambda x: print("The count is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The count is 10

Example 2: Using a predicate function

from rx import of, operators as op

test = of(1,2,3, 4,5, 6,7, 8,9, 10)

28

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint




RxPY

subl = test.pipe(
op.count(lambda x : x %2 == @)
)

subl.subscribe(lambda x: print("The count of even numbers is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The count of even numbers is 5

max

This operator will give an observable with max value from the source observable.

Syntax

max (comparer_function=None)

Parameters

comparer_function: optional param. This function is used on source observables to

compare values.

Return value

It returns an observable with max value from the source observable.

Example 1

from rx import of, operators as op

test = of(12,32,41,50,280,250)
subl = test.pipe(

op.max()
)

subl.subscribe(lambda x: print("Max value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

Max value is 280

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

29




RxPY

Example 2: comparer_function

from rx import of, operators as op

test

of(12,32,41,50,280,250)

subl

test.pipe(
op.max(lambda a, b : a - b)
)

subl.subscribe(lambda x: print("Max value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

Max value is 280

min

This operator will give an observable with min value from the source observable.

Syntax

min(comparer_function=None)

Parameters

comparer_function: optional param. This function is used on source observables to
compare values.

Return value

It returns an observable with min value from the source observable.

Example 1

from rx import of, operators as op

test of(12,32,41,50,280,250)

subl

test.pipe(

30

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint




RxPY

op.min()

)

subl.subscribe(lambda x: print("Min value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

Min value is 12

Example 2: Using comparer_function

from rx import of, operators as op

test

of(12,32,41,50,280,250)

subl

test.pipe(
op.min(lambda a, b : a - b)
)

subl.subscribe(lambda x: print("Min value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

Min value is 12

reduce

This operator takes in a function called accumulator function, that is used on the values
coming from the source observable, and it returns the accumulated values in the form of
an observable, with an optional seed value passed to the accumulator function.

Syntax

reduce(accumulator_func, seed=notset)

Parameters

accumulator_func: A function that is used on the values coming from the source
observable, and it returns the accumulated values in the form of an observable.

seed: optional. The default value is not set. It is the initial value, to be used inside the
accumulator function.
31

tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

Retum value

It returns an observable, with a single value as output from the accumulator function
applied on each value of the source observable.

Example

from rx import of, operators as op

test

of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

subl = test.pipe(

op.reduce(lambda acc, x: acc + Xx)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is 55

sum

This operator will return an observable with the sum of all the values from source
observables.

Syntax

sum(key_mapper=none)

Parameters

key_mapper: optional. This is the function, that is applied to the values coming from the
source observable.

Return value

It returns an observable with the sum of all the values from the source observable.

Example 1

from rx import of, operators as op

test = of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

32

tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

subl = test.pipe(

op.sum()

)
subl.subscribe(lambda x: print("The sum is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The sum is 55

Example 2: using key_mapper function

from rx import of, operators as op

test = of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

subl

test.pipe(
op.sum(lambda a: a+l)

)
subl.subscribe(lambda x: print("The sum is {@}".format(x)))

Using key_mapper function, we are adding all the values by 1 and getting the sum of it.

E:\pyrx>python testrx.py

The sum is 65

Transformation operators

The operators we are going to discuss in the Transformation operator category are
mentioned below:

Operator Category

buffer This operator will collect all the values from
the source observable, and emit them at
regular intervals once the given boundary
condition is satisfied.

ground_by This operator will group the values coming
from the source observable based on the
key_mapper function given.

33

tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

map This operator will change each value from
the source observable into a new value
based on the output of the mapper_func
given.

scan This operator will apply an accumulator
function to the values coming from the
source observable and return an
observable with new values.

buffer

This operator will collect all the values, from the source observable and emit them at
regular intervals once the given boundary condition is satisfied.

Syntax

buffer(boundaries)

Parameters

boundaries: The input is observable that will decide when to stop so that the collected
values are emitted.

Return value

The return value is observable, that will have all the values collected from source
observable based and that is time duration is decided by the input observable taken.

Example

from rx import of, interval, operators as op
from datetime import date

test

of(1, 2,3,4,5,6,7,8,9,10)

subl

test.pipe(
op.buffer(interval(1.0))

)
subl.subscribe(lambda x: print("The element is {0}".format(x)))

Output

E:\pyrx>python testl.py
The elements are [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

34

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

ground_by

This operator will group the values coming from the source observable based on the
key_mapper function given.

Syntax

group_by(key_mapper)

Parameters

key_mapper: This function will take care of extracting keys from the source observable.

Return value

It returns an observable with values grouped based on the key_mapper function.

Example

from rx import from_, interval, operators as op

test 'FI"OI’ﬂ_(["A", "B", "C", "D"])

subl = test.pipe(

op.group_by(lambda v: v[@])

)
subl.subscribe(lambda x: print("The element is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The element is <rx.core.observable.groupedobservable.GroupedObservable object
at
Ox000OOOC99A2E6550>

The element is <rx.core.observable.groupedobservable.GroupedObservable object
at

OX000000C99A2E65C0O>

The element is <rx.core.observable.groupedobservable.GroupedObservable object
at

OX000000C99A2E6588>

The element is <rx.core.observable.groupedobservable.GroupedObservable object
at

35

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

OXx0000OOC99A2E6550>

map

This operator will change each value from the source observable into a new value based

on the output of the mapper_func given.

Syntax

map(mapper_func:None)

Parameters

mapper_func: (optional) It will change the values from the source observable based on

the output coming from this function.

Example

from rx import of, interval, operators as op

test

of(1, 2,3,4,5,6,7,8,9,10)

subl

test.pipe(
op.map(lambda x :x*x)

)
subl.subscribe(lambda x: print("The element is {@}".format(x)))

Output

E:\pyrx>python testrx.py
The element is 1

The element is 4

The element is 9

The element is 16

The element is 25

The element is 36
The element is 49
The element is 64

The element is 81

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

36



RxPY

The element is 100

scan

This operator will apply an accumulator function to the values coming from the source
observable and return an observable with new values.

Syntax

scan(accumulator_func, seed=NotSet)

Parameters

accumulator_func: This function is applied to all the values from the source observable.

seed:(optional) The initial value to be used inside the accumular_func.

Return value

This operator will return an observable that will have new values based on the accumulator
function applied on each value of the source observable.

Example

from rx import of, interval, operators as op

test

of(1, 2,3,4,5,6,7,8,9,10)

subl = test.pipe(

op.scan(lambda acc, a: acc + a, 9)

)
subl.subscribe(lambda x: print("The element is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The element is 1
The element is 3
The element is 6
The element is 10
The element is 15
The element is 21

The element is 28

37

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

The element is 36
The element is 45

The element is 55

Filtering operators
The operators we are going to discuss in Filtering operator category are given below:
Operator Category
debounce This operator will give the values from the
source observable, until the timespan
given and ignore the rest of the time
passes.
distinct This operator will give all the values that
are distinct from the source observable.
element_at This operator will give an element from the
source observable for the index given.
filter This operator will filter values from the
source observable based on the predicate
function given.
first This operator will give the first element

from the source observable.

ignore_elements

This operator will ignore all the values from
the source observable and only execute
calls to complete or error -callback
functions.

last This operator will give the last element
from the source observable.

skip This operator will give back an observable
that will skip the first occurrence of count
items taken as input.

skip_last This operator will give back an observable
that will skip the last occurrence of count
items taken as input.

take This operator will give a list of source

values in continuous order based on the
count given.

tutorialspoint

EIMPLYEAGSY LEARMNING

38




RxPY

take_last This operator will give a list of source
values in continuous order from last based
on the count given.

debounce

This operator will give the values from the source observable, until the timespan given
and ignore the rest of the values if time passes.

Syntax

debounce(duetime)

Parameters

duetime: this will value in seconds or instances of time, the duration that will decide the
values to be returned from the source observable.

Example

from rx import of, operators as op
from datetime import date

test = of(1,2,3,4,5,6,7,8,9,10)

subl = test.pipe(

op.debounce(2.0)
)

subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is 10

distinct

This operator will give all the values that are distinct from the source observable.

Syntax

distinct()

Return value

It will return an observable, where it will have distinct values from the source observable.

39

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



Example

RxPY

from

test

subl

)

datetime import date

= of(1, 6, 15, 1, 10, 6, 40, 10, 58, 20, 40)

test.pipe(

op.distinct()

from rx import of, operators as op

subl.subscribe(lambda x: print("The distinct value is {@}".format(x)))

Output

The
The
The

The
The
The

distinct
distinct

distinct

distinct
distinct

distinct

value
value

value

value
value

value

E:\pyrx>python testrx.

The distinct value is

is
is

is

is
is

is

Py

15
10

40
58
20

element_at

This operator will give an element from the source observable for the index given.

Syntax

element_at(index)

Parameters

index: the number starting from zero for which you need the element from the source
observable.

Return value

It will return an observable with the value from the source observable with the index given.

Example

tutorialspoint

PLYEAGSYLEARMNIN

40



RxPY

from rx import of, operators as op
from datetime import date

test

of(1, 6, 15, 1, 10, 6, 40, 10, 58, 20, 40)

subl

test.pipe(
op.element_at(5)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is 6

filter

This operator will filter values from the source observable based on the predicate function
given.

Syntax

filter(predicate_func)

Parameters
predicate_func: This function will decide the values to be filtered from the source
observable.

Return value

It will return an observable that will have the filtered values from the source observable
based on predicate function.

Example

from rx import of, operators as op
from datetime import date

test

of(1, 6, 15, 1, 10, 6, 40, 10, 58, 20, 40)

subl

test.pipe(
op.filter(lambda x : x %2==0)
)
subl.subscribe(lambda x: print("The filtered value is {@}".format(x)))

41

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

In the example, we have filtered all the even numbers.

Output

E:\pyrx>python testrx.py
The filtered value is 6
The filtered value is 10
The filtered value is 6
The filtered value is 40
The filtered value is 10
The filtered value is 58
The filtered value is 20

The filtered value is 40

first

This operator will give the first element from the source observable.

Syntax

first(predicate_func=None)

Parameters

predicate_func: (optional) This function will decide the first element to be picked based on
the condition if passed.

Return value

It will return an observable with the first value from the source observable.

Example

from rx import of, operators as op

from datetime import date

test = of(1, 6, 15, 1, 10, 6, 40, 10, 58, 20, 40)
subl = test.pipe(

op.first()
)

subl.subscribe(lambda x: print("The first element is {@}".format(x)))

Output

42

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

E:\pyrx>python testrx.py

The first element is 1

Example 2: using predicate_func

from rx import of, operators as op

from datetime import date

test

of(1, 6, 15, 1, 10, 6, 40, 10, 58, 20, 40)

subl = test.pipe(
op.first(lambda x : x%2==0)

)
subl.subscribe(lambda x: print("The first element is {@}".format(x)))

Output

E:\pyrx>python testl.py

The first element is 6

ignore_elements

This operator will ignore all the values from the source Observable, and only execute calls
to complete or error callback functions.

Syntax

ignore_elements()

Return value

It returns an observable that will call complete or error based on the source observable.

Example

from rx import of, operators as op

from datetime import date

test

of(1, 6, 15, 1, 10, 6, 40, 10, 58, 20, 40)

subl

test.pipe(

43

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

op.ignore_elements()
)
subl.subscribe(lambda x: print("The first element is {@}".format(x)),
lambda e: print("Error : {@}".format(e)),
lambda: print("Job Done!"))

Output

E:\pyrx>python testrx.py

Job Done!

last

This operator will give the last element from the source observable.

Syntax

last(predicate_func=None)

Parameters

predicate_func: (optional) This function will decide the last element to be picked based on
the condition if passed.

Return value

It will return an observable with the last value from the source observable.

Example

from rx import of, operators as op
from datetime import date

test = of(1, 6, 15, 1, 10, 6, 40, 10, 58, 20, 40)

subl

test.pipe(
op.last()

)
subl.subscribe(lambda x: print("The last element is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The last element is 40

Example 2: using predicate_func
44

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

from rx import of, operators as op

from datetime import date

test

of(1, 6, 15, 1, 10, 6, 40, 10, 58, 20, 40)

subl

test.pipe(
op.last(lambda x : x%2==0)
)
subl.subscribe(lambda x: print("The last element is {@}".format(x)))

Output

E:\pyrx>python testl.py
The last element is 40

skip

This operator will give back an observable, that will skip the first occurrence of count items
taken as input.

Syntax

skip(count)

Parameters

count: The count is the number of times that the items will be skipped from the source
observable.

Return value

It will return an observable that skips values based on the count given.

Example

from rx import of, operators as op

from datetime import date

test = of(1, 2,3,4,5,6,7,8,9,10)
subl = test.pipe(

op.skip(5)
)

subl.subscribe(lambda x: print("The element is {@}".format(x)))

45

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

Output

E:\pyrx>python testrx.py

The element is 6

The element is 7
The element is 8
The element is 9

The element is 10

skip_last

This operator will give back an observable, that will skip the last occurrence of count items
taken as input.

Syntax

skip_last(count)

Parameters

count: The count is the number of times, that the items will be skipped from the source
observable.

Return value

It will return an observable that skips values based on the count given from last.

Example

from rx import of, operators as op
from datetime import date

test

of(1, 2,3,4,5,6,7,8,9,10)

subl = test.pipe(
op.skip_last(5)
)

subl.subscribe(lambda x: print("The element is {@}".format(x)))

Output

E:\pyrx>python testrx.py
The element is 1

The element is 2

46

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

The element is 3
The element is 4

The element is 5

take

This operator will give a list of source values in continuous order based on the count given.

Syntax

take(count)

Parameters

count: The count is the number of items, that will be given from the source observable.

Return value

It will return an observable that has the values in continuous order based on count given.

Example

from rx import of, operators as op

from datetime import date

test = of(1, 2,3,4,5,6,7,8,9,10)

subl

test.pipe(
op.take(5)
)

subl.subscribe(lambda x: print("The element is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The element is
The element is
The element is

The element is

vi A W N R

The element is

47

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

take last

This operator will give a list of source values, in continuous order from last based on the
count given.

Syntax

take_last(count)

Parameters

count: The count is the number of items, that will be given from the source observable.

Return value

It will return an observable, that has the values in continuous order from last based on
count given.

Example

from rx import of, operators as op

from datetime import date

test

of(1, 2,3,4,5,6,7,8,9,10)

subl = test.pipe(
op.take_last(5)

)
subl.subscribe(lambda x: print("The element is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The element is
The element is

The element is

O 00 N O

The element is

The element is 10

Error handling operators

The operators we are going to discuss in the Error handling operator category are: -

48

tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

Operator Description
catch This operator will terminate the source
observable when there is an exception.
retry This operator will retry on the source
observable when there is an error and once
the retry count is done it will terminate.
catch
This operator will terminate the source observable when there is an exception.
Syntax
catch(handler)
Parameters

handler: This observable will be emitted, when the source observable has an error.

Return value

It will return an observable, that will have values from the source observable before the
error, followed by values from the handler observable.

Example

from rx import of, operators as op

from datetime import date

test = of(1,2,3,4,5,6)

handler = of(11,12,13,14)

def casetest(e):

if (e==4):

raise Exception('err")

else:

return e

subl = test.pipe(

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

49



RxPY

op.map(lambda e : casetest(e)),

op.catch(handler)

subl.subscribe(lambda x: print("The value is {@}".format(x)),

on_error = lambda e: print("Error : {0}".format(e)))

In this example, we have created an exception, when the source value from the observable
is 4, so the first observable is terminated there and later followed by the values from the
handler.

Output

E:\pyrx>python testrx.py
The value is 1

The value is 2

The value is 3

The value is 11

The value is 12

The value is 13

The value is 14

retry

This operator will retry on the source observable when there is an error and once the retry
count is done it will terminate.

Syntax

retry(count)

Parameters

count: the number of times to retry if there is an error from the source observable.

Return value

It will return an observable from the source observable in repeated sequence as per the
retry count given.

Example

from rx import of, operators as op

test = of(1,2,3,4,5,6)

50

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

def casetest(e):
if (e==4):
raise Exception('There is error cannot proceed!")

else:

return e

subl = test.pipe(

op.map(lambda e : casetest(e)),

op.retry(2)

subl.subscribe(lambda x: print("The value is {0}".format(x)),

on_error = lambda e: print("Error : {0}".format(e)))

Output

E:\pyrx>python testrx.py
The value is 1

The value is
The value 1is
The value 1is

The value is

w N B W N

The value is

Error: There is error cannot proceed!

Utility operators
The following are the operators we are going to discuss in the Utility operator category.
Operator Description
delay This operator will delay the source

observable emission as per the time or
date is given.

materialize This operator will convert the values from
the source observable with the values

51

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

emitted in the form of explicit notification

values.

time_interval This operator will give the time elapsed
between the values from the source
observable.

timeout This operator will give all the values from

the source observable after the elapsed
time or else will trigger an error.

timestamp This operator will attach a timestamp to all
the values from the source observable.

delay

This operator will delay the source observable emission as per the time or date given.

Syntax

delay(timespan)

Parameters

timespan: this will be the time in seconds or date.

Return value

It will give back an observable with source values emitted after the timeout.

Example

from rx import of, operators as op

import datetime

testl = of(1,2,3,4,5)

subl = testl.pipe(

op.delay(5.0)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

input("Press any key to exit\n")

Output

E:\pyrx>python testrx.py

52

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

Press any key to exit
The value is
The value is
The value is

The value is

vi A W N R

The value is

materialize

This operator will convert the values from the source observable with the values emitted
in the form of explicit notification values.

Syntax

materialize()

Return value

This will give back an observable with the values emitted in the form of explicit notification
values.

Example

from rx import of, operators as op

import datetime

testl = of(1,2,3,4,5)

subl = testl.pipe(
op.materialize()

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py
The value is OnNext(1.9)
The value is OnNext(2.0)
The value is OnNext(3.0)

The value is OnNext(4.9)

25

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

The value is OnNext(5.0)

The value is OnCompleted()

time _interval

This operator will give the time elapsed between the values from the source observable.

Syntax

time_interval()

Return value

It will return an observable that will have the time elapsed, between the source value
emitted.

Example

from rx import of, operators as op

from datetime import date

test

of(1,2,3,4,5,6)

subl

test.pipe(

op.time_interval()

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is TimeInterval(value=1,
interval=datetime.timedelta(microseconds=1000

))
The value is TimeInterval(value=2, interval=datetime.timedelta(®@))
The value is TimeInterval(value=3, interval=datetime.timedelta(®@))

The value is TimeInterval(value=4,
interval=datetime.timedelta(microseconds=1000

))

The value is TimeInterval(value=5, interval=datetime.timedelta(®))

The value is TimeInterval(value=6, interval=datetime.timedelta(®@))

54

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

timeout

This operator will give all the values from the source observable, after the elapsed time or
else will trigger an error.

Syntax

timeout(duetime)

Parameters

duetime: the time given in seconds.

Return value

It will give back on observable with all values from the source observable.

Example

from rx import of, operators as op
from datetime import date

test = of(1,2,3,4,5,6)

subl

test.pipe(
op.timeout(5.0)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py
The value is 1

The value 1is
The value is
The value is

The value is

a v~ wWwN

The value is

timestamp

This operator will attach a timestamp to all the values from the source observable.

55

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



Syntax

RxPY

timestamp()

Return value

It will give back an observable with all values from the source observable along with a
timestamp.

Example

from rx import of, operators as

from datetime import date

test = of(1,2,3,4,5,6)

subl

)

test.pipe(
op.timestamp()

op

subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The
44,
The
44,
The

44,

The

44,

The
44,
The

44,

value is Timestamp(value=1,
667243))
value is Timestamp(value=2,
668243))
value is Timestamp(value=3,

668243))

value is Timestamp(value=4,

668243))

value is Timestamp(value=5,
669243))
value is Timestamp(value=6,

669243))

timestamp=datetime

timestamp=datetime

timestamp=datetime

timestamp=datetime

timestamp=datetime

timestamp=datetime

.datetime (2019,

.datetime (2019,

.datetime (2019,

.datetime (2019,

.datetime (2019,

.datetime (2019,

11,

11,

11,

11,

11,

11,

57,

57,

57,

57,

57,

57,

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

56



RxPY

Conditional and Boolean Operators

The operators we are going to discuss in Conditional and Boolean Operator category are
as given below:

Operator Description

all This operator will check if all the values
from the source observable satisfy the
condition given.

contains This operator will return an observable
with the value true or false if the given
value is present and if it is the value of the
source observable.

default_if_empty This operator will return a default value if
the source observable is empty.

sequence_equal This operator will compare two sequences
of observables or an array of values and
return an observable with the value true or
false.

skip_until This operator will discard values from the
source observable until the second
observable emits a value.

skip_while This operator will return an observable
with values from the source observable
that satisfies the condition passed.

take_until This operator will discard values from the
source observable after the second
observable emits a value or is terminated.

take_while This operator will discard values from the
source observable when the condition fails.

all

This operator will check if all the values from the source observable satisfy the condition
given.

Syntax

all(predicate)

Parameters

predicate: boolean. This function will be applied to all the values, from the source
observable and will return true or false based on the condition given.

Return value
57

tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

The return value is an observable, which will have the boolean value true or false, based
on the condition applied on all the values of the source observable.

Example 1

from rx import of, operators as op

test = of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

subl

test.pipe(
op.all(lambda a: a<1e)

)
subl.subscribe(lambda x: print("The result is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The result is False

Example 2

from rx import of, operators as op

test

of(1, 2, 3, 4, 5, 6, 7, 8, 9)

subl = test.pipe(
op.all(lambda a: a<10)

)
subl.subscribe(lambda x: print("The result is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The result is True

contains

This operator will return an observable with the value true or false if the given value is
present is the values of the source observable.
58

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

Syntax

contains(value, comparer=None)

Parameters

value: The value to be checked if present in the source observable

comparer: optional. This is a comparer function to be applied to the values present in the
source observable for comparison.

Example

from rx import of, operators as op

test

of(17, 25, 34, 56, 78)

subl = test.pipe(

op.contains(34)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is True

Example 2: Using comparer

from rx import of, operators as op

test of(17, 25, 34, 56, 78)

subl

test.pipe(
op.contains(34, lambda x, y: x == y)

)
subl.subscribe(lambda x: print("The valus is {@}".format(x)))

Output

59

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

E:\pyrx>python testrx.py

The value is True

default_if empty

This operator will return a default value if the source observable is empty.

Syntax

default_if_empty(default_value=None)

Parameters

default_value: optional. It will give the output, as None is nothing is passed as
default_value, else it will give whatever value passed.

Return value

It will return an observable with a default value if the source observable is empty.

Example 1

from rx import of, operators as op

test

of()

subl

test.pipe(
op.default_if empty()
)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is None

Example 2: default_value passed

from rx import of, operators as op

test = of()

60

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

subl = test.pipe(

op.default_if empty("Empty!")

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py
The value is Empty!

sequence_equal

This operator will compare two sequences of observables, or an array of values and return
an observable with the value true or false.

Syntax

sequence_equal(second_seq, comparer=None)

Parameters

second_seq: observable or array to be compared with the first observable.

comparer: optional. Comparer function to be applied to compare values in both sequences.

Example

from rx import of, operators as op

test = of(1,2,3)

testl = of(1,2,3)

subl = test.pipe(

op.sequence_equal(testl)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is True

61

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

Example: using a comparer function

from rx import of, operators as op

test = of(1,2,3)
testl = of(1,2,3)

subl = test.pipe(
op.sequence_equal(testl, lambda x, y : x ==y)

)
subl.subscribe(lambda x: print("The value is {0}".format(x)))

Output

E:\pyrx>python testrx.py

The value is True

skip_until

This operator will discard values from the source observable until the second observable
emits a value.

Syntax

skip_until(observable)

Parameters

observable: the second observable which when emits a value will trigger the source
observable.

Return value

It will return an observable which will have values from the source observable until the
second observable emits a value.

Example

from rx import interval,range, operators as op
from datetime import date

test = interval(9)

testl = range(10)

subl = testl.pipe(

62

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

op.skip until(test)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py
The value is @

The value is 1

The value is
The value is
The value is
The value 1is
The value 1is
The value is

The value is

O 00 N oo v b W N

The value is

skip_while

This operator will return an observable with values from the source observable that

satisfies the condition passed.

Syntax

skip_while(predicate_func)

Parameters

predicate_func: This function will be applied to all the values of the source observable,

and return the values which satisfy the condition.

Return value

It will return an observable with values from the source observable that satisfies the

condition passed.

Example

from rx import of, operators as op

from datetime import date

test = of(1,2,3,4,5,6,7,8,9,10)

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

65



RxPY

subl = test.pipe(
op.skip while(lambda x : x<5)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py
The value is 5
The value is 6

The value is 7

The value is 8
The value is 9

The value is 10

take_until

This operator will discard values from the source observable after the second observable
emits a value or is terminated.

Syntax

take_until(observable)

Parameters

observable: the second observable which, when emits a value will terminate the source
observable.

Return value

It will return an observable, which will have values from the source observable only, when
the second observable used emits a value.

Example

from rx import timer,range, operators as op
from datetime import date

test = timer(0.01)

testl = range(500)

subl = testl.pipe(

(o))
I

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

op.take until(test)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

In this example, you will get the values emitted from range. But, once the timer is done,

it will stop the source observable from emitting further.

Output

E:\pyrx>python testrx.py

The value is ©

The value is
The value 1is
The value is
The value is
The value 1is

The value is

N o v b owoN R

The value is

The value is 8
The value is 9
The value is 10
The value is 11
The value is 12

The value is 13

The value is 14
The value is 15
The value is 16
The value is 17
The value is 18
The value is 19
The value is 20
The value is 21
The value is 22
The value is 23
The value is 24

The value is 25

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

65



RxPY

The value is 26

take_while

This operator will discard values from the source observable when the condition fails.

Syntax

take_while(predicate_func)

Parameters

predicate_func: this function will evaluate each value of the source observable.

Return value

It will return an observable with values till the predicate function satisfies.

Example

from rx import of, operators as op
from datetime import date

test

0f(1,2,3,4,5,6,7,8,9,10)

subl = test.pipe(

op.take while(lambda a : a<5)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is 1

The value is 2
The value is 3

The value is 4

Connectable Operators
The operators we are going to discuss in Connectable Operator category are:
Operator Description
66
tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

publish This method will convert the observable
into a connectable observable.

ref_count This operator will make the observable a
normal observable.

replay This method works similar to the
replaySubject. This method will return the
same values, even if the observable has
already emitted and some of the
subscribers are late in subscribing.

publish

This method will convert the observable into a connectable observable.

Syntax

publish(mapper=None)

Parameters

mapper: optional. A function used to multicast source values multiple times, without
having to do multiple subscriptions.

Example

from rx import create, range, operators as op

import random

def test _observable(observer, scheduler):
observer.on_next(random.random())

observer.on_completed()

source = create(test_observable).pipe(op.publish())

testl = source.subscribe(on_next = lambda i: print("From subscriber 1 -
{0}".format(i)))

test2 = source.subscribe(on_next = lambda i: print("From subscriber 2 -

{0}".format(i)))

source.connect()

Output

E:\pyrx>python testrx.py

ap
N

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

From subscriber 1 - 0.14751607273318490
From subscriber 2 - 0.1475160727331849

ref_count

This operator will make the observable a normal observable.

Syntax

ref_count()

Example

from rx import create, operators as op

import random

def test_observable(observer, scheduler):

observer.on_next(random.random())

source = create(test_observable).pipe(op.publish(),op.ref_count())

testl = source.subscribe(on_next = 1lambda i: print("From subscriber 1 -
{0}".format(i)))

test2 = source.subscribe(on_next = lambda i: print("From subscriber 2 -
{0}".format(i)))

Output

E:\pyrx>python testrx.py
From subscriber 1 - 0.8230640432381131

replay

This method works similar to the replaySubject. This method will return the same values,
even if the observable has already emitted, and some of the subscribers are late in
subscribing.

Syntax

replay()

Example

from rx import create, range, operators as op

import random

68

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

from threading import Timer

def test observable(observer, scheduler):
observer.on_next(random.random())

observer.on_completed()

source = create(test_observable).pipe(op.replay())

testl = source.subscribe(on_next = lambda i: print("From subscriber 1 -
{0}".format(i)))

test2 = source.subscribe(on_next = lambda i: print("From subscriber 2 -
{0}".format(i)))

source.connect()

print("subscriber called after delay ")

def last_subscriber():

test3 = source.subscribe(on_next = lambda i: print("From subscriber 3 -
{0}".format(i)))

t = Timer(5.0, last_subscriber)

t.start()

Output

E:\pyrx>python testrx.py

From subscriber 1 - 0.8340998157725388
From subscriber 2 - 0.8340998157725388
subscriber called after delay

From subscriber 3 - 0.8340998157725388

Combining Operators

The following are the operators we are going to discuss in the Combining operator
category.

Operator Description

combine_latest This operator will create a tuple for the
observable given as input.

69

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

merge This  operator  will merge  given
observables.

start_with This operator will take in the given values
and add at the start of the source
observable return back the full sequence.

zip This operator returns an observable with
values in a tuple form which is formed by
taking the first value of the given
observable and so on.

combine_latest

This operator will create a tuple, for the observable given as input.

Syntax

combine_latest(observablel,observable2,..... )

Parameters

Observable: An observable.

Return value

It returns an observable with the values from the source observable converted to a tuple.

Example

from rx import of, operators as op
from datetime import date

test = of(1,2,3,4,5,6)

test2 of(11,12,13,14,15,16)

test3 = of(111,112,113,114,115,116)

subl = test.pipe(
op.combine_latest(test2, test3)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py
The value is (6, 16, 111)

70

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

The value is (6, 16, 112)

The value is (6, 16, 113)
The value is (6, 16, 114)
The value is (6, 16, 115)
The value is (6, 16, 116)

merge

This operator will merge given observables.

Syntax

merge(observable)

Parameters

Observable: an observable.

Return value

It will return an observable with one sequence from the given observables.

Example

from rx import of, operators as op
from datetime import date

test = of(1,2,3,4,5,6)

test2 = of(11,12,13,14,15,16)

subl = test.pipe(
op.merge(test2)
)

subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

E:\pyrx>python testrx.py

The value is 1

The value is 2

The value is 3

N
[

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint




RxPY

The value is 4
The value is 5
The value is 6
The value is 11
The value is 12

The value is 13

The value is 14

The value is 15

The value is 16

start_with

This operator will take in the given values, and add at the start of the source observable
return back the full sequence.

Syntax

start_with(values)

Parameters

values: The values you want to prefix at the start.

Return value

It returns an observable with given values prefixed at the start followed by the values from
the source observable.

Example

from rx import of, operators as op
from datetime import date

test = of(1,2,3,4,5,6)

subl = test.pipe(
op.start_with(-2,-1,0)
)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

Output

72

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

E:\pyrx>python testrx.py
The value is -2

The value is -1

The value is
The value is
The value is
The value is
The value is

The value is

a Ui A W N RO

The value is

zip

This operator returns an observable with values in a tuple form, which is formed by taking
the first value of the given observable and so on.

Syntax

zip(observablel, observable2...)

Parameters

Observable: an observable

Return value

It returns an observable with values in tuple format.

Example

from rx import of, operators as op
from datetime import date

test = of(1,2,3,4,5,6)

testl

of(4,8,12,16,20)
test2

of(5,10,15,20,25)

subl = test.pipe(
op.zip(testl, test2)

)
subl.subscribe(lambda x: print("The value is {@}".format(x)))

73

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



RxPY

Output

E:\pyrx>python testrx.py
The value is (1, 4, 5)
The value is (2, 8, 10)
The value is (3, 12, 15)
The value is (4, 16, 20)
The value is (5, 20, 25)

74

w tutorialspoint

EIMPLYEAEGBYLEARNINTIEG



6.RxPY — Working with Subject

A subject is an observable sequence, as well as, an observer that can multicast, i.e. talk
to many observers that have subscribed.

We are going to discuss the following topics on subject:
e Create a subject
e Subscribe to a subject

e Passing data to subject
e BehaviorSubject

e ReplaySubject

e AsyncSubject

Create a subject

To work with a subject, we need to import Subject as shown below:

from rx.subject import Subject

You can create a subject-object as follows:

subject_test = Subject()

The object is an observer that has three methods:

e on_next(value)
e on_error(error) and

e on_completed()

Subscribe to a Subject

You can create multiple subscription on the subject as shown below:

subject_test.subscribe(

lambda x: print("The value is {@}".format(x))
)

subject_test.subscribe(

lambda x: print("The value is {@}".format(x))
)

75

@ tutorialspoint

EIMPLYEAGSY LEARMNING



RxPY

Passing Data to Subject

You can pass data to the subject created using the on_next(value) method as shown
below:

subject_test.on_next("A")

subject_test.on_next("B")

The data will be passed to all the subscription, added on the subject.

Here, is a working example of the subject.

Example

from rx.subject import Subject

subject_test = Subject()

subject_test.subscribe(

lambda x: print("The value is {@}".format(x))
)

subject_test.subscribe(

lambda x: print("The value is {@}".format(x))
)

subject_test.on_next("A")

subject_test.on_next("B")

The subject_test object is created by calling a Subject(). The subject_test object has
reference to on_next(value), on_error(error) and on_completed() methods. The output of
the above example is shown below:

Output

E:\pyrx>python testrx.py
The value is A
The value is A
The value is B

The value is B

We can use the on_completed() method, to stop the subject execution as shown below.

Example
76

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

from rx.subject import Subject

subject_test = Subject()

subject_test.subscribe(

lambda x: print("The value is {@}".format(x))
)

subject_test.subscribe(

lambda x: print("The value is {@}".format(x))
)

subject_test.on_next("A")
subject_test.on_completed()

subject_test.on_next("B")

Once we call complete, the next method called later is not invoked.

Output

E:\pyrx>python testrx.py
The value is A

The value is A

Let us now see, how to call on_error(error) method.

Example

from rx.subject import Subject

subject_test = Subject()

subject_test.subscribe(
on_error = lambda e: print("Error : {0}".format(e))

)

subject_test.subscribe(
on_error = lambda e: print("Error : {0}".format(e))

)

subject_test.on_error(Exception('There is an Error!'))

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

77



RxPY

Output

E:\pyrx>python testrx.py

Error: There is an Error!

Error: There is an Error!

BehaviorSubject

BehaviorSubject will give you the latest value when called. You can create behavior subject
as shown below:

from rx.subject import BehaviorSubject

behavior_subject = BehaviorSubject("Testing Behaviour Subject"); //
initialized the behaviour subject with value:Testing Behaviour Subject

Here, is a working example to use Behaviour Subject

Example

from rx.subject import BehaviorSubject

behavior_subject = BehaviorSubject("Testing Behaviour Subject");

behavior_subject.subscribe(

lambda x: print("Observer A : {0}".format(x))

behavior_subject.on_next("Hello")

behavior_subject.subscribe(

lambda x: print("Observer B : {0}".format(x))
)

behavior_subject.on_next("Last call to Behaviour Subject")

Output

E:\pyrx>python testrx.py
Observer A : Testing Behaviour Subject
Observer A : Hello

Observer B : Hello

78

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

Observer A : Last call to Behaviour Subject

Observer B : Last call to Behaviour Subject

Replay Subject

A replaysubject is similar to behavior subject, wherein, it can buffer the values and replay
the same to the new subscribers. Here, is a working example of replay subject.

Example

from rx.subject import ReplaySubject

replay_subject = ReplaySubject(2)

replay_subject.subscribe(lambda x: print("Testing Replay Subject A:
{0}".format(x)))

replay_subject.on_next(1)

replay_subject.on_next(2)
replay_subject.on_next(3)

replay_subject.subscribe(lambda x: print("Testing Replay Subject B:
{0}".format(x)));

replay_subject.on_next(5)

The buffer value used is 2 on the replay subject. So, the last two values will be buffered
and used for the new subscribers called.

Output

E:\pyrx>python testrx.py
Testing Replay Subject
Testing Replay Subject
Testing Replay Subject
Testing Replay Subject
Testing Replay Subject
Testing Replay Subject

W > W W > > >
Ui U1 W N W N R

Testing Replay Subject

79

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

AsyncSubject

In the case of AsyncSubject, the last value called is passed to the subscriber, and it will
be done only after the complete() method is called.

Example

from rx.subject import AsyncSubject

async_subject = AsyncSubject()

async_subject.subscribe(lambda x: print("Testing Async Subject A:
{0}".format(x)))

async_subject.on_next(1)
async_subject.on_next(2)

async_subject.on_completed()

async_subject.subscribe(lambda x: print("Testing Async Subject B:
{0}".format(x)))

Here, before complete is called, the last value passed to the subject is 2, and the same is
given to the subscribers.

Output

E:\pyrx>python testrx.py
Testing Async Subject A: 2

Testing Async Subject B: 2

80

EIMPLYEAGSY LEARMNING

I@A‘ \tutorialspoint



7. RXxPY — Concurrency using Scheduler

One important feature of RxPy is concurrency, i.e. to allow the task to execute in parallel.
To make that happen, we have two operators subscribe_on() and observe_on() that will
work with a scheduler, that will decide the execution of the subscribed task.

Here, is a working example, that shows the need for subscibe_on(), observe_on() and
scheduler.

Example

import random
import time
import rx

from rx import operators as ops

def adding_delay(value):
time.sleep(random.randint(5, 20) * 0.1)

return value

# Task 1
rx.of(1,2,3,4,5).pipe(
ops.map(lambda a: adding delay(a))
) .subscribe(
lambda s: print("From Task 1: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 1 complete")

# Task 2
rx.range(1, 5).pipe(
ops.map(lambda a: adding delay(a))
) .subscribe(
lambda s: print("From Task 2: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 2 complete")

81

w tutorialspoint

EIMPLYEAGSY LEARMNING



RxPY

input("Press any key to exit\n")

In the above example, I have 2 tasks: Task 1 and Task 2. The execution of the task is in
sequence. The second task starts only, when the first task is done.

Output

E:\pyrx>python testrx.py
From Task 1: 1
From Task 1: 2
From Task 1: 3
From Task 1: 4
From Task 1: 5
Task 1 complete
From Task 2: 1
From Task 2: 2
From Task 2: 3
From Task 2: 4

Task 2 complete

RxPy supports many Scheduler, and here, we are going to make use of
ThreadPoolScheduler. ThreadPoolScheduler mainly will try to manage with the CPU
threads available.

In the example, we have seen earlier, we are going to make use of a multiprocessing
module that will give us the cpu_count. The count will be given to the ThreadPoolScheduler
that will manage to get the task working in parallel based on the threads available.

Here, is a working example:

import multiprocessing

import random

import time

from threading import current_thread

import rx

from rx.scheduler import ThreadPoolScheduler

from rx import operators as ops

# calculate cpu count, using which will create a ThreadPoolScheduler

thread_count = multiprocessing.cpu_count()

82

tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

thread_pool_scheduler = ThreadPoolScheduler(thread_count)

print("Cpu count is : {@}".format(thread_count))

def adding_delay(value):
time.sleep(random.randint(5, 20) * 0.1)

return value

# Task 1

rx.of(1,2,3,4,5).pipe(
ops.map(lambda a: adding delay(a)),
ops.subscribe_on(thread_pool_scheduler)

) .subscribe(
lambda s: print("From Task 1: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 1 complete")

# Task 2

rx.range(1, 5).pipe(
ops.map(lambda a: adding_delay(a)),
ops.subscribe_on(thread_pool_scheduler)

) .subscribe(
lambda s: print("From Task 2: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 2 complete")

input("Press any key to exit\n")

In the above example, I have 2 tasks and the cpu_count is 4. Since, the task is 2 and

threads available with us are 4, both the task parallel.
Output:
E:\pyrx>python testrx.py
Cpu count is : 4
83

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

Press any key to exit
From Task
From Task
From Task
From Task

From Task

w w NN R R

From Task

N PN N RPN

From Task 2: 4
Task 2 complete
From Task 1: 4
From Task 1: 5

Task 1 complete

If you see the output, both the task has started in parallel.

Now, consider a scenario, where the task is more than the CPU count i.e. CPU count is 4
and tasks are 5. In this case, we would need to check if any thread has got free after task
completion, so that, it can be assigned to the new task available in the queue.

For this purpose, we can use the observe_on() operator which will observe the scheduler
if any threads are free. Here, is a working example using observe_on()

Example

import multiprocessing

import random

import time

from threading import current_thread

import rx

from rx.scheduler import ThreadPoolScheduler

from rx import operators as ops

# calculate cpu count, using which will create a ThreadPoolScheduler
thread_count = multiprocessing.cpu_count()

thread_pool_scheduler = ThreadPoolScheduler(thread_count)

print("Cpu count is : {@}".format(thread_count))

84

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

def adding_delay(value):

time.sleep(random.randint(5, 20) * 0.1)

return value

# Task 1
rx.of(1,2,3,4,5).pipe(
ops.map(lambda a: adding_delay(a)),
ops.subscribe_on(thread_pool_scheduler)
).subscribe(
lambda s: print("From Task 1: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 1 complete™)

# Task 2

rx.range(l, 5).pipe(
ops.map(lambda a: adding_delay(a)),
ops.subscribe_on(thread_pool_scheduler)

) .subscribe(
lambda s: print("From Task 2: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 2 complete™)

#Task 3

rx.range(l, 5).pipe(
ops.map(lambda a: adding_delay(a)),
ops.subscribe_on(thread_pool_scheduler)

) .subscribe(

lambda s: print("From Task 3: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 3 complete™)

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

85



RxPY

#Task 4

rx.range(l, 5).pipe(
ops.map(lambda a: adding delay(a)),
ops.subscribe_on(thread_pool_scheduler)

) .subscribe(
lambda s: print("From Task 4: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 4 complete™)

#Task 5

rx.range(l, 5).pipe(
ops.map(lambda a: adding delay(a)),
ops.observe_on(thread_pool_scheduler)

) .subscribe(
lambda s: print("From Task 5: {@}".format(s)),
lambda e: print(e),
lambda: print("Task 5 complete™)

input("Press any key to exit\n")

Output

E:\pyrx>python testrx.py
Cpu count is : 4

From Task 4: 1

From Task 4: 2

From Task 1: 1

From Task 2: 1

86

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

From Task 3: 1
From Task 1: 2
From Task 3: 2

From Task 4: 3
From Task 3: 3
From Task 2: 2

From Task 1: 3
From Task 4: 4
Task 4 complete
From Task 5: 1
From Task 5: 2
From Task 5: 3
From Task 3: 4
Task 3 complete
From Task 2: 3
Press any key to exit
From Task 5: 4
Task 5 complete
From Task 1: 4
From Task 2: 4
Task 2 complete
From Task 1: 5

Task 1 complete

If you see the output, the moment task 4 is complete, the thread is given to the next task
i.e., task 5 and the same starts executing.

87

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



8. RxPy — Examples

In this chapter, we will discuss the following topics in detail:

e Basic Example showing the working of observable, operators, and subscribing to
the observer.
e Difference between observable and subject.

e Understanding cold and hot observables.

Given below is a basic example showing the working of observable, operators, and
subscribing to the observer.

Example
test.py

import requests
import rx
import json

from rx import operators as ops

def filternames(x):
if (x["name"].startswith("C")):
return x["name"]
else :

return

content = requests.get('https://jsonplaceholder.typicode.com/users")

y = json.loads(content.text)

source = rx.from_(y)

casel = source.pipe(
ops.filter(lambda c: filternames(c)),
ops.map(lambda a:a["name"])

)

casel.subscribe(

on_next = lambda i: print("Got - {@}".format(i)),

(0]
(0]

w tutorialspoint

EIMPLYEAGSY LEARMNING



RxPY

on_error = lambda e: print("Error : {0}".format(e)),

on_completed = lambda: print("Job Done!"),

)

Here, is a very simple example, wherein, I am getting user data from this URL:
https://jsonplaceholder.typicode.com/users.

Filtering the data, to give the names starting with "C", and later using the map to return
the names only. Here is the output for the same:

E:\pyrx\examples>python test.py
Got - Clementine Bauch

Got - Chelsey Dietrich

Got - Clementina DuBuque

Job Done!

Difference between observable and subject

In this example, we will see the difference between an observable and a subject.

from rx import of, operators as op

import random

testl = of(1,2,3,4,5)

subl = testl.pipe(
op.map(lambda a : a+random.random())
)
print("From first subscriber")
subscriberl = subl.subscribe(lambda i: print("From subl {@}".format(i)))
print("From second subscriber")

subscriber2 = subl.subscribe(lambda i: print("From sub2 {@}".format(i)))

Output

E:\pyrx>python testrx.py
From first subscriber

From subl 1.610450821095726

From subl 2.9567564032037335
From subl 3.933217537811936

89

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



https://jsonplaceholder.typicode.com/users.Filter

RxPY

From subl 4.82444905626622
From subl 5.929414892567188
From second subscriber

From sub2 1.8573813517529874
From sub2 2.902433239469483
From sub2 3.2289868093016825
From sub2 4.050413890694411
From sub2 5.226515068012821

In the above example, every time you subscribe to the observable, it will give you new
values.

Subject Example

from rx import of, operators as op
import random

from rx.subject import Subject

subject_test = Subject()
subject_test.subscribe(

lambda x: print("From subl {@}".format(x))
)

subject_test.subscribe(

lambda x: print("From sub2 {@}".format(x))
)

testl = of(1,2,3,4,5)
subl = testl.pipe(
op.map(lambda a : a+random.random())

)

subscriber = subl.subscribe(subject_test)

Output

E:\pyrx>python testrx.py
From subl 1.1789422863284509
From sub2 1.1789422863284509

From subl 2.5525627903260153

90

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint



RxPY

From sub2 2.5525627903260153
From subl 3.4191549324778325
From sub2 3.4191549324778325
From subl 4.644042420199624
From sub2 4.644042420199624
From subl 5.079896897489065

From sub2 5.079896897489065

If you see the values are shared, between both subscribers using the subject.

Understanding Cold and Hot Observables

An observable is classified as

e (Cold Observables
e Hot Observables

The difference in observables will be noticed when multiple subscribers are subscribing.

Cold Observables

Cold observables, are observable that are executed, and renders data each time it is
subscribed. When it is subscribed, the observable is executed and the fresh values are
given.

The following example gives the understanding of cold observable.

from rx import of, operators as op

import random

testl = of(1,2,3,4,5)

subl = testl.pipe(

op.map(lambda a : a+random.random())
)
print("From first subscriber™)

subscriberl = subl.subscribe(lambda i: print("From subl {@}".format(i)))

print("From second subscriber")

subscriber2 = subl.subscribe(lambda i: print("From sub2 {0}".format(i)))

Output

91

tutorialspoint

EIMPLYEAGSY LEARMNING




RxPY

E:\pyrx>python testrx.py

From
From
From
From
From
From
From
From
From
From
From

From

first subscriber

subl 1.610450821095726
subl 2.9567564032037335
subl 3.933217537811936
subl 4.82444905626622
subl 5.929414892567188
second subscriber

sub2 1.8573813517529874
sub2 2.902433239469483
sub2 3.2289868093016825
sub2 4.050413890694411
sub2 5.226515068012821

In the above example, every time you subscribe to the observable, it will execute the
observable and emit values. The values can also differ from subscriber to subscriber as
shown in the example above.

Hot Observables

In the case of hot observable, they will emit the values when they are ready and will not
always wait for a subscription. When the values are emitted, all the subscribers will get
the same value.

You can make use of hot observable when you want values to emitted when the observable

is ready, or you want to share the same values to all your subscribers.

An example of hot observable is Subject and connectable operators.

from

rx import of, operators as op

import random

from

rx.subject import Subject

subject_test = Subject()

subject_test.subscribe(

lambda x: print("From subl {@}".format(x))

)

subject_test.subscribe(

lambda x: print("From sub2 {@}".format(x))

tutorialspoint

EIMPLYEAGSY LEARMNING

92



RxPY

testl = of(1,2,3,4,5)
subl = testl.pipe(
op.map(lambda a : a+random.random())

)

subscriber = subl.subscribe(subject_test)

Output

E:\pyrx>python testrx.py
From subl 1.1789422863284509

From sub2 1.1789422863284509

From subl 2.5525627903260153

From sub2 2.5525627903260153

From subl 3.4191549324778325

From subl 4.644042420199624

From sub2 4.644042420199624

.079896897489065

1
2
2
3

From sub2 3.4191549324778325
4
4
From subl 5
5

From sub2 5.079896897489065

If you see, the same value is shared between the subscribers. You can achieve the same

using publish () connectable observable operator.

MPLYEAGSYLEARMNINIG

I@A‘ Mtutorialspoint

93



