

 Python Digital Forensics

 Python Digital Forensics

i

About the Tutorial

Digital forensics is the branch of forensic science that analyzes, examines, identifies as

well as recovers the digital evidences from electronic devices. It is commonly used in

criminal law and private investigation. This tutorial will make you comfortable with

performing Digital Forensics in Python on Windows operated digital devices. In this tutorial,

you will learn various concepts and coding for carrying out digital forensics in Python.

Audience

This tutorial will be useful for graduates, post graduates, and research students who either

have an interest in this subject or have this subject as a part of their curriculum. Any

reader who is enthusiastic about gaining knowledge digital forensics using Python

programming language can also pick up this tutorial.

Prerequisites

This tutorial is designed by making an assumption that the reader has a basic knowledge

about operating system and computer networks. You are expected to have a basic

knowledge of Python programming.

If you are novice to any of these subjects or concepts, we strongly suggest you go through

tutorials based on these, before you start your journey with this tutorial.

Copyright & Disclaimer

Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

 Python Digital Forensics

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. PYTHON DIGITAL FORENSICS — INTRODUCTION ... 1

What is Digital Forensics?.. 1

Brief Historical Review of Digital Forensics .. 1

Process of Digital Forensics ... 2

Applications of Digital Forensics .. 3

Branches of Digital Forensics ... 3

Skills Required for Digital Forensics Investigation ... 4

Limitations .. 4

2. PYTHON DIGITAL FORENSICS – GETTING STARTED WITH PYTHON 6

Why Python for Digital Forensics? ... 6

Features of Python .. 6

Installing Python ... 7

Setting the PATH ... 8

Running Python ... 9

3. PYTHON DIGITAL FORENSICS – ARTIFACT REPORT ... 10

Need of Report Creation ... 10

General Guidelines for Report Creation .. 10

Creating Different Type of Reports .. 11

Investigation Acquisition Media .. 13

 Python Digital Forensics

iii

4. PYTHON DIGITAL FORENSICS – MOBILE DEVICE FORENSICS .. 15

Introduction .. 15

Artifacts Extractible from Mobile Devices ... 15

Evidence Sources and Processing in Python .. 15

iTunes Backups .. 17

Wi - Fi .. 22

5. PYTHON DIGITAL FORENSICS – INVESTIGATING EMBEDDED METADATA 28

Introduction .. 28

Artifacts Containing Metadata Attributes and their Extraction ... 28

6. PYTHON DIGITAL FORENSICS – NETWORK FORENSICS-I .. 40

Understanding Network Forensics .. 40

Internet Evidence Finder (IEF) ... 40

Use of IEF .. 40

Dumping Reports from IEF to CSV using Python .. 41

7. PYTHON DIGITAL FORENSICS – NETWORK FORENSICS-II ... 47

Web Page Preservation with Beautiful Soup ... 47

What is Beautiful Soup? .. 47

Python Script for Preserving Web Pages .. 48

Virus Hunting .. 52

Understanding VirusShare... 52

Creating Newline-Delimited Hash List from VirusShare using Python .. 53

8. PYTHON DIGITAL FORENSICS – INVESTIGATION USING EMAILS ... 56

Role of Email in Investigation .. 56

Challenges in Email Forensics .. 56

Techniques Used in Email Forensic Investigation .. 57

 Python Digital Forensics

iv

Extraction of Information from EML files .. 57

Analyzing MSG Files using Python ... 59

Structuring MBOX files from Google Takeout using Python .. 63

Acquiring Google Account Mailbox into MBX Format.. 63

9. PYTHON DIGITAL FORENSICS – IMPORTANT ARTIFACTS IN WINDOWS-I 68

Introduction .. 68

Importance of Windows Artifacts for Forensics ... 68

Windows Artifacts and their Python Scripts .. 68

10. PYTHON DIGITAL FORENSICS – IMPORTANT ARTIFACTS IN WINDOWS-II 79

User Activities ... 79

LINK files ... 84

Prefetch Files... 86

11. PYTHON DIGITAL FORENSICS – IMPORTANT ARTIFACTS IN WINDOWS-III 91

Event Logs ... 91

Internet History ... 95

Volume Shadow Copies ... 99

12. PYTHON DIGITAL FORENSICS – INVESTIGATION OF LOG BASED ARTIFACTS 103

Introduction .. 103

Various Log-based Artifacts and Investigating in Python ... 103

Timestamps ... 103

Web Server Logs .. 106

Scanning Important Files using YARA .. 109

 Python Digital Forensics

1

This chapter will give you an introduction to what digital forensics is all about, and its historical

review. You will also understand where you can apply digital forensics in real life and its

limitations.

What is Digital Forensics?

Digital forensics may be defined as the branch of forensic science that analyzes, examines,

identifies and recovers the digital evidences residing on electronic devices. It is commonly

used for criminal law and private investigations.

For example, you can rely on digital forensics extract evidences in case somebody steals some

data on an electronic device.

Brief Historical Review of Digital Forensics

The history of computer crimes and the historical review of digital forensics is explained in

this section as given below:

1970s-1980s: First Computer Crime

Prior to this decade, no computer crime has been recognized. However, if it is supposed to

happen, the then existing laws dealt with them. Later, in 1978 the first computer crime was

recognized in Florida Computer Crime Act, which included legislation against unauthorized

modification or deletion of data on a computer system. But over the time, due to the

advancement of technology, the range of computer crimes being committed also increased.

To deal with crimes related to copyright, privacy and child pornography, various other laws

were passed.

1980s-1990s: Development Decade

This decade was the development decade for digital forensics, all because of the first ever

investigation (1986) in which Cliff Stoll tracked the hacker named Markus Hess. During this

period, two kind of digital forensics disciplines developed – first was with the help of ad-hoc

tools and techniques developed by practitioners who took it as a hobby, while the second

being developed by scientific community. In 1992, the term “Computer Forensics” was

used in academic literature.

2000s-2010s: Decade of Standardization

After the development of digital forensics to a certain level, there was a need of making some

specific standards that can be followed while performing investigations. Accordingly, various

scientific agencies and bodies have published guidelines for digital forensics. In 2002,

Scientific Working Group on Digital Evidence (SWGDE) published a paper named “Best

1. Python Digital Forensics — Introduction

 Python Digital Forensics

2

practices for Computer Forensics”. Another feather in the cap was a European led

international treaty namely “The Convention on Cybercrime” was signed by 43 nations

and ratified by 16 nations. Even after such standards, still there is a need to resolve some

issues which has been identified by researchers.

Process of Digital Forensics

Since first ever computer crime in 1978, there is a huge increment in digital criminal activities.

Due to this increment, there is a need for structured manner to deal with them. In 1984, a

formalized process has been introduced and after that a great number of new and improved

computer forensics investigation processes have been developed.

A computer forensics investigation process involves three major phases as explained below:

Phase 1: Acquisition or Imaging of Exhibits

The first phase of digital forensics involves saving the state of the digital system so that it can

be analyzed later. It is very much similar to taking photographs, blood samples etc. from a

crime scene. For example, it involves capturing an image of allocated and unallocated areas

of a hard disk or RAM.

Phase 2: Analysis

The input of this phase is the data acquired in the acquisition phase. Here, this data was

examined to identify evidences. This phase gives three kinds of evidences as follows:

 Inculpatory evidences: These evidences support a given history.

 Exculpatory evidences: These evidences contradict a given history.

 Evidence of tampering: These evidences show that the system was tempered to avoid

identification. It includes examining the files and directory content for recovering the

deleted files.

Phase 3: Presentation or Reporting

As the name suggests, this phase presents the conclusion and corresponding evidences from

the investigation.

 Python Digital Forensics

3

Applications of Digital Forensics

Digital forensics deals with gathering, analyzing and preserving the evidences that are

contained in any digital device. The use of digital forensics depends on the application. As

mentioned earlier, it is used mainly in the following two applications:

Criminal Law

In criminal law, the evidence is collected to support or oppose a hypothesis in the court.

Forensics procedures are very much similar to those used in criminal investigations but with

different legal requirements and limitations.

Private Investigation

Mainly corporate world uses digital forensics for private investigation. It is used when

companies are suspicious that employees may be performing an illegal activity on their

computers that is against company policy. Digital forensics provides one of the best routes

for company or person to take when investigating someone for digital misconduct.

Branches of Digital Forensics

The digital crime is not restricted to computers alone, however hackers and criminals are

using small digital devices such as tablets, smart-phones etc. at a very large scale too. Some

of the devices have volatile memory, while others have non-volatile memory. Hence

depending upon type of devices, digital forensics has the following branches:

Computer Forensics

This branch of digital forensics deals with computers, embedded systems and static memories

such as USB drives. Wide range of information from logs to actual files on drive can be

investigated in computer forensics.

Mobile Forensics

This deals with investigation of data from mobile devices. This branch is different from

computer forensics in the sense that mobile devices have an inbuilt communication system

which is useful for providing useful information related to location.

Network Forensics

This deals with the monitoring and analysis of computer network traffic, both local and

WAN(wide area network) for the purposes of information gathering, evidence collection, or

intrusion detection.

Database Forensics

This branch of digital forensics deals with forensics study of databases and their metadata.

https://en.wikipedia.org/wiki/Local_area_network

 Python Digital Forensics

4

Skills Required for Digital Forensics Investigation

Digital forensics examiners help to track hackers, recover stolen data, follow computer attacks

back to their source, and aid in other types of investigations involving computers. Some of

the key skills required to become digital forensics examiner as discussed below:

Outstanding Thinking Capabilities

A digital forensics investigator must be an outstanding thinker and should be capable of

applying different tools and methodologies on a particular assignment for obtaining the

output. He/she must be able to find different patterns and make correlations among them.

Technical Skills

A digital forensics examiner must have good technological skills because this field requires

the knowledge of network, how digital system interacts.

Passionate about Cyber Security

Because the field of digital forensics is all about solving cyber-crimes and this is a tedious

task, it needs lot of passion for someone to become an ace digital forensic investigator.

Communication Skills

Good communication skills are a must to coordinate with various teams and to extract any

missing data or information.

Skillful in Report Making

After successful implementation of acquisition and analysis, a digital forensic examiner must

mention all the findings the final report and presentation. Hence he/she must have good skills

of report making and an attention to detail.

Limitations

Digital forensic investigation offers certain limitations as discussed here:

Need to produce convincing evidences

One of the major setbacks of digital forensics investigation is that the examiner must have to

comply with standards that are required for the evidence in the court of law, as the data can

be easily tampered. On the other hand, computer forensic investigator must have complete

knowledge of legal requirements, evidence handling and documentation procedures to

present convincing evidences in the court of law.

Investigating Tools

The effectiveness of digital investigation entirely lies on the expertise of digital forensics

examiner and the selection of proper investigation tool. If the tool used is not according to

specified standards then in the court of law, the evidences can be denied by the judge.

 Python Digital Forensics

5

Lack of technical knowledge among the audience

Another limitation is that some individuals are not completely familiar with computer

forensics; therefore, many people do not understand this field. Investigators have to be sure

to communicate their findings with the courts in such a way to help everyone understand the

results.

Cost

Producing digital evidences and preserving them is very costly. Hence this process may not

be chosen by many people who cannot afford the cost.

 Python Digital Forensics

6

In the previous chapter, we learnt the basics of digital forensics, its advantages and

limitations. This chapter will make you comfortable with Python, the essential tool that we are

using in this digital forensics investigation.

 Why Python for Digital Forensics?

Python is a popular programming language and is used as tool for cyber security, penetration

testing as well as digital forensic investigations. When you choose Python as your tool for

digital forensics, you do not need any other third party software for completing the task.

Some of the unique features of Python programming language that makes it a good fit for

digital forensics projects are given below:

 Simplicity of Syntax: Python’s syntax is simple compared to other languages, that

makes it easier for one to learn and put into use for digital forensics.

 Comprehensive inbuilt modules: Python’s comprehensive inbuilt modules are an

excellent aid for performing a complete digital forensic investigation.

 Help and Support: Being an open source programming language, Python enjoys

excellent support from the developer’s and users’ community.

Features of Python

Python, being a high-level, interpreted, interactive and object-oriented scripting language,

provides the following features:

 Easy to Learn: Python is a developer friendly and easy to learn language, because it

has fewer keywords and simplest structure.

 Expressive and Easy to read: Python language is expressive in nature; hence its

code is more understandable and readable.

 Cross-platform Compatible: Python is a cross-platform compatible language which

means it can run efficiently on various platforms such as UNIX, Windows, and

Macintosh.

 Interactive Mode Programming: We can do interactive testing and debugging of

code because Python supports an interactive mode for programming.

 Provides Various Modules and Functions: Python has large standard library which

allows us to use rich set of modules and functions for our script.

2. Python Digital Forensics – Getting Started with
Python

 Python Digital Forensics

7

 Supports Dynamic Type Checking: Python supports dynamic type checking and

provides very high-level dynamic data types.

 GUI Programming: Python supports GUI programming to develop Graphical user

interfaces.

 Integration with other programming languages: Python can be easily integrated

with other programming languages like C, C++, JAVA etc.

Installing Python

Python distribution is available for various platforms such as Windows, UNIX, Linux, and Mac.

We only need to download the binary code as per our platform. In case if the binary code for

any platform is not available, we must have a C compiler so that source code can be compiled

manually.

This section will make you familiar with installation of Python on various platforms:

Python Installation on Unix and Linux

You can follow following the steps shown below to install Python on Unix/Linux machine.

Step1: Open a Web browser. Type and enter https://www.python.org/downloads/.

Step2: Download zipped source code available for Unix/Linux.

Step3: Extract the downloaded zipped files.

Step4: If you wish to customize some options, you can edit the Modules/Setup file.

Step5: Use the following commands for completing the installation:

run ./configure script

make

make install

Once you have successfully completed the steps given above, Python will be installed at its

standard location /usr/local/bin and its libraries at /usr/local/lib/pythonXX where XX

is the version of Python.

Python Installation on Windows

We can follow following simple steps to install Python on Windows machine.

Step1: Open a web browser. Type and enter https://www.python.org/downloads/.

Step2: Download the Windows installer python-XYZ.msi file, where XYZ is the version we

need to install.

Step3: Now run that MSI file after saving the installer file to your local machine.

https://www.python.org/downloads/
https://www.python.org/downloads/

 Python Digital Forensics

8

Step4: Run the downloaded file which will bring up the Python installation wizard.

Python Installation on Macintosh

For installing Python 3 on Mac OS X, we must use a package installer named Homebrew.

You can use the following command to install Homebrew, incase you do not have it on your

system:

$ ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

If you need to update the package manager, then it can be done with the help of following

command:

$ brew update

Now, use the following command to install Python3 on your system:

$ brew install python3

Setting the PATH

We need to set the path for Python installation and this differs with platforms such as UNIX,

WINDOWS, or MAC.

Path setting at Unix/Linux

You can use the following options to set the path on Unix/Linux:

 If using csh shell- Type setenv PATH "$PATH:/usr/local/bin/python" and then

press Enter.

 If using bash shell (Linux) − Type export

ATH="$PATH:/usr/local/bin/python" and then press Enter.

 If using sh or ksh shell − Type PATH="$PATH:/usr/local/bin/python" and

then press Enter.

Path Setting at Windows

Type path %path%;C:\Python at the command prompt and then press Enter.

 Python Digital Forensics

9

Running Python

You can choose any of the following three methods to start the Python interpreter:

Method 1: Using Interactive Interpreter

A system that provides a command-line interpreter or shell can easily be used for starting

Python. For example, Unix, DOS etc. You can follow the steps given below to start coding in

interactive interpreter:

Step1: Enter python at the command line.

Step2: Start coding right away in the interactive interpreter using the commands shown

below:

$python # Unix/Linux

or

python% # Unix/Linux

or

C:> python # Windows/DOS

Method 2: Using Script from the Command-line

We can also execute a Python script at command line by invoking the interpreter on our

application. You can use commands shown below:

$python script.py # Unix/Linux

or

python% script.py # Unix/Linux

or

C: >python script.py # Windows/DOS

Method 3. Integrated Development Environment

If a system has GUI application that supports Python, then Python can be run from that GUI

environment. Some of the IDE for various platforms are given below:

 Unix IDE: UNIX has IDLE IDE for Python.

 Windows IDE: Windows has PythonWin, the first Windows interface for Python along

with GUI.

 Macintosh IDE: Macintosh has IDLE IDE which is available from the main website,

downloadable as either MacBinary or BinHex'd files.

 Python Digital Forensics

10

Now that you are comfortable with installation and running Python commands on your local

system, let us move into the concepts of forensics in detail. This chapter will explain various

concepts involved in dealing with artifacts in Python digital forensics.

Need of Report Creation

The process of digital forensics includes reporting as the third phase. This is one of the most

important parts of digital forensic process. Report creation is necessary due to the following

reasons:

 It is the document in which digital forensic examiner outlines the investigation process

and its findings.

 A good digital forensic report can be referenced by another examiner to achieve same

result by given same repositories.

 It is a technical and scientific document that contains facts found within the 1s and 0s

of digital evidence.

General Guidelines for Report Creation

The reports are written to provide information to the reader and must start with a solid

foundation. investigators can face difficulties in efficiently presenting their findings if the

report is prepared without some general guidelines or standards. Some general guidelines

which must be followed while creating digital forensic reports are given below:

 Summary: The report must contain the brief summary of information so that the

reader can ascertain the report’s purpose.

 Tools used: We must mention the tools which have been used for carrying the process

of digital forensics, including their purpose.

 Repository: Suppose, we investigated someone’s computer then the summary of

evidence and analysis of relevant material like email, internal search history etc., then

they must be included in the report so that the case may be clearly presented.

 Recommendations for counsel: The report must have the recommendations for

counsel to continue or cease investigation based on the findings in report.

3. Python Digital Forensics – Artifact Report

 Python Digital Forensics

11

Creating Different Type of Reports

In the above section, we came to know about the importance of report in digital forensics

along with the guidelines for creating the same. Some of the formats in Python for creating

different kind of reports are discussed below:

CSV Reports

One of the most common output formats of reports is a CSV spreadsheet report. You can

create a CSV to create a report of processed data using the Python code as shown below:

First, import useful libraries for writing the spreadsheet:

from __future__ import print_function

import csv

import os

import sys

Now, call the following method:

Write_csv(TEST_DATA_LIST, ["Name", "Age", "City", "Job description"], os.getcwd())

We are using the following global variable to represent sample data types:

TEST_DATA_LIST = [["Ram", 32, Bhopal, Manager], ["Raman", 42, Indore,

Engg.],["Mohan", 25, Chandigarh, HR], ["Parkash", 45, Delhi, IT]]

Next, let us define the method to proceed for further operations. We open the file in the “w”

mode and set the newline keyword argument to an empty string.

def Write_csv(data, header, output_directory, name=None):

 if name is None:

 name = "report1.csv"

 print("[+] Writing {} to {}".format(name, output_directory))

 with open(os.path.join(output_directory, name), "w", newline="") as \

csvfile:

 writer = csv.writer(csvfile)

 writer.writerow(header)

 writer.writerow(data)

 Python Digital Forensics

12

If you run the above script, you will get the following details stored in report1.csv file.

Name Age City Designation

Ram 32 Bhopal Manager

Raman 42 Indore Engg.

Mohan 25 Chandigarh HR

Parkash 45 Delhi IT

Excel Reports

Another common output format of reports is Excel (.xlsx) spreadsheet report. We can create

table and also plot the graph by using Excel. We can create report of processed data in Excel

format using Python code as shown below:

First, import XlsxWriter module for creating spreadsheet:

import xlsxwriter

Now, create a workbook object. For this, we need to use Workbook() constructor.

workbook = xlsxwriter.Workbook('report2.xlsx')

Now, create a new worksheet by using add_worksheet() module.

worksheet = workbook.add_worksheet()

Next, write the following data into the worksheet:

report2 = (['Ram', 32, ‘Bhopal’],['Mohan',25, ‘Chandigarh’] ,['Parkash',45,

‘Delhi’])

row = 0

col = 0

 Python Digital Forensics

13

You can iterate over this data and write it as follows:

for item, cost in (a):

 worksheet.write(row, col, item)

 worksheet.write(row, col+1, cost)

 row +=1

Now, let us close this Excel file by using close() method.

 workbook.close()

 The above script will create an Excel file named report2.xlsx having the following data:

Ram 32 Bhopal

Mohan 25 Chandigarh

Parkash 45 Delhi

Investigation Acquisition Media

It is important for an investigator to have the detailed investigative notes to accurately recall

the findings or put together all the pieces of investigation. A screenshot is very useful to keep

track of the steps taken for a particular investigation. With the help of the following Python

code, we can take the screenshot and save it on hard disk for future use.

First, install Python module named pyscreenshot by using following command:

Pip install pyscreenshot

Now, import the necessary modules as shown:

import pyscreenshot as ImageGrab

Use the following line of code to get the screenshot:

image=ImageGrab.grab()

Use the following line of code to save the screenshot to the given location:

image.save('d:/image123.png')

 Python Digital Forensics

14

Now, if you want to pop up the screenshot as a graph, you can use the following Python code:

import numpy as np

import matplotlib.pyplot as plt

import pyscreenshot as ImageGrab

imageg = ImageGrab.grab()

plt.imshow(image, cmap='gray', interpolation='bilinear')

plt.show()

 Python Digital Forensics

15

This chapter will explain Python digital forensics on mobile devices and the concepts involved.

Introduction

Mobile device forensics is that branch of digital forensics which deals with the acquisition and

analysis of mobile devices to recover digital evidences of investigative interest. This branch is

different from computer forensics because mobile devices have an inbuilt communication

system which is useful for providing useful information related to location.

Though the use of smartphones is increasing in digital forensics day-by-day, still it is

considered to be non-standard due to its heterogeneity. On the other hand, computer

hardware, such as hard disk, is considered to be standard and developed as a stable discipline

too. In digital forensic industry, there is a lot of debate on the techniques used for non-

standards devices, having transient evidences, such as smartphones.

Artifacts Extractible from Mobile Devices

Modern mobile devices possess lot of digital information in comparison with the older phones

having only a call log or SMS messages. Thus, mobile devices can supply investigators with

lots of insights about its user. Some artifacts that can be extracted from mobile devices are

as mentioned below:

 Messages: These are the useful artifacts which can reveal the state of mind of the

owner and can even give some previous unknown information to the investigator.

 Location History: The location history data is a useful artifact which can be used by

investigators to validate about the particular location of a person.

 Applications Installed: By accessing the kind of applications installed, investigator

get some insight into the habits and thinking of the mobile user.

Evidence Sources and Processing in Python

Smartphones have SQLite databases and PLIST files as the major sources of evidences. In

this section we are going to process the sources of evidences in python.

Analyzing PLIST files

A PLIST (Property List) is a flexible and convenient format for storing application data

especially on iPhone devices. It uses the extension .plist. Such kind of files used to store

information about bundles and applications. It can be in two formats: XML and binary. The

4. Python Digital Forensics – Mobile Device Forensics

 Python Digital Forensics

16

following Python code will open and read PLIST file. Note that before proceeding into this, we

must create our own Info.plist file.

First, install a third party library named biplist by the following command:

Pip install biplist

Now, import some useful libraries to process plist files:

import biplist

import os

import sys

Now, use the following command under main method can be used to read plist file into a

variable:

def main(plist):

 try:

 data = biplist.readPlist(plist)

 except (biplist.InvalidPlistException,biplist.NotBinaryPlistException) as e:

print("[-] Invalid PLIST file - unable to be opened by biplist")

sys.exit(1)

Now, we can either read the data on the console or directly print it, from this variable.

SQLite Databases

SQLite serves as the primary data repository on mobile devices. SQLite an in-process library

that implements a self-contained, server-less, zero-configuration, transactional SQL database

engine. It is a database, which is zero-configured, you need not configure it in your system,

unlike other databases.

If you are a novice or unfamiliar with SQLite databases, you can follow the link

https://www.tutorialspoint.com/sqlite/index.htm. Additionally, you can follow the link

https://www.tutorialspoint.com/sqlite/sqlite_python.htm in case you want to get into detail

of SQLite with Python.

During mobile forensics, we can interact with the sms.db file of a mobile device and can

extract valuable information from message table. Python has a built in library named sqlite3

for connecting with SQLite database. You can import the same with the following command:

 import sqlite3

https://www.tutorialspoint.com/sqlite/index.htm
https://www.tutorialspoint.com/sqlite/index.htm
https://www.tutorialspoint.com/sqlite/index.htm
https://www.tutorialspoint.com/sqlite/sqlite_python.htm
https://www.tutorialspoint.com/sqlite/sqlite_python.htm
https://www.tutorialspoint.com/sqlite/sqlite_python.htm

 Python Digital Forensics

17

Now, with the help of following command, we can connect with the database, say sms.db in

case of mobile devices:

Conn = sqlite3.connect(‘sms.db’)

C = conn.cursor()

Here, C is the cursor object with the help of which we can interact with the database.

Now, suppose if we want to execute a particular command, say to get the details from the

abc table, it can be done with the help of following command:

c.execute(“Select * from abc”)

c.close()

The result of the above command would be stored in the cursor object. Similarly we can use

fetchall() method to dump the result into a variable we can manipulate.

We can use the following command to get column names data of message table in sms.db:

c.execute(“pragma table_info(message)”)

table_data = c.fetchall()

columns = [x[1] for x in table_data

Observe that here we are using SQLite PRAGMA command which is special command to be

used to control various environmental variables and state flags within SQLite environment. In

the above command, the fetchall() method returns a tuple of results. Each column’s name

is stored in the first index of each tuple.

Now, with the help of following command we can query the table for all of its data and store

it in the variable named data_msg:

c.execute(“Select * from message”)

data_msg = c.fetchall()

The above command will store the data in the variable and further we can also write the above

data in CSV file by using csv.writer() method.

iTunes Backups

iPhone mobile forensics can be performed on the backups made by iTunes. Forensic examiners

rely on analyzing the iPhone logical backups acquired through iTunes. AFC (Apple file

connection) protocol is used by iTunes to take the backup. Besides, the backup process does

not modify anything on the iPhone except the escrow key records.

Now, the question arises that why it is important for a digital forensic expert to understand

the techniques on iTunes backups? It is important in case we get access to the suspect’s

computer instead of iPhone directly because when a computer is used to sync with iPhone,

then most of the information on iPhone is likely to be backed up on the computer.

 Python Digital Forensics

18

Process of Backup and its Location

Whenever an Apple product is backed up to the computer, it is in sync with iTunes and there

will be a specific folder with device’s unique ID. In the latest backup format, the files are

stored in subfolders containing the first two hexadecimal characters of the file name. From

these back up files, there are some files like info.plist which are useful along with the database

named Manifest.db. The following table shows the backup locations, that vary with operating

systems of iTunes backups:

OS Backup Location

Win7 C:\Users\[username]\AppData\Roaming\AppleComputer\MobileSync\Back

up\

MAC OS X ~/Library/Application Suport/MobileSync/Backup/

For processing the iTunes backup with Python, we need to first identify all the backups in

backup location as per our operating system. Then we will iterate through each backup and

read the database Manifest.db.

Now, with the help of following Python code we can do the same:

First, import the necessary libraries as follows:

from __future__ import print_function

import argparse

import logging

import os

from shutil import copyfile

import sqlite3

import sys

logger = logging.getLogger(__name__)

Now, provide two positional arguments namely INPUT_DIR and OUTPUT_DIR which is

representing iTunes backup and desired output folder:

if __name__ == "__main__":

 parser.add_argument("INPUT_DIR",help="Location of folder containing iOS

backups, ""e.g. ~\Library\Application Support\MobileSync\Backup folder")

 parser.add_argument("OUTPUT_DIR", help="Output Directory")

 parser.add_argument("-l", help="Log file path",default=__file__[:-2] + "log")

 Python Digital Forensics

19

 parser.add_argument("-v", help="Increase verbosity",action="store_true")

 args = parser.parse_args()

Now, setup the log as follows:

 if args.v:

 logger.setLevel(logging.DEBUG)

 else:

 logger.setLevel(logging.INFO)

 Now, setup the message format for this log as follows:

 msg_fmt = logging.Formatter("%(asctime)-15s %(funcName)-13s""%(levelname)-8s
%(message)s")

strhndl = logging.StreamHandler(sys.stderr)

strhndl.setFormatter(fmt=msg_fmt)

fhndl = logging.FileHandler(args.l, mode='a')

fhndl.setFormatter(fmt=msg_fmt)

logger.addHandler(strhndl)

logger.addHandler(fhndl)

logger.info("Starting iBackup Visualizer")

logger.debug("Supplied arguments: {}".format(" ".join(sys.argv[1:])))

logger.debug("System: " + sys.platform)

logger.debug("Python Version: " + sys.version)

The following line of code will create necessary folders for the desired output directory by

using os.makedirs() function:

 if not os.path.exists(args.OUTPUT_DIR):

 os.makedirs(args.OUTPUT_DIR)

Now, pass the supplied input and output directories to the main() function as follows:

if os.path.exists(args.INPUT_DIR) and os.path.isdir(args.INPUT_DIR):

 main(args.INPUT_DIR, args.OUTPUT_DIR)

else:

 logger.error("Supplied input directory does not exist or is not ""a

directory")

 sys.exit(1)

 Python Digital Forensics

20

Now, write main() function which will further call backup_summary() function to identify

all the backups present in input folder:

def main(in_dir, out_dir):

 backups = backup_summary(in_dir)

def backup_summary(in_dir):

 logger.info("Identifying all iOS backups in {}".format(in_dir))

 root = os.listdir(in_dir)

 backups = {}

 for x in root:

 temp_dir = os.path.join(in_dir, x)

 if os.path.isdir(temp_dir) and len(x) == 40:

 num_files = 0

 size = 0

 for root, subdir, files in os.walk(temp_dir):

 num_files += len(files)

 size += sum(os.path.getsize(os.path.join(root, name))

 for name in files)

 backups[x] = [temp_dir, num_files, size]

 return backups

Now, print the summary of each backup to the console as follows:

 print("Backup Summary")

 print("=" * 20)

 if len(backups) > 0:

 for i, b in enumerate(backups):

 print("Backup No.: {} \n""Backup Dev. Name: {} \n""# Files: {}

\n""Backup Size (Bytes): {}\n".format(i, b, backups[b][1], backups[b][2]))

Now, dump the contents of the Manifest.db file to the variable named db_items.

 try:

 db_items = process_manifest(backups[b][0])

 except IOError:

 logger.warn("Non-iOS 10 backup encountered or " "invalid backup.

Continuing to next backup.")

continue

 Python Digital Forensics

21

Now, let us define a function that will take the directory path of the backup:

def process_manifest(backup):

 manifest = os.path.join(backup, "Manifest.db")

 if not os.path.exists(manifest):

 logger.error("Manifest DB not found in {}".format(manifest))

 raise IOError

Now, using SQLite3 we will connect to the database by cursor named c:

 c = conn.cursor()

 items = {}

 for row in c.execute("SELECT * from Files;"):

 items[row[0]] = [row[2], row[1], row[3]]

 return items

create_files(in_dir, out_dir, b, db_items)

 print("=" * 20)

 else:

 logger.warning("No valid backups found. The input directory should be

" "the parent-directory immediately above the SHA-1 hash " "iOS device backups")

 sys.exit(2)

Now, define the create_files() method as follows:

def create_files(in_dir, out_dir, b, db_items):

 msg = "Copying Files for backup {} to {}".format(b, os.path.join(out_dir, b))

 logger.info(msg)

Now, iterate through each key in the db_items dictionary:

 for x, key in enumerate(db_items):

 if db_items[key][0] is None or db_items[key][0] == "":

 continue

 else:

 dirpath = os.path.join(out_dir, b,

os.path.dirname(db_items[key][0]))

 filepath = os.path.join(out_dir, b, db_items[key][0])

 if not os.path.exists(dirpath):

 os.makedirs(dirpath)

 Python Digital Forensics

22

 original_dir = b + "/" + key[0:2] + "/" + key

 path = os.path.join(in_dir, original_dir)

 if os.path.exists(filepath):

 filepath = filepath + "_{}".format(x)

Now, use shutil.copyfile() method to copy the backed-up file as follows:

 try:

 copyfile(path, filepath)

 except IOError:

 logger.debug("File not found in backup: {}".format(path))

 files_not_found += 1

 if files_not_found > 0:

 logger.warning("{} files listed in the Manifest.db not" "found in

backup".format(files_not_found))

 copyfile(os.path.join(in_dir, b, "Info.plist"), os.path.join(out_dir, b,

"Info.plist"))

 copyfile(os.path.join(in_dir, b, "Manifest.db"), os.path.join(out_dir, b,

"Manifest.db"))

 copyfile(os.path.join(in_dir, b, "Manifest.plist"), os.path.join(out_dir, b,

"Manifest.plist"))

 copyfile(os.path.join(in_dir, b, "Status.plist"),os.path.join(out_dir, b,

"Status.plist"))

With the above Python script, we can get the updated back up file structure in our output

folder. We can use pycrypto python library to decrypt the backups.

 Wi - Fi

Mobile devices can be used to connect to the outside world by connecting through Wi-Fi

networks which are available everywhere. Sometimes the device gets connected to these

open networks automatically.

In case of iPhone, the list of open Wi-Fi connections with which the device has got connected

is stored in a PLIST file named com.apple.wifi.plist. This file will contain the Wi-Fi SSID,

BSSID and connection time.

We need to extract Wi-Fi details from standard Cellebrite XML report using Python. For this,

we need to use API from Wireless Geographic Logging Engine (WIGLE), a popular platform

which can be used for finding the location of a device using the names of Wi-Fi networks.

We can use Python library named requests to access the API from WIGLE. It can be installed

as follows:

 Python Digital Forensics

23

pip install requests

API from WIGLE

We need to register on WIGLE’s website https://wigle.net/account to get a free API from

WIGLE. The Python script for getting the information about user device and its connection

through WIGEL’s API is discussed below:

First, import the following libraries for handling different things:

from __future__ import print_function

import argparse

import csv

import os

import sys

import xml.etree.ElementTree as ET

import requests

Now, provide two positional arguments namely INPUT_FILE and OUTPUT_CSV which will

represent the input file with Wi-Fi MAC address and the desired output CSV file respectively:

if __name__ == "__main__":

 parser.add_argument("INPUT_FILE", help="INPUT FILE with MAC Addresses")

 parser.add_argument("OUTPUT_CSV", help="Output CSV File")

 parser.add_argument("-t", help="Input type: Cellebrite XML report or TXT

file",choices=('xml', 'txt'), default="xml")

 parser.add_argument('--api', help="Path to API key

 file",default=os.path.expanduser("~/.wigle_api"),

 type=argparse.FileType('r'))

 args = parser.parse_args()

Now following lines of code will check if the input file exists and is a file. If not, it exits the

script:

if not os.path.exists(args.INPUT_FILE) or \ not os.path.isfile(args.INPUT_FILE):

 print("[-] {} does not exist or is not a

file".format(args.INPUT_FILE))

 sys.exit(1)

directory = os.path.dirname(args.OUTPUT_CSV)

if directory != '' and not os.path.exists(directory):

 os.makedirs(directory)

https://wigle.net/account
https://wigle.net/account

 Python Digital Forensics

24

api_key = args.api.readline().strip().split(":")

Now, pass the argument to main as follows:

main(args.INPUT_FILE, args.OUTPUT_CSV, args.t, api_key)

def main(in_file, out_csv, type, api_key):

 if type == 'xml':

 wifi = parse_xml(in_file)

 else:

 wifi = parse_txt(in_file)

 query_wigle(wifi, out_csv, api_key)

Now, we will parse the XML file as follows:

def parse_xml(xml_file):

 wifi = {}

 xmlns = "{http://pa.cellebrite.com/report/2.0}"

 print("[+] Opening {} report".format(xml_file))

 xml_tree = ET.parse(xml_file)

 print("[+] Parsing report for all connected WiFi addresses")

 root = xml_tree.getroot()

Now, iterate through the child element of the root as follows:

 for child in root.iter():

 if child.tag == xmlns + "model":

 if child.get("type") == "Location":

 for field in child.findall(xmlns + "field"):

 if field.get("name") == "TimeStamp":

 ts_value = field.find(xmlns + "value")

 try:

 ts = ts_value.text

 except AttributeError:

 continue

Now, we will check that ‘ssid’ string is present in the value’s text or not:

 if "SSID" in value.text:

 bssid, ssid = value.text.split("\t")

 Python Digital Forensics

25

 bssid = bssid[7:]

 ssid = ssid[6:]

Now, we need to add BSSID, SSID and timestamp to the wifi dictionary as follows:

 if bssid in wifi.keys():

 wifi[bssid]["Timestamps"].append(ts)

 wifi[bssid]["SSID"].append(ssid)

 else:

 wifi[bssid] = {"Timestamps": [ts], "SSID":

[ssid],"Wigle": {}}

return wifi

The text parser which is much simpler that XML parser is shown below:

def parse_txt(txt_file):

 wifi = {}

 print("[+] Extracting MAC addresses from {}".format(txt_file))

 with open(txt_file) as mac_file:

 for line in mac_file:

 wifi[line.strip()] = {"Timestamps": ["N/A"], "SSID":

["N/A"],"Wigle": {}}

return wifi

Now, let us use requests module to make WIGLE API calls and need to move on to the

query_wigle() method:

def query_wigle(wifi_dictionary, out_csv, api_key):

 print("[+] Querying Wigle.net through Python API for {} "

"APs".format(len(wifi_dictionary)))

 for mac in wifi_dictionary:

 wigle_results = query_mac_addr(mac, api_key)

def query_mac_addr(mac_addr, api_key):

 query_url = "https://api.wigle.net/api/v2/network/search?" \

"onlymine=false&freenet=false&paynet=false" \ "&netid={}".format(mac_addr)

 req = requests.get(query_url, auth=(api_key[0], api_key[1]))

 Python Digital Forensics

26

 return req.json()

Actually there is a limit per day for WIGLE API calls, if that limit exceeds then it must show

an error as follows:

 try:

 if wigle_results["resultCount"] == 0:

 wifi_dictionary[mac]["Wigle"]["results"] = []

 continue

 else:

 wifi_dictionary[mac]["Wigle"] = wigle_results

 except KeyError:

 if wigle_results["error"] == "too many queries today":

 print("[-] Wigle daily query limit exceeded")

 wifi_dictionary[mac]["Wigle"]["results"] = []

 continue

 else:

 print("[-] Other error encountered for " "address {}: {}".format(mac,

wigle_results['error']))

 wifi_dictionary[mac]["Wigle"]["results"] = []

 continue

prep_output(out_csv, wifi_dictionary)

Now, we will use prep_output() method to flattens the dictionary into easily writable chunks:

def prep_output(output, data):

 csv_data = {}

 google_map = https://www.google.com/maps/search/

Now, access all the data we have collected so far as follows:

for x, mac in enumerate(data):

 for y, ts in enumerate(data[mac]["Timestamps"]):

 for z, result in enumerate(data[mac]["Wigle"]["results"]):

 shortres = data[mac]["Wigle"]["results"][z]

https://www.google.com/maps/search/
https://www.google.com/maps/search/

 Python Digital Forensics

27

 g_map_url = "{}{},{}".format(

 google_map, shortres["trilat"],

shortres["trilong"])

Now, we can write the output in CSV file as we have done in earlier scripts in this chapter by

using write_csv() function.

 Python Digital Forensics

28

In this chapter, we will learn in detail about investigating embedded metadata using Python

digital forensics.

Introduction

Embedded metadata is the information about data stored in the same file which is having the

object described by that data. In other words, it is the information about a digital asset stored

in the digital file itself. It is always associated with the file and can never be separated.

In case of digital forensics, we cannot extract all the information about a particular file. On

the other side, embedded metadata can provide us information critical to the investigation.

For example, a text file’s metadata may contain information about the author, its length,

written date and even a short summary about that document. A digital image may include

the metadata such as the length of the image, the shutter speed etc.

Artifacts Containing Metadata Attributes and their Extraction

In this section, we will learn about various artifacts containing metadata attributes and their

extraction process using Python.

Audio and Video

These are the two very common artifacts which have the embedded metadata. This metadata

can be extracted for the purpose of investigation.

You can use the following Python script to extract common attributes or metadata from audio

or MP3 file and a video or a MP4 file.

Note that for this script, we need to install a third party python library named mutagen which

allows us to extract metadata from audio and video files. It can be installed with the help of

the following command:

pip install mutagen

Some of the useful libraries we need to import for this Python script are as follows:

from __future__ import print_function

import argparse

import json

import mutagen

5. Python Digital Forensics – Investigating Embedded
Metadata

 Python Digital Forensics

29

The command line handler will take one argument which represents the path to the MP3 or

MP4 files. Then, we will use mutagen.file() method to open a handle to the file as follows:

if __name__ == '__main__':

 parser = argparse.ArgumentParser('Python Metadata Extractor')

 parser.add_argument("AV_FILE", help="File to extract metadata from")

 args = parser.parse_args()

 av_file = mutagen.File(args.AV_FILE)

 file_ext = args.AV_FILE.rsplit('.', 1)[-1]

 if file_ext.lower() == 'mp3':

 handle_id3(av_file)

 elif file_ext.lower() == 'mp4':

 handle_mp4(av_file)

Now, we need to use two handles, one to extract the data from MP3 and one to extract data

from MP4 file. We can define these handles as follows:

def handle_id3(id3_file):

 id3_frames = {'TIT2': 'Title', 'TPE1': 'Artist', 'TALB': 'Album','TXXX':

'Custom', 'TCON': 'Content Type', 'TDRL': 'Date released','COMM': 'Comments',

'TDRC': 'Recording Date'}

 print("{:15} | {:15} | {:38} | {}".format("Frame", "Description","Text",

"Value"))

 print("-" * 85)

 for frames in id3_file.tags.values():

 frame_name = id3_frames.get(frames.FrameID, frames.FrameID)

 desc = getattr(frames, 'desc', "N/A")

 text = getattr(frames, 'text', ["N/A"])[0]

 value = getattr(frames, 'value', "N/A")

 if "date" in frame_name.lower():

 text = str(text)

 print("{:15} | {:15} | {:38} | {}".format(

 frame_name, desc, text, value))

def handle_mp4(mp4_file):

 cp_sym = u"\u00A9"

 qt_tag = {

 cp_sym + 'nam': 'Title', cp_sym + 'art': 'Artist',

 cp_sym + 'alb': 'Album', cp_sym + 'gen': 'Genre',

 Python Digital Forensics

30

 'cpil': 'Compilation', cp_sym + 'day': 'Creation Date',

 'cnID': 'Apple Store Content ID', 'atID': 'Album Title ID',

 'plID': 'Playlist ID', 'geID': 'Genre ID', 'pcst': 'Podcast',

 'purl': 'Podcast URL', 'egid': 'Episode Global ID',

 'cmID': 'Camera ID', 'sfID': 'Apple Store Country',

 'desc': 'Description', 'ldes': 'Long Description'}

 genre_ids = json.load(open('apple_genres.json'))

Now, we need to iterate through this MP4 file as follows:

 print("{:22} | {}".format('Name', 'Value'))

 print("-" * 40)

 for name, value in mp4_file.tags.items():

 tag_name = qt_tag.get(name, name)

 if isinstance(value, list):

 value = "; ".join([str(x) for x in value])

 if name == 'geID':

 value = "{}: {}".format(

 value, genre_ids[str(value)].replace("|", " - "))

 print("{:22} | {}".format(tag_name, value))

The above script will give us additional information about MP3 as well as MP4 files.

Images

Images may contain different kind of metadata depending upon its file format. However, most

of the images embed GPS information. We can extract this GPS information by using third

party Python libraries. You can use the following Python script can be used to do the same:

First, download third party python library named Python Imaging Library (PIL) as follows:

pip install pillow

This will help us to extract metadata from images.

We can also write the GPS details embedded in images to KML file, but for this we need to

download third party Python library named simplekml as follows:

pip install simplekml

 Python Digital Forensics

31

In this script, first we need to import the following libraries:

from __future__ import print_function

import argparse

from PIL import Image

from PIL.ExifTags import TAGS

import simplekml

import sys

Now, the command line handler will accept one positional argument which basically represents

the file path of the photos.

parser = argparse.ArgumentParser('Metadata from images')

parser.add_argument('PICTURE_FILE', help="Path to picture")

args = parser.parse_args()

Now, we need to specify the URLs that will populate the coordinate information. The URLs are

gmaps and open_maps. We also need a function to convert the degree minute seconds

(DMS) tuple coordinate, provided by PIL library, into decimal. It can be done as follows:

 gmaps = "https://www.google.com/maps?q={},{}"

open_maps = "http://www.openstreetmap.org/?mlat={}&mlon={}"

def process_coords(coord):

 coord_deg = 0

 for count, values in enumerate(coord):

 coord_deg += (float(values[0]) / values[1]) / 60**count

 return coord_deg

Now, we will use image.open() function to open the file as PIL object.

img_file = Image.open(args.PICTURE_FILE)

exif_data = img_file._getexif()

if exif_data is None:

 print("No EXIF data found")

 sys.exit()

for name, value in exif_data.items():

 gps_tag = TAGS.get(name, name)

 if gps_tag is not 'GPSInfo':

 continue

 Python Digital Forensics

32

After finding the GPSInfo tag, we will store the GPS reference and process the coordinates

with the process_coords() method.

 lat_ref = value[1] == u'N'

 lat = process_coords(value[2])

 if not lat_ref:

 lat = lat * -1

 lon_ref = value[3] == u'E'

 lon = process_coords(value[4])

 if not lon_ref:

 lon = lon * -1

Now, initiate kml object from simplekml library as follows:

 kml = simplekml.Kml()

 kml.newpoint(name=args.PICTURE_FILE, coords=[(lon, lat)])

 kml.save(args.PICTURE_FILE + ".kml")

We can now print the coordinates from processed information as follows:

 print("GPS Coordinates: {}, {}".format(lat, lon))

 print("Google Maps URL: {}".format(gmaps.format(lat, lon)))

 print("OpenStreetMap URL: {}".format(open_maps.format(lat, lon)))

 print("KML File {} created".format(args.PICTURE_FILE + ".kml"))

PDF Documents

PDF documents have a wide variety of media including images, text, forms etc. When we

extract embedded metadata in PDF documents, we may get the resultant data in the format

called Extensible Metadata Platform (XMP). We can extract metadata with the help of the

following Python code:

First, install a third party Python library named PyPDF2 to read metadata stored in XMP

format. It can be installed as follows:

pip install PyPDF2

Now, import the following libraries for extracting the metadata from PDF files:

 Python Digital Forensics

33

from __future__ import print_function

from argparse import ArgumentParser, FileType

import datetime

from PyPDF2 import PdfFileReader

import sys

Now, the command line handler will accept one positional argument which basically represents

the file path of the PDF file.

parser = argparse.ArgumentParser('Metadata from PDF')

parser.add_argument('PDF_FILE', help='Path to PDF file',type=FileType('rb'))

args = parser.parse_args()

Now we can use getXmpMetadata() method to provide an object containing the available

metadata as follows:

pdf_file = PdfFileReader(args.PDF_FILE)

xmpm = pdf_file.getXmpMetadata()

if xmpm is None:

 print("No XMP metadata found in document.")

 sys.exit()

We can use custom_print() method to extract and print the relevant values like title,

creator, contributor etc. as follows:

custom_print("Title: {}", xmpm.dc_title)

custom_print("Creator(s): {}", xmpm.dc_creator)

custom_print("Contributors: {}", xmpm.dc_contributor)

custom_print("Subject: {}", xmpm.dc_subject)

custom_print("Description: {}", xmpm.dc_description)

custom_print("Created: {}", xmpm.xmp_createDate)

custom_print("Modified: {}", xmpm.xmp_modifyDate)

custom_print("Event Dates: {}", xmpm.dc_date)

We can also define custom_print() method in case if PDF is created using multiple software

as follows:

 Python Digital Forensics

34

def custom_print(fmt_str, value):

 if isinstance(value, list):

 print(fmt_str.format(", ".join(value)))

 elif isinstance(value, dict):

 fmt_value = [":".join((k, v)) for k, v in value.items()]

 print(fmt_str.format(", ".join(value)))

 elif isinstance(value, str) or isinstance(value, bool):

 print(fmt_str.format(value))

 elif isinstance(value, bytes):

 print(fmt_str.format(value.decode()))

 elif isinstance(value, datetime.datetime):

 print(fmt_str.format(value.isoformat()))

 elif value is None:

 print(fmt_str.format("N/A"))

 else:

 print("warn: unhandled type {} found".format(type(value)))

We can also extract any other custom property saved by the software as follows:

if xmpm.custom_properties:

 print("Custom Properties:")

 for k, v in xmpm.custom_properties.items():

 print("\t{}: {}".format(k, v))

The above script will read the PDF document and will print the metadata stored in XMP format

including some custom properties stored by the software with the help of which that PDF has

been made.

Windows Executables Files

Sometimes we may encounter a suspicious or unauthorized executable file. But for the

purpose of investigation it may be useful because of the embedded metadata. We can get the

information such as its location, its purpose and other attributes such as the manufacturer,

compilation date etc. With the help of following Python script we can get the compilation date,

useful data from headers and imported as well as exported symbols.

For this purpose, first install the third party Python library pefile. It can be done as follows:

 Python Digital Forensics

35

pip install pefile

Once you successfully install this, import the following libraries as follows:

from __future__ import print_function

import argparse

from datetime import datetime

from pefile import PE

Now, the command line handler will accept one positional argument which basically represents

the file path of the executable file. You can also choose the style of output, whether you need

it in detailed and verbose way or in a simplified manner. For this you need to give an optional

argument as shown below:

parser = argparse.ArgumentParser('Metadata from executable file')

parser.add_argument("EXE_FILE", help="Path to exe file")

parser.add_argument("-v", "--verbose", help="Increase verbosity of output",

action='store_true', default=False)

args = parser.parse_args()

Now, we will load the input executable file by using PE class. We will also dump the executable

data to a dictionary object by using dump_dict() method.

pe = PE(args.EXE_FILE)

ped = pe.dump_dict()

We can extract basic file metadata such as embedded authorship, version and compilation

time using the code shown below:

 file_info = {}

for structure in pe.FileInfo:

 if structure.Key == b'StringFileInfo':

 for s_table in structure.StringTable:

 for key, value in s_table.entries.items():

 if value is None or len(value) == 0:

 value = "Unknown"

 file_info[key] = value

print("File Information: ")

print("==================")

for k, v in file_info.items():

 Python Digital Forensics

36

 if isinstance(k, bytes):

 k = k.decode()

 if isinstance(v, bytes):

 v = v.decode()

 print("{}: {}".format(k, v))

comp_time = ped['FILE_HEADER']['TimeDateStamp']['Value']

comp_time = comp_time.split("[")[-1].strip("]")

time_stamp, timezone = comp_time.rsplit(" ", 1)

comp_time = datetime.strptime(time_stamp, "%a %b %d %H:%M:%S %Y")

print("Compiled on {} {}".format(comp_time, timezone.strip()))

We can extract the useful data from headers as follows:

 for section in ped['PE Sections']:

 print("Section '{}' at {}: {}/{} {}".format(

 section['Name']['Value'], hex(section['VirtualAddress']['Value']),

 section['Misc_VirtualSize']['Value'],

 section['SizeOfRawData']['Value'], section['MD5'])

)

Now, extract the listing of imports and exports from executable files as shown below:

 if hasattr(pe, 'DIRECTORY_ENTRY_IMPORT'):

 print("\nImports: ")

 print("=========")

 for dir_entry in pe.DIRECTORY_ENTRY_IMPORT:

 dll = dir_entry.dll

 if not args.verbose:

 print(dll.decode(), end=", ")

 continue

 name_list = []

 for impts in dir_entry.imports:

 if getattr(impts, "name", b"Unknown") is None:

 name = b"Unknown"

 else:

 name = getattr(impts, "name", b"Unknown")

 Python Digital Forensics

37

 name_list.append([name.decode(), hex(impts.address)])

 name_fmt = ["{} ({})".format(x[0], x[1]) for x in name_list]

 print('- {}: {}'.format(dll.decode(), ", ".join(name_fmt)))

 if not args.verbose:

 print()

Now, print exports, names and addresses using the code as shown below:

 if hasattr(pe, 'DIRECTORY_ENTRY_EXPORT'):

 print("\nExports: ")

 print("=========")

 for sym in pe.DIRECTORY_ENTRY_EXPORT.symbols:

 print('- {}: {}'.format(sym.name.decode(), hex(sym.address)))

The above script will extract the basic metadata, information from headers from windows

executable files.

Office Document Metadata

Most of the work in computer is done in three applications of MS Office – Word, PowerPoint

and Excel. These files possess huge metadata, which can expose interesting information about

their authorship and history.

Note that metadata from 2007 format of word (.docx), excel (.xlsx) and powerpoint (.pptx)

is stored in a XML file. We can process these XML files in Python with the help of following

Python script shown below:

First, import the required libraries as shown below:

from __future__ import print_function

from argparse import ArgumentParser

from datetime import datetime as dt

from xml.etree import ElementTree as etree

import zipfile

parser = argparse.ArgumentParser('Office Document Metadata’)

parser.add_argument("Office_File", help="Path to office file to read")

args = parser.parse_args()

 Python Digital Forensics

38

Now, check if the file is a ZIP file. Else, raise an error. Now, open the file and extract the key

elements for processing using the following code:

zipfile.is_zipfile(args.Office_File)

zfile = zipfile.ZipFile(args.Office_File)

core_xml = etree.fromstring(zfile.read('docProps/core.xml'))

app_xml = etree.fromstring(zfile.read('docProps/app.xml'))

Now, create a dictionary for initiating the extraction of the metadata:

core_mapping = {

 'title': 'Title',

 'subject': 'Subject',

 'creator': 'Author(s)',

 'keywords': 'Keywords',

 'description': 'Description',

 'lastModifiedBy': 'Last Modified By',

 'modified': 'Modified Date',

 'created': 'Created Date',

 'category': 'Category',

 'contentStatus': 'Status',

 'revision': 'Revision'

}

Use iterchildren() method to access each of the tags within the XML file:

for element in core_xml.getchildren():

 for key, title in core_mapping.items():

 if key in element.tag:

 if 'date' in title.lower():

 text = dt.strptime(element.text, "%Y-%m-%dT%H:%M:%SZ")

 else:

 text = element.text

 print("{}: {}".format(title, text))

 Python Digital Forensics

39

Similarly, do this for app.xml file which contains statistical information about the contents of

the document:

app_mapping = {

 'TotalTime': 'Edit Time (minutes)',

 'Pages': 'Page Count',

 'Words': 'Word Count',

 'Characters': 'Character Count',

 'Lines': 'Line Count',

 'Paragraphs': 'Paragraph Count',

 'Company': 'Company',

 'HyperlinkBase': 'Hyperlink Base',

 'Slides': 'Slide count',

 'Notes': 'Note Count',

 'HiddenSlides': 'Hidden Slide Count',

}

for element in app_xml.getchildren():

 for key, title in app_mapping.items():

 if key in element.tag:

 if 'date' in title.lower():

 text = dt.strptime(element.text, "%Y-%m-%dT%H:%M:%SZ")

 else:

 text = element.text

 print("{}: {}".format(title, text))

 Now after running the above script, we can get the different details about the particular

document. Note that we can apply this script on Office 2007 or later version documents only.

 Python Digital Forensics

40

This chapter will explain the fundamentals involved in performing network forensics using

Python.

Understanding Network Forensics

Network forensics is a branch of digital forensics that deals with the monitoring and analysis

of computer network traffic, both local and WAN(wide area network), for the purposes of

information gathering, evidence collection, or intrusion detection. Network forensics play a

critical role in investigating digital crimes such as theft of intellectual property or leakage of

information. A picture of network communications helps an investigator to solve some crucial

questions as follows:

 What websites has been accessed?

 What kind of content has been uploaded on our network?

 What kind of content has been downloaded from our network?

 What servers are being accessed?

 Is somebody sending sensitive information outside of company firewalls?

Internet Evidence Finder (IEF)

IEF is a digital forensic tool to find, analyze and present digital evidence found on different

digital media like computer, smartphones, tablets etc. It is very popular and used by

thousands of forensics professionals.

Use of IEF

Due to its popularity, IEF is used by forensics professionals to a great extent. Some of the

uses of IEF are as follows:

 Due to its powerful search capabilities, it is used to search multiple files or data media

simultaneously.

 It is also used to recover deleted data from the unallocated space of RAM through new

carving techniques.

 If investigators want to rebuild web pages in their original format on the date they

were opened, then they can use IEF.

 It is also used to search logical or physical disk volumes.

6. Python Digital Forensics – Network Forensics-I

https://en.wikipedia.org/wiki/Local_area_network

 Python Digital Forensics

41

Dumping Reports from IEF to CSV using Python

IEF stores data in a SQLite database and following Python script will dynamically identify result

tables within the IEF database and dump them to respective CSV files.

This process is done in the steps shown below:

 First, generate IEF result database which will be a SQLite database file ending with .db

extension.

 Then, query that database to identify all the tables.

 Lastly, write this result tables to an individual CSV file.

Python Code

Let us see how to use Python code for this purpose:

For Python script, import the necessary libraries as follows:

from __future__ import print_function

import argparse

import csv

import os

import sqlite3

import sys

Now, we need to provide the path to IEF database file:

if __name__ == '__main__':

 parser = argparse.ArgumentParser('IEF to CSV')

 parser.add_argument("IEF_DATABASE", help="Input IEF database")

 parser.add_argument("OUTPUT_DIR", help="Output DIR")

 args = parser.parse_args()

Now, we will confirm the existence of IEF database as follows:

 if not os.path.exists(args.OUTPUT_DIR):

 os.makedirs(args.OUTPUT_DIR)

 if os.path.exists(args.IEF_DATABASE) and \

 os.path.isfile(args.IEF_DATABASE):

 main(args.IEF_DATABASE, args.OUTPUT_DIR)

 else:

 Python Digital Forensics

42

 print("[-] Supplied input file {} does not exist or is not a "

"file".format(args.IEF_DATABASE))

 sys.exit(1)

Now, as we did in earlier scripts, make the connection with SQLite database as follows to

execute the queries through cursor:

def main(database, out_directory):

 print("[+] Connecting to SQLite database")

 conn = sqlite3.connect(database)

 c = conn.cursor()

The following lines of code will fetch the names of the tables from the database:

 print("List of all tables to extract")

 c.execute("select * from sqlite_master where type='table'")

 tables = [x[2] for x in c.fetchall() if not x[2].startswith('_') and not

x[2].endswith('_DATA')]

Now, we will select all the data from the table and by using fetchall() method on the cursor

object we will store the list of tuples containing the table’s data in its entirety in a variable:

 print("Dumping {} tables to CSV files in {}".format(len(tables),

out_directory))

 for table in tables:

 c.execute("pragma table_info('{}')".format(table))

 table_columns = [x[1] for x in c.fetchall()]

 c.execute("select * from '{}'".format(table))

 table_data = c.fetchall()

Now, by using CSV_Writer() method we will write the content in CSV file:

 csv_name = table + '.csv'

 csv_path = os.path.join(out_directory, csv_name)

 print('[+] Writing {} table to {} CSV file'.format(table,csv_name))

 with open(csv_path, "w", newline="") as csvfile:

 csv_writer = csv.writer(csvfile)

 csv_writer.writerow(table_columns)

 csv_writer.writerows(table_data)

 Python Digital Forensics

43

The above script will fetch all the data from tables of IEF database and write the contents to

the CSV file of our choice.

Working with Cached Data

From IEF result database, we can fetch more information that is not necessarily supported by

IEF itself. We can fetch the cached data, a bi product for information, from email service

provider like Yahoo, Google etc. by using IEF result database.

The following is the Python script for accessing the cached data information from Yahoo mail,

accessed on Google Chrome, by using IEF database. Note that the steps would be more or

less same as followed in the last Python script.

First, import the necessary libraries for Python as follows:

from __future__ import print_function

import argparse

import csv

import os

import sqlite3

import sys

import json

Now, provide the path to IEF database file along with two positional arguments accepts by

command-line handler as done in the last script:

 if __name__ == '__main__':

 parser = argparse.ArgumentParser('IEF to CSV')

 parser.add_argument("IEF_DATABASE", help="Input IEF database")

 parser.add_argument("OUTPUT_DIR", help="Output DIR")

 args = parser.parse_args()

Now, confirm the existence of IEF database as follows:

 directory = os.path.dirname(args.OUTPUT_CSV)

 if not os.path.exists(directory):os.makedirs(directory)

 if os.path.exists(args.IEF_DATABASE) and \ os.path.isfile(args.IEF_DATABASE):

 main(args.IEF_DATABASE, args.OUTPUT_CSV)

else: print("Supplied input file {} does not exist or is not a "

"file".format(args.IEF_DATABASE))

 sys.exit(1)

 Python Digital Forensics

44

Now, make the connection with SQLite database as follows to execute the queries through

cursor:

 def main(database, out_csv):

 print("[+] Connecting to SQLite database")

 conn = sqlite3.connect(database)

 c = conn.cursor()

You can use the following lines of code to fetch the instances of Yahoo Mail contact cache

record:

 print("Querying IEF database for Yahoo Contact Fragments from " "the Chrome

Cache Records Table")

 try:

 c.execute("select * from 'Chrome Cache Records' where URL like "

"'https://data.mail.yahoo.com" "/classicab/v2/contacts/?format=json%'")

 except sqlite3.OperationalError:

 print("Received an error querying the database -- database may be"

"corrupt or not have a Chrome Cache Records table")

 sys.exit(2)

Now, the list of tuples returned from above query to be saved into a variable as follows:

 contact_cache = c.fetchall()

 contact_data = process_contacts(contact_cache)

 write_csv(contact_data, out_csv)

Note that here we will use two methods namely process_contacts() for setting up the result

list as well as iterating through each contact cache record and json.loads() to store the JSON

data extracted from the table into a variable for further manipulation:

def process_contacts(contact_cache):

 print("[+] Processing {} cache files matching Yahoo contact cache " "

data".format(len(contact_cache)))

 results = []

 for contact in contact_cache:

 url = contact[0]

 first_visit = contact[1]

 last_visit = contact[2]

 last_sync = contact[3]

 loc = contact[8]

 Python Digital Forensics

45

 contact_json = json.loads(contact[7].decode())

 total_contacts = contact_json["total"]

 total_count = contact_json["count"]

 if "contacts" not in contact_json:

 continue

 for c in contact_json["contacts"]:

 name, anni, bday, emails, phones, links = ("", "", "", "", "", "")

 if "name" in c:

 name = c["name"]["givenName"] + " " + \

c["name"]["middleName"] + " " + c["name"]["familyName"]

 if "anniversary" in c:

 anni = c["anniversary"]["month"] + \"/" +

c["anniversary"]["day"] + "/" + \c["anniversary"]["year"]

 if "birthday" in c:

 bday = c["birthday"]["month"] + "/" + \c["birthday"]["day"] +

"/" + c["birthday"]["year"]

 if "emails" in c:

 emails = ', '.join([x["ep"] for x in c["emails"]])

 if "phones" in c:

 phones = ', '.join([x["ep"] for x in c["phones"]])

 if "links" in c:

 links = ', '.join([x["ep"] for x in c["links"]])

Now for company, title and notes, the get method is used as shown below:

 company = c.get("company", "")

 title = c.get("jobTitle", "")

 notes = c.get("notes", "")

Now, let us append the list of metadata and extracted data elements to the result list as

follows:

 results.append([url, first_visit, last_visit, last_sync, loc,

name, bday,anni, emails, phones, links, company, title, notes,total_contacts,

total_count])

 return results

 Python Digital Forensics

46

Now, by using CSV_Writer() method, we will write the content in CSV file:

def write_csv(data, output):

 print("[+] Writing {} contacts to {}".format(len(data), output))

 with open(output, "w", newline="") as csvfile:

 csv_writer = csv.writer(csvfile)

 csv_writer.writerow([

 "URL", "First Visit (UTC)", "Last Visit (UTC)",

 "Last Sync (UTC)", "Location", "Contact Name", "Bday",

 "Anniversary", "Emails", "Phones", "Links", "Company", "Title",

 "Notes", "Total Contacts", "Count of Contacts in Cache"])

 csv_writer.writerows(data)

With the help of above script, we can process the cached data from Yahoo mail by using IEF

database.

 Python Digital Forensics

47

The previous chapter dealt with some of the concepts of network forensics using Python. In

this chapter, let us understand network forensics using Python at a deeper level.

Web Page Preservation with Beautiful Soup

The World Wide Web (WWW) is a unique resource of information. However, its legacy is at

high risk due to the loss of content at an alarming rate. A number of cultural heritage and

academic institutions, non-profit organizations and private businesses have explored the

issues involved and contributed to the development of technical solutions for web archiving.

Web page preservation or web archiving is the process of gathering the data from World Wide

Web, ensuring that the data is preserved in an archive and making it available for future

researchers, historians and the public. Before proceeding further into the web page

preservation, let us discuss some important issues related to web page preservation as given

below:

 Change in Web Resources: Web resources keep changing everyday which is a

challenge for web page preservation.

 Large Quantity of Resources: Another issue related to web page preservation is the

large quantity of resources which is to be preserved.

 Integrity: Web pages must be protected from unauthorized amendments, deletion or

removal to protect its integrity.

 Dealing with multimedia data: While preserving web pages we need to deal with

multimedia data also, and these might cause issues while doing so.

 Providing access: Besides preserving, the issue of providing access to web resources

and dealing with issues of ownership needs to be solved too.

In this chapter, we are going to use Python library named Beautiful Soup for web page

preservation.

What is Beautiful Soup?

Beautiful Soup is a Python library for pulling data out of HTML and XML files. It can be used

with urlib because it needs an input (document or url) to create a soup object, as it cannot

fetch web page itself. You can learn in detail about this at

https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

7. Python Digital Forensics – Network Forensics-II

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

 Python Digital Forensics

48

Note that before using it, we must install a third party library using the following command:

pip install bs4

Next, using Anaconda package manager, we can install Beautiful Soup as follows:

conda install -c anaconda beautifulsoup4

Python Script for Preserving Web Pages

The Python script for preserving web pages by using third party library called Beautiful Soup

is discussed here:

First, import the required libraries as follows:

from __future__ import print_function

import argparse

from bs4 import BeautifulSoup, SoupStrainer

from datetime import datetime

import hashlib

import logging

import os

import ssl

import sys

from urllib.request import urlopen

import urllib.error

logger = logging.getLogger(__name__)

Note that this script will take two positional arguments, one is URL which is to be preserved

and other is the desired output directory as shown below:

if __name__ == "__main__":

 parser = argparse.ArgumentParser('Web Page preservation')

 parser.add_argument("DOMAIN", help="Website Domain")

 parser.add_argument("OUTPUT_DIR", help="Preservation Output Directory")

 parser.add_argument("-l", help="Log file path",

 default=__file__[:-3] + ".log")

 args = parser.parse_args()

 Python Digital Forensics

49

Now, setup the logging for the script by specifying a file and stream handler for being in loop

and document the acquisition process as shown:

 logger.setLevel(logging.DEBUG)

 msg_fmt = logging.Formatter("%(asctime)-15s %(funcName)-10s""%(levelname)-8s

%(message)s")

 strhndl = logging.StreamHandler(sys.stderr)

 strhndl.setFormatter(fmt=msg_fmt)

 fhndl = logging.FileHandler(args.l, mode='a')

 fhndl.setFormatter(fmt=msg_fmt)

 logger.addHandler(strhndl)

 logger.addHandler(fhndl)

 logger.info("Starting BS Preservation")

 logger.debug("Supplied arguments: {}".format(sys.argv[1:]))

 logger.debug("System " + sys.platform)

 logger.debug("Version " + sys.version)

Now, let us do the input validation on the desired output directory as follows:

 if not os.path.exists(args.OUTPUT_DIR):

 os.makedirs(args.OUTPUT_DIR)

 main(args.DOMAIN, args.OUTPUT_DIR)

Now, we will define the main() function which will extract the base name of the website by

removing the unnecessary elements before the actual name along with additional validation

on the input URL as follows:

def main(website, output_dir):

 base_name = website.replace("https://", "").replace("http://",

"").replace("www.", "")

 link_queue = set()

 if "http://" not in website and "https://" not in website:

 logger.error("Exiting preservation - invalid user input:

{}".format(website))

 sys.exit(1)

 logger.info("Accessing {} webpage".format(website))

 context = ssl._create_unverified_context()

 Python Digital Forensics

50

Now, we need to open a connection with the URL by using urlopen() method. Let us use try-

except block as follows:

 try:

 index = urlopen(website, context=context).read().decode("utf-8")

 except urllib.error.HTTPError as e:

 logger.error("Exiting preservation - unable to access page:

{}".format(website))

 sys.exit(2)

 logger.debug("Successfully accessed {}".format(website))

The next lines of code include three function as explained below:

 write_output() to write the first web page to the output directory

 find_links() function to identify the links on this web page

 recurse_pages() function to iterate through and discover all links on the web page.

 write_output(website, index, output_dir)

 link_queue = find_links(base_name, index, link_queue)

 logger.info("Found {} initial links on webpage".format(len(link_queue)))

 recurse_pages(website, link_queue, context, output_dir)

 logger.info("Completed preservation of {}".format(website))

Now, let us define write_output() method as follows:

def write_output(name, data, output_dir, counter=0):

 name = name.replace("http://", "").replace("https://", "").rstrip("//")

 directory = os.path.join(output_dir, os.path.dirname(name))

 if not os.path.exists(directory) and os.path.dirname(name) != "":

 os.makedirs(directory)

We need to log some details about the web page and then we log the hash of the data by

using hash_data() method as follows:

 logger.debug("Writing {} to {}".format(name, output_dir))

 logger.debug("Data Hash: {}".format(hash_data(data)))

 path = os.path.join(output_dir, name)

 path = path + "_" + str(counter)

 with open(path, "w") as outfile:

 outfile.write(data)

 Python Digital Forensics

51

 logger.debug("Output File Hash: {}".format(hash_file(path)))

Now, define hash_data() method with the help of which we read the UTF-8 encoded data

and then generate the SHA-256 hash of it as follows:

def hash_data(data):

 sha256 = hashlib.sha256()

 sha256.update(data.encode("utf-8"))

 return sha256.hexdigest()

def hash_file(file):

 sha256 = hashlib.sha256()

 with open(file, "rb") as in_file:

 sha256.update(in_file.read())

 return sha256.hexdigest()

Now, let us create a Beautifulsoup object out of the web page data under find_links()

method as follows:

def find_links(website, page, queue):

 for link in BeautifulSoup(page, "html.parser",parse_only=SoupStrainer("a",

href=True)):

 if website in link.get("href"):

 if not os.path.basename(link.get("href")).startswith("#"):

 queue.add(link.get("href"))

 return queue

Now, we need to define recurse_pages() method by providing it the inputs of the website

URL, current link queue, the unverified SSL context and the output directory as follows:

def recurse_pages(website, queue, context, output_dir):

 processed = []

 counter = 0

 while True:

 counter += 1

 if len(processed) == len(queue):

 break

 for link in queue.copy(): if link in processed:

 continue

 Python Digital Forensics

52

 processed.append(link)

 try:

 page = urlopen(link, context=context).read().decode("utf-8")

 except urllib.error.HTTPError as e:

 msg = "Error accessing webpage: {}".format(link)

 logger.error(msg)

 continue

Now, write the output of each web page accessed in a file by passing the link name, page

data, output directory and the counter as follows:

 write_output(link, page, output_dir, counter)

 queue = find_links(website, page, queue)

 logger.info("Identified {} links throughout website".format(

 len(queue)))

Now, when we run this script by providing the URL of the website, the output directory and a

path to the log file, we will get the details about that web page that can be used for future

use.

Virus Hunting

Have you ever wondered how forensic analysts, security researchers, and incident

respondents can understand the difference between useful software and malware? The

answer lies in the question itself, because without studying about the malware, rapidly

generating by hackers, it is quite impossible for researchers and specialists to tell the

difference between useful software and malware. In this section, let us discuss about

VirusShare, a tool to accomplish this task.

Understanding VirusShare

VirusShare is the largest privately owned collection of malware samples to provide security

researchers, incident responders, and forensic analysts the samples of live malicious code. It

contains over 30 million samples.

The benefit of VirusShare is the list of malware hashes that is freely available. Anybody can

use these hashes to create a very comprehensive hash set and use that to identify potentially

malicious files. But before using VirusShare, we suggest you to visit https://virussshare.com

for more details.

https://virussshare.com/

 Python Digital Forensics

53

Creating Newline-Delimited Hash List from VirusShare using Python

A hash list from VirusShare can be used by various forensic tools such as X-ways and EnCase.

In the script discussed below, we are going to automate downloading lists of hashes from

VirusShare to create a newline-delimited hash list.

For this script, we need a third party Python library tqdm which can be downloaded as follows:

pip install tqdm

Note that in this script, first we will read the VirusShare hashes page and dynamically identify

the most recent hash list. Then we will initialize the progress bar and download the hash list

in the desired range.

First, import the following libraries:

from __future__ import print_function

import argparse

import os

import ssl

import sys

import tqdm

from urllib.request import urlopen

import urllib.error

This script will take one positional argument, which would be the desired path for the hash

set:

if __name__ == '__main__':

 parser = argparse.ArgumentParser('Hash set from VirusShare')

 parser.add_argument("OUTPUT_HASH", help="Output Hashset")

 parser.add_argument("--start", type=int,

 help="Optional starting location")

 args = parser.parse_args()

Now, we will perform the standard input validation as follows:

 directory = os.path.dirname(args.OUTPUT_HASH)

 if not os.path.exists(directory):

 os.makedirs(directory)

 if args.start:

 main(args.OUTPUT_HASH, start=args.start)

 Python Digital Forensics

54

 else:

 main(args.OUTPUT_HASH)

Now we need to define main() function with **kwargs as an argument because this will

create a dictionary we can refer to support supplied key arguments as shown below:

def main(hashset, **kwargs):

 url = "https://virusshare.com/hashes.4n6"

 print("[+] Identifying hash set range from {}".format(url))

 context = ssl._create_unverified_context()

Now, we need to open VirusShare hashes page by using urlib.request.urlopen() method.

We will use try-except block as follows:

 try:

 index = urlopen(url, context=context).read().decode("utf-8")

 except urllib.error.HTTPError as e:

 print("[-] Error accessing webpage - exiting..")

 sys.exit(1)

Now, identify latest hash list from downloaded pages. You can do this by finding the last

instance of the HTML href tag to VirusShare hash list. It can be done with the following lines

of code:

 tag = index.rfind(r'<a href="hashes/VirusShare_')

 stop = int(index[tag + 27: tag + 27 + 5].lstrip("0"))

 if "start" not in kwargs:

 start = 0

 else:

 start = kwargs["start"]

 if start < 0 or start > stop:

 print("[-] Supplied start argument must be greater than or equal

""to zero but less than the latest hash list, ""currently: {}".format(stop))

 sys.exit(2)

 print("[+] Creating a hashset from hash lists {} to {}".format(start,

stop))

 hashes_downloaded = 0

 Python Digital Forensics

55

Now, we will use tqdm.trange() method to create a loop and progress bar as follows:

 for x in tqdm.trange(start, stop + 1,

unit_scale=True,desc="Progress"):

 url_hash =

"https://virusshare.com/hashes/VirusShare_"\"{}.md5".format(str(x).zfill(5))

 try:

 hashes = urlopen(url_hash,

context=context).read().decode("utf-8")

 hashes_list = hashes.split("\n")

 except urllib.error.HTTPError as e:

 print("[-] Error accessing webpage for hash list {}"" -

continuing..".format(x))

 continue

After performing the above steps succefully, we will open the hash set text file in a+ mode

to append to the bottom of text file.

 with open(hashset, "a+") as hashfile:

 for line in hashes_list:

 if not line.startswith("#") and line != "":

 hashes_downloaded += 1

 hashfile.write(line + '\n')

 print("[+] Finished downloading {} hashes into {}".format(

 hashes_downloaded, hashset))

After running the above script, you will get the latest hash list containing MD5 hash values in

text format.

 Python Digital Forensics

56

The previous chapters discussed about the importance and the process of network forensics

and the concepts involved. In this chapter, let us learn about the role of emails in digital

forensics and their investigation using Python.

Role of Email in Investigation

Emails play a very important role in business communications and have emerged as one of

the most important applications on internet. They are a convenient mode for sending

messages as well as documents, not only from computers but also from other electronic

gadgets such as mobile phones and tablets.

The negative side of emails is that criminals may leak important information about their

company. Hence, the role of emails in digital forensics has been increased in recent years. In

digital forensics, emails are considered as crucial evidences and Email Header Analysis has

become important to collect evidence during forensic process.

An investigator has the following goals while performing email forensics:

 To identify the main criminal

 To collect necessary evidences

 To presenting the findings

 To build the case

Challenges in Email Forensics

Email forensics play a very important role in investigation as most of the communication in

present era relies on emails. However, an email forensic investigator may face the following

challenges during the investigation:

Fake Emails

The biggest challenge in email forensics is the use of fake e-mails that are created by

manipulating and scripting headers etc. In this category criminals also use temporary email

which is a service that allows a registered user to receive email at a temporary address that

expires after a certain time period.

Spoofing

Another challenge in email forensics is spoofing in which criminals used to present an email

as someone else’s. In this case the machine will receive both fake as well as original IP

address.

8. Python Digital Forensics – Investigation using
Emails

 Python Digital Forensics

57

Anonymous Re-emailing

Here, the Email server strips identifying information from the email message before

forwarding it further. This leads to another big challenge for email investigations.

Techniques Used in Email Forensic Investigation

Email forensics is the study of source and content of email as evidence to identify the actual

sender and recipient of a message along with some other information such as date/time of

transmission and intention of sender. It involves investigating metadata, port scanning as

well as keyword searching.

Some of the common techniques which can be used for email forensic investigation are:

 Header Analysis

 Server investigation

 Network Device Investigation

 Sender Mailer Fingerprints

 Software Embedded Identifiers

In the following sections, we are going to learn how to fetch information using Python for the

purpose of email investigation.

Extraction of Information from EML files

EML files are basically emails in file format which are widely used for storing email messages.

They are structured text files that are compatible across multiple email clients such as

Microsoft Outlook, Outlook Express, and Windows Live Mail.

An EML file stores email headers, body content, attachment data as plain text. It uses base64

to encode binary data and Quoted-Printable (QP) encoding to store content information. The

Python script that can be used to extract information from EML file is given below:

First, import the following Python libraries as shown below:

from __future__ import print_function

from argparse import ArgumentParser, FileType

from email import message_from_file

import os

import quopri

import base64

 Python Digital Forensics

58

In the above libraries, quopri is used to decode the QP encoded values from EML files. Any

base64 encoded data can be decoded with the help of base64 library.

Next, let us provide argument for command-line handler. Note that here it will accept only

one argument which would be the path to EML file as shown below:

if __name__ == '__main__':

 parser = ArgumentParser('Extracting information from EML file')

 parser.add_argument("EML_FILE",help="Path to EML File", type=FileType('r'))

 args = parser.parse_args()

 main(args.EML_FILE)

Now, we need to define main() function in which we will use the method named

message_from_file() from email library to read the file like object. Here we will access the

headers, body content, attachments and other payload information by using resulting variable

named emlfile as shown in the code given below:

def main(input_file):

 emlfile = message_from_file(input_file)

 for key, value in emlfile._headers:

 print("{}: {}".format(key, value))

print("\nBody\n")

if emlfile.is_multipart():

 for part in emlfile.get_payload():

 process_payload(part)

else:

 process_payload(emlfile[1])

Now, we need to define process_payload() method in which we will extract message body

content by using get_payload() method. We will decode QP encoded data by using

quopri.decodestring() function. We will also check the content MIME type so that it can

handle the storage of the email properly. Observe the code given below:

def process_payload(payload):

 print(payload.get_content_type() + "\n" + "=" *

len(payload.get_content_type()))

 body = quopri.decodestring(payload.get_payload())

 if payload.get_charset():

 body = body.decode(payload.get_charset())

 else:

 try:

 Python Digital Forensics

59

 body = body.decode()

 except UnicodeDecodeError:

 body = body.decode('cp1252')

 if payload.get_content_type() == "text/html":

 outfile = os.path.basename(args.EML_FILE.name) + ".html"

 open(outfile, 'w').write(body)

 elif payload.get_content_type().startswith('application'):

 outfile = open(payload.get_filename(), 'wb')

 body = base64.b64decode(payload.get_payload())

 outfile.write(body)

 outfile.close()

 print("Exported: {}\n".format(outfile.name))

 else:

 print(body)

 After executing the above script, we will get the header information along with various

payloads on the console.

Analyzing MSG Files using Python

Email messages come in many different formats. MSG is one such kind of format used by

Microsoft Outlook and Exchange. Files with MSG extension may contain plain ASCII text for

the headers and the main message body as well as hyperlinks and attachments.

In this section, we will learn how to extract information from MSG file using Outlook API. Note

that the following Python script will work only on Windows. For this, we need to install third

party Python library named pywin32 as follows:

pip install pywin32

Now, import the following libraries using the commands shown:

from __future__ import print_function

from argparse import ArgumentParser

import os

import win32com.client

import pywintypes

 Python Digital Forensics

60

Now, let us provide an argument for command-line handler. Here it will accept two arguments

one would be the path to MSG file and other would be the desired output folder as follows:

if __name__ == '__main__':

 parser = ArgumentParser(‘Extracting information from MSG file’)

 parser.add_argument("MSG_FILE", help="Path to MSG file")

 parser.add_argument("OUTPUT_DIR", help="Path to output folder")

 args = parser.parse_args()

 out_dir = args.OUTPUT_DIR

 if not os.path.exists(out_dir):

 os.makedirs(out_dir)

 main(args.MSG_FILE, args.OUTPUT_DIR)

Now, we need to define main() function in which we will call win32com library for setting

up Outlook API which further allows access to the MAPI namespace.

 def main(msg_file, output_dir):

 mapi = win32com.client.Dispatch("Outlook.Application").GetNamespace("MAPI")

 msg = mapi.OpenSharedItem(os.path.abspath(args.MSG_FILE))

 display_msg_attribs(msg)

 display_msg_recipients(msg)

 extract_msg_body(msg, output_dir)

 extract_attachments(msg, output_dir)

Now, define different functions which we are using in this script. The code given below shows

defining the display_msg_attribs() function that allow us to display various attributes of a

message like subject, to , BCC, CC, Size, SenderName, sent, etc.

 def display_msg_attribs(msg):

 attribs = [

 'Application', 'AutoForwarded', 'BCC', 'CC', 'Class',

 'ConversationID', 'ConversationTopic', 'CreationTime',

 'ExpiryTime', 'Importance', 'InternetCodePage', 'IsMarkedAsTask',

 'LastModificationTime', 'Links','ReceivedTime', 'ReminderSet',

 'ReminderTime', 'ReplyRecipientNames', 'Saved', 'Sender',

 'SenderEmailAddress', 'SenderEmailType', 'SenderName', 'Sent',

 'SentOn', 'SentOnBehalfOfName', 'Size', 'Subject',

 'TaskCompletedDate', 'TaskDueDate', 'To', 'UnRead'

 Python Digital Forensics

61

]

 print("\nMessage Attributes")

 for entry in attribs:

 print("{}: {}".format(entry, getattr(msg, entry, 'N/A')))

Now, define the display_msg_recipeints() function that iterates through the messages and

displays the recipient details.

def display_msg_recipients(msg):

 recipient_attrib = [

 'Address', 'AutoResponse', 'Name', 'Resolved', 'Sendable'

]

 i = 1

 while True:

 try:

 recipient = msg.Recipients(i)

 except pywintypes.com_error:

 break

 print("\nRecipient {}".format(i))

 print("=" * 15)

 for entry in recipient_attrib:

 print("{}: {}".format(entry, getattr(recipient, entry, 'N/A')))

 i += 1

Next, we define extract_msg_body() function that extracts the body content, HTML as well

as Plain text, from the message.

def extract_msg_body(msg, out_dir):

 html_data = msg.HTMLBody.encode('cp1252')

 outfile = os.path.join(out_dir, os.path.basename(args.MSG_FILE))

 open(outfile + ".body.html", 'wb').write(html_data)

 print("Exported: {}".format(outfile + ".body.html"))

 body_data = msg.Body.encode('cp1252')

 open(outfile + ".body.txt", 'wb').write(body_data)

 print("Exported: {}".format(outfile + ".body.txt"))

 Python Digital Forensics

62

Next, we shall define the extract_attachments() function that exports attachment data into

desired output directory.

def extract_attachments(msg, out_dir):

 attachment_attribs = [

 'DisplayName', 'FileName', 'PathName', 'Position', 'Size'

]

 i = 1 # Attachments start at 1

 while True:

 try:

 attachment = msg.Attachments(i)

 except pywintypes.com_error:

 break

Once all the functions are defined, we will print all the attributes to the console with the

following line of codes:

 print("\nAttachment {}".format(i))

 print("=" * 15)

 for entry in attachment_attribs:

 print('{}: {}'.format(entry, getattr(attachment, entry,"N/A")))

 outfile =

os.path.join(os.path.abspath(out_dir),os.path.split(args.MSG_FILE)[-1])

 if not os.path.exists(outfile):

 os.makedirs(outfile)

 outfile = os.path.join(outfile, attachment.FileName)

 attachment.SaveAsFile(outfile)

 print("Exported: {}".format(outfile))

 i += 1

After running the above script, we will get the attributes of message and its attachments in

the console window along with several files in the output directory.

 Python Digital Forensics

63

Structuring MBOX files from Google Takeout using Python

MBOX files are text files with special formatting that split messages stored within. They are

often found in association with UNIX systems, Thunderbolt, and Google Takeouts.

In this section, you will see a Python script, where we will be structuring MBOX files got from

Google Takeouts. But before that we must know that how we can generate these MBOX files

by using our Google account or Gmail account.

Acquiring Google Account Mailbox into MBX Format

Acquiring of Google account mailbox implies taking backup of our Gmail account. Backup can

be taken for various personal or professional reasons. Note that Google provides backing up

of Gmail data. To acquire our Google account mailbox into MBOX format, you need to follow

the steps given below:

 Open My account dashboard.

 Go to Personal info & privacy section and select Control your content link.

 You can create a new archive or can manage existing one. If we click, CREATE

ARCHIVE link, then we will get some check boxes for each Google product we wish to

include.

 After selecting the products, we will get the freedom to choose file type and maximum

size for our archive along with the delivery method to select from list.

 Finally, we will get this backup in MBOX format.

Python Code

Now, the MBOX file discussed above can be structured using Python as shown below:

First, need to import Python libraries as follows:

from __future__ import print_function

from argparse import ArgumentParser

import mailbox

import os

import time

import csv

from tqdm import tqdm

import base64

All the libraries have been used and explained in earlier scripts, except the mailbox library

which is used to parse MBOX files.

 Python Digital Forensics

64

Now, provide an argument for command-line handler. Here it will accept two arguments: one

would be the path to MBOX file, and the other would be the desired output folder.

if __name__ == '__main__':

 parser = ArgumentParser('Parsing MBOX files')

 parser.add_argument("MBOX", help="Path to mbox file")

 parser.add_argument("OUTPUT_DIR",help="Path to output directory to write

report ""and exported content")

 args = parser.parse_args()

 main(args.MBOX, args.OUTPUT_DIR)

Now, will define main() function and call mbox class of mailbox library with the help of which

we can parse a MBOX file by providing its path:

def main(mbox_file, output_dir):

 print("Reading mbox file")

 mbox = mailbox.mbox(mbox_file, factory=custom_reader)

 print("{} messages to parse".format(len(mbox)))

Now, define a reader method for mailbox library as follows:

def custom_reader(data_stream):

 data = data_stream.read()

 try:

 content = data.decode("ascii")

 except (UnicodeDecodeError, UnicodeEncodeError) as e:

 content = data.decode("cp1252", errors="replace")

 return mailbox.mboxMessage(content)

Now, create some variables for further processing as follows:

 parsed_data = []

 attachments_dir = os.path.join(output_dir, "attachments")

 if not os.path.exists(attachments_dir):

 os.makedirs(attachments_dir)

 columns = ["Date", "From", "To", "Subject", "X-Gmail-Labels", "Return-Path",

"Received", "Content-Type", "Message-ID","X-GM-THRID", "num_attachments_exported",

"export_path"]

 Python Digital Forensics

65

Next, use tqdm to generate a progress bar and to track the iteration process as follows:

 for message in tqdm(mbox):

 msg_data = dict()

 header_data = dict(message._headers)

 for hdr in columns:

 msg_data[hdr] = header_data.get(hdr, "N/A")

Now, check weather message is having payloads or not. If it is having then we will define

write_payload() method as follows:

 if len(message.get_payload()):

 export_path = write_payload(message, attachments_dir)

 msg_data['num_attachments_exported'] = len(export_path)

 msg_data['export_path'] = ", ".join(export_path)

Now, data need to be appended. Then we will call create_report() method as follows:

 parsed_data.append(msg_data)

 create_report(

 parsed_data, os.path.join(output_dir, "mbox_report.csv"), columns)

def write_payload(msg, out_dir):

 pyld = msg.get_payload()

 export_path = []

 if msg.is_multipart():

 for entry in pyld:

 export_path += write_payload(entry, out_dir)

 else:

 content_type = msg.get_content_type()

 if "application/" in content_type.lower():

 content = base64.b64decode(msg.get_payload())

 export_path.append(export_content(msg, out_dir, content))

 elif "image/" in content_type.lower():

 content = base64.b64decode(msg.get_payload())

 export_path.append(export_content(msg, out_dir, content))

 elif "video/" in content_type.lower():

 Python Digital Forensics

66

 content = base64.b64decode(msg.get_payload())

 export_path.append(export_content(msg, out_dir, content))

 elif "audio/" in content_type.lower():

 content = base64.b64decode(msg.get_payload())

 export_path.append(export_content(msg, out_dir, content))

 elif "text/csv" in content_type.lower():

 content = base64.b64decode(msg.get_payload())

 export_path.append(export_content(msg, out_dir, content))

 elif "info/" in content_type.lower():

 export_path.append(export_content(msg, out_dir,

 msg.get_payload()))

 elif "text/calendar" in content_type.lower():

 export_path.append(export_content(msg, out_dir,

 msg.get_payload()))

 elif "text/rtf" in content_type.lower():

 export_path.append(export_content(msg, out_dir,

 msg.get_payload()))

 else:

 if "name=" in msg.get('Content-Disposition', "N/A"):

 content = base64.b64decode(msg.get_payload())

 export_path.append(export_content(msg, out_dir, content))

 elif "name=" in msg.get('Content-Type', "N/A"):

 content = base64.b64decode(msg.get_payload())

 export_path.append(export_content(msg, out_dir, content))

 return export_path

Observe that the above if-else statements are easy to understand. Now, we need to define a

method that will extract the filename from the msg object as follows:

def export_content(msg, out_dir, content_data):

 file_name = get_filename(msg)

 file_ext = "FILE"

 if "." in file_name: file_ext = file_name.rsplit(".", 1)[-1]

 file_name = "{}_{:.4f}.{}".format(file_name.rsplit(".", 1)[0], time.time(),

file_ext)

 Python Digital Forensics

67

 file_name = os.path.join(out_dir, file_name)

Now, with the help of following lines of code, you can actually export the file:

 if isinstance(content_data, str):

 open(file_name, 'w').write(content_data)

 else:

 open(file_name, 'wb').write(content_data)

 return file_name

Now, let us define a function to extract filenames from the message to accurately represent

the names of these files as follows:

 def get_filename(msg):

 if 'name=' in msg.get("Content-Disposition", "N/A"):

 fname_data = msg["Content-Disposition"].replace("\r\n", " ")

 fname = [x for x in fname_data.split("; ") if 'name=' in x]

 file_name = fname[0].split("=", 1)[-1]

 elif 'name=' in msg.get("Content-Type", "N/A"):

 fname_data = msg["Content-Type"].replace("\r\n", " ")

 fname = [x for x in fname_data.split("; ") if 'name=' in x]

 file_name = fname[0].split("=", 1)[-1]

 else:

 file_name = "NO_FILENAME"

 fchars = [x for x in file_name if x.isalnum() or x.isspace() or x == "."]

 return "".join(fchars)

Now, we can write a CSV file by defining the create_report() function as follows:

def create_report(output_data, output_file, columns):

 with open(output_file, 'w', newline="") as outfile:

 csvfile = csv.DictWriter(outfile, columns)

 csvfile.writeheader()

 csvfile.writerows(output_data)

Once you run the script given above, we will get the CSV report and directory full of

attachments.

 Python Digital Forensics

68

This chapter will explain various concepts involved in Microsoft Windows forensics and the

important artifacts that an investigator can obtain from the investigation process.

Introduction

Artifacts are the objects or areas within a computer system that have important information

related to the activities performed by the computer user. The type and location of this

information depends upon the operating system. During forensic analysis, these artifacts play

a very important role in approving or disapproving the investigator’s observation.

Importance of Windows Artifacts for Forensics

Windows artifacts assume significance due to the following reasons:

 Around 90% of the traffic in world comes from the computers using Windows as their

operating system. That is why for digital forensics examiners Windows artifacts are

very essentials.

 The Windows operating system stores different types of evidences related to the user

activity on computer system. This is another reason which shows the importance of

Windows artifacts for digital forensics.

 Many times the investigator revolves the investigation around old and traditional areas

like user crated data. Windows artifacts can lead the investigation towards non-

traditional areas like system created data or the artifacts.

 Great abundance of artifacts is provided by Windows which are helpful for investigators

as well as for companies and individuals performing informal investigations.

 Increase in cyber-crime in recent years is another reason that Windows artifacts are

important.

Windows Artifacts and their Python Scripts

In this section, we are going to discuss about some Windows artifacts and Python scripts to

fetch information from them.

Recycle Bin

It is one of the important Windows artifacts for forensic investigation. Windows recycle bin

contains the files that have been deleted by the user, but not physically removed by the

system yet. Even if the user completely removes the file from system, it serves as an

important source of investigation. This is because the examiner can extract valuable

information, like original file path as well as time that it was sent to Recycle Bin, from the

deleted files.

9. Python Digital Forensics – Important Artifacts in
Windows-I

 Python Digital Forensics

69

Note that the storage of Recycle Bin evidence depends upon the version of Windows. In the

following Python script, we are going to deal with Windows 7 where it creates two files: $R

file that contains the actual content of the recycled file and $I file that contains original file

name, path, file size when file was deleted.

For Python script we need to install third party modules namely pytsk3, pyewf and

unicodecsv. We can use pip to install them. We can follow the following steps to extract

information from Recycle Bin:

 First, we need to use recursive method to scan through the $Recycle.bin folder and

select all the files starting with $I.

 Next, we will read the contents of the files and parse the available metadata structures.

 Now, we will search for the associated $R file.

 At last, we will write the results into CSV file for review.

Let us see how to use Python code for this purpose:

First, we need to import the following Python libraries:

from __future__ import print_function

from argparse import ArgumentParser

import datetime

import os

import struct

from utility.pytskutil import TSKUtil

import unicodecsv as csv

Next, we need to provide argument for command-line handler. Note that here it will accept

three arguments – first is the path to evidence file, second is the type of evidence file and

third is the desired output path to the CSV report, as shown below:

if __name__ == '__main__':

 parser = argparse.ArgumentParser('Recycle Bin evidences')

 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")

 parser.add_argument('IMAGE_TYPE', help="Evidence file format",

 choices=('ewf', 'raw'))

 parser.add_argument('CSV_REPORT', help="Path to CSV report")

 args = parser.parse_args()

 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.CSV_REPORT)

 Python Digital Forensics

70

Now, define the main() function that will handle all the processing. It will search for $I file

as follows:

def main(evidence, image_type, report_file):

 tsk_util = TSKUtil(evidence, image_type)

 dollar_i_files = tsk_util.recurse_files("$I",

path='/$Recycle.bin',logic="startswith")

 if dollar_i_files is not None:

 processed_files = process_dollar_i(tsk_util, dollar_i_files)

 write_csv(report_file,['file_path', 'file_size',

'deleted_time','dollar_i_file', 'dollar_r_file', 'is_directory'],processed_files)

 else:

 print("No $I files found")

Now, if we found $I file, then it must be sent to process_dollar_i() function which will

accept the tsk_util object as well as the list of $I files, as shown below:

 def process_dollar_i(tsk_util, dollar_i_files):

 processed_files = []

 for dollar_i in dollar_i_files:

 file_attribs = read_dollar_i(dollar_i[2])

 if file_attribs is None:

 continue

 file_attribs['dollar_i_file'] = os.path.join('/$Recycle.bin',

dollar_i[1][1:])

Now, search for $R files as follows:

 recycle_file_path =

os.path.join('/$Recycle.bin',dollar_i[1].rsplit("/", 1)[0][1:])

 dollar_r_files = tsk_util.recurse_files("$R" +

dollar_i[0][2:],path=recycle_file_path, logic="startswith")

 if dollar_r_files is None:

 dollar_r_dir = os.path.join(recycle_file_path,"$R" +

dollar_i[0][2:])

 dollar_r_dirs = tsk_util.query_directory(dollar_r_dir)

 if dollar_r_dirs is None:

 file_attribs['dollar_r_file'] = "Not Found"

 file_attribs['is_directory'] = 'Unknown'

 Python Digital Forensics

71

 else:

 file_attribs['dollar_r_file'] = dollar_r_dir

 file_attribs['is_directory'] = True

 else:

 dollar_r = [os.path.join(recycle_file_path, r[1][1:])for r in

dollar_r_files]

 file_attribs['dollar_r_file'] = ";".join(dollar_r)

 file_attribs['is_directory'] = False

 processed_files.append(file_attribs)

 return processed_files

Now, define read_dollar_i() method to read the $I files, in other words, parse the metadata.

We will use read_random() method to read the signature’s first eight bytes. This will return

none if signature does not match. After that, we will have to read and unpack the values from

$I file if that is a valid file.

 def read_dollar_i(file_obj):

 if file_obj.read_random(0, 8) != '\x01\x00\x00\x00\x00\x00\x00\x00':

 return None

 raw_file_size = struct.unpack('<q', file_obj.read_random(8, 8))

 raw_deleted_time = struct.unpack('<q', file_obj.read_random(16, 8))

 raw_file_path = file_obj.read_random(24, 520)

Now, after extracting these files we need to interpret the integers into human-readable values

by using sizeof_fmt() function as shown below:

 file_size = sizeof_fmt(raw_file_size[0])

 deleted_time = parse_windows_filetime(raw_deleted_time[0])

 file_path = raw_file_path.decode("utf16").strip("\x00")

 return {'file_size': file_size, 'file_path': file_path,'deleted_time':

deleted_time}

Now, we need to define sizeof_fmt() function as follows:

 Python Digital Forensics

72

def sizeof_fmt(num, suffix='B'):

 for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:

 if abs(num) < 1024.0:

 return "%3.1f%s%s" % (num, unit, suffix)

 num /= 1024.0

 return "%.1f%s%s" % (num, 'Yi', suffix)

Now, define a function for interpreted integers into formatted date and time as follows:

def parse_windows_filetime(date_value):

 microseconds = float(date_value) / 10

 ts = datetime.datetime(1601, 1, 1) + datetime.timedelta(

 microseconds=microseconds)

 return ts.strftime('%Y-%m-%d %H:%M:%S.%f')

Now, we will define write_csv() method to write the processed results into a CSV file as

follows:

def write_csv(outfile, fieldnames, data):

 with open(outfile, 'wb') as open_outfile:

 csvfile = csv.DictWriter(open_outfile, fieldnames)

 csvfile.writeheader()

 csvfile.writerows(data)

When you run the above script, we will get the data from $I and $R file.

Sticky Notes

Windows Sticky Notes replaces the real world habit of writing with pen and paper. These notes

used to float on the desktop with different options for colors, fonts etc. In Windows 7 the

Sticky Notes file is stored as an OLE file hence in the following Python script we will investigate

this OLE file to extract metadata from Sticky Notes.

For this Python script, we need to install third party modules namely olefile, pytsk3, pyewf

and unicodecsv. We can use the command pip to install them.

We can follow the steps discussed below for extracting the information from Sticky note file

namely StickyNote.snt:

 Firstly, open the evidence file and find all the StickyNote.snt files.

 Then, parse the metadata and content from the OLE stream and write the RTF content

to files.

 Lastly, create CSV report of this metadata.

 Python Digital Forensics

73

Python Code

Let us see how to use Python code for this purpose:

First, import the following Python libraries:

from __future__ import print_function

from argparse import ArgumentParser

import unicodecsv as csv

import os

import StringIO

from utility.pytskutil import TSKUtil

import olefile

Next, define a global variable which will be used across this script:

REPORT_COLS = ['note_id', 'created', 'modified', 'note_text', 'note_file']

Next, we need to provide argument for command-line handler. Note that here it will accept

three arguments – first is the path to evidence file, second is the type of evidence file and

third is the desired output path as follows:

if __name__ == '__main__':

 parser = argparse.ArgumentParser('Evidence from Sticky Notes')

 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")

 parser.add_argument('IMAGE_TYPE', help="Evidence file format",choices=('ewf',

'raw'))

 parser.add_argument('REPORT_FOLDER', help="Path to report folder")

 args = parser.parse_args()

 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.REPORT_FOLDER)

Now, we will define main() function which will be similar to the previous script as shown

below:

def main(evidence, image_type, report_folder):

 tsk_util = TSKUtil(evidence, image_type)

 note_files = tsk_util.recurse_files('StickyNotes.snt', '/Users','equals')

Now, let us iterate through the resulting files. Then we will call parse_snt_file() function to

process the file and then we will write RTF file with the write_note_rtf() method as follows:

 Python Digital Forensics

74

 report_details = []

 for note_file in note_files:

 user_dir = note_file[1].split("/")[1]

 file_like_obj = create_file_like_obj(note_file[2])

 note_data = parse_snt_file(file_like_obj)

 if note_data is None:

 continue

 write_note_rtf(note_data, os.path.join(report_folder, user_dir))

 report_details += prep_note_report(note_data, REPORT_COLS,"/Users" +

note_file[1])

 write_csv(os.path.join(report_folder, 'sticky_notes.csv'),

REPORT_COLS,report_details)

Next, we need to define various functions used in this script.

First of all we will define create_file_like_obj() function for reading the size of the file by

taking pytsk file object. Then we will define parse_snt_file() function that will accept the

file-like object as its input and is used to read and interpret the sticky note file.

 def parse_snt_file(snt_file):

 if not olefile.isOleFile(snt_file):

 print("This is not an OLE file")

 return None

 ole = olefile.OleFileIO(snt_file)

 note = {}

 for stream in ole.listdir():

 if stream[0].count("-") == 3:

 if stream[0] not in note:

 note[stream[0]] = {"created":

ole.getctime(stream[0]),"modified": ole.getmtime(stream[0])}

 content = None

 if stream[1] == '0':

 content = ole.openstream(stream).read()

 elif stream[1] == '3':

 content = ole.openstream(stream).read().decode("utf-16")

 if content:

 note[stream[0]][stream[1]] = content

 Python Digital Forensics

75

 return note

Now, create a RTF file by defining write_note_rtf() function as follows:

 def write_note_rtf(note_data, report_folder):

 if not os.path.exists(report_folder):

 os.makedirs(report_folder)

 for note_id, stream_data in note_data.items():

 fname = os.path.join(report_folder, note_id + ".rtf")

 with open(fname, 'w') as open_file:

 open_file.write(stream_data['0'])

Now, we will translate the nested dictionary into a flat list of dictionaries that are more

appropriate for a CSV spreadsheet. It will be done by defining prep_note_report() function.

Lastly, we will define write_csv() function.

def prep_note_report(note_data, report_cols, note_file):

 report_details = []

 for note_id, stream_data in note_data.items():

 report_details.append({

 "note_id": note_id,

 "created": stream_data['created'],

 "modified": stream_data['modified'],

 "note_text": stream_data['3'].strip("\x00"),

 "note_file": note_file

 })

 return report_details

def write_csv(outfile, fieldnames, data):

 with open(outfile, 'wb') as open_outfile:

 csvfile = csv.DictWriter(open_outfile, fieldnames)

 csvfile.writeheader()

 csvfile.writerows(data)

After running the above script, we will get the metadata from Sticky Notes file.

Registry Files

 Python Digital Forensics

76

Windows registry files contain many important details which are like a treasure trove of

information for a forensic analyst. It is a hierarchical database that contains details related to

operating system configuration, user activity, software installation etc. In the following Python

script we are going to access common baseline information from the SYSTEM and

SOFTWARE hives.

For this Python script, we need to install third party modules namely pytsk3, pyewf and

registry. We can use pip to install them.

We can follow the steps given below for extracting the information from Windows registry:

 First, find registry hives to process by its name as well as by path.

 Then we to open these files by using StringIO and Registry modules.

 At last we need to process each and every hive and print the parsed values to the

console for interpretation.

Python Code

Let us see how to use Python code for this purpose:

First, import the following Python libraries:

from __future__ import print_function

from argparse import ArgumentParser

import datetime

import StringIO

import struct

from utility.pytskutil import TSKUtil

from Registry import Registry

Now, provide argument for the command-line handler. Here it will accept two arguments -

first is the path to the evidence file, second is the type of evidence file, as shown below:

if __name__ == '__main__':

 parser = argparse.ArgumentParser('Evidence from Windows Registry')

 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")

 parser.add_argument('IMAGE_TYPE', help="Evidence file format",

 choices=('ewf', 'raw'))

 args = parser.parse_args()

 main(args.EVIDENCE_FILE, args.IMAGE_TYPE)

Now we will define main() function for searching SYSTEM and SOFTWARE hives within

/Windows/System32/config folder as follows:

 Python Digital Forensics

77

def main(evidence, image_type):

 tsk_util = TSKUtil(evidence, image_type)

 tsk_system_hive = tsk_util.recurse_files('system',

'/Windows/system32/config', 'equals')

 tsk_software_hive = tsk_util.recurse_files('software',

'/Windows/system32/config', 'equals')

 system_hive = open_file_as_reg(tsk_system_hive[0][2])

 software_hive = open_file_as_reg(tsk_software_hive[0][2])

 process_system_hive(system_hive)

 process_software_hive(software_hive)

Now, define the function for opening the registry file. For this purpose, we need to gather the

size of file from pytsk metadata as follows:

def open_file_as_reg(reg_file):

 file_size = reg_file.info.meta.size

 file_content = reg_file.read_random(0, file_size)

 file_like_obj = StringIO.StringIO(file_content)

 return Registry.Registry(file_like_obj)

Now, with the help of following method, we can process SYSTEM hive:

def process_system_hive(hive):

 root = hive.root()

 current_control_set = root.find_key("Select").value("Current").value()

 control_set = root.find_key("ControlSet{:03d}".format(current_control_set))

 raw_shutdown_time = struct.unpack('<Q',

control_set.find_key("Control").find_key("Windows").value("ShutdownTime").value())

 shutdown_time = parse_windows_filetime(raw_shutdown_time[0])

 print("Last Shutdown Time: {}".format(shutdown_time))

 time_zone =

control_set.find_key("Control").find_key("TimeZoneInformation").value("TimeZoneKey

Name").value()

 print("Machine Time Zone: {}".format(time_zone))

 computer_name =

control_set.find_key("Control").find_key("ComputerName").find_key("ComputerName").

value("ComputerName").value()

 print("Machine Name: {}".format(computer_name))

 Python Digital Forensics

78

 last_access =

control_set.find_key("Control").find_key("FileSystem").value("NtfsDisableLastAcces

sUpdate").value()

 last_access = "Disabled" if last_access == 1 else "enabled"

 print("Last Access Updates: {}".format(last_access))

Now, we need to define a function for interpreted integers into formatted date and time as

follows:

def parse_windows_filetime(date_value):

 microseconds = float(date_value) / 10

 ts = datetime.datetime(1601, 1, 1) + datetime.timedelta(

 microseconds=microseconds)

 return ts.strftime('%Y-%m-%d %H:%M:%S.%f')

def parse_unix_epoch(date_value):

 ts = datetime.datetime.fromtimestamp(date_value)

 return ts.strftime('%Y-%m-%d %H:%M:%S.%f')

Now with the help of following method we can process SOFTWARE hive:

 def process_software_hive(hive):

 root = hive.root()

 nt_curr_ver = root.find_key("Microsoft").find_key("Windows

NT").find_key("CurrentVersion")

 print("Product name: {}".format(nt_curr_ver.value("ProductName").value()))

 print("CSD Version: {}".format(nt_curr_ver.value("CSDVersion").value()))

 print("Current Build: {}".format(nt_curr_ver.value("CurrentBuild").value()))

 print("Registered Owner:

{}".format(nt_curr_ver.value("RegisteredOwner").value()))

 print("Registered Org:

{}".format(nt_curr_ver.value("RegisteredOrganization").value()))

 raw_install_date = nt_curr_ver.value("InstallDate").value()

 install_date = parse_unix_epoch(raw_install_date)

 print("Installation Date: {}".format(install_date))

 After running the above script, we will get the metadata stored in Windows Registry files.

 Python Digital Forensics

79

This chapter talks about some more important artifacts in Windows and their extraction

method using Python.

User Activities

Windows having NTUSER.DAT file for storing various user activities. Every user profile is

having hive like NTUSER.DAT, which stores the information and configurations related to

that user specifically. Hence, it is highly useful for the purpose of investigation by forensic

analysts.

The following Python script will parse some of the keys of NTUSER.DAT for exploring the

actions of a user on the system. Before proceeding further, for Python script, we need to

install third party modules namely Registry, pytsk3, pyewf and Jinja2. We can use pip to

install them.

We can follow the following steps to extract information from NTUSER.DAT file:

 First, search for all NTUSER.DAT files in the system.

 Then parse the WordWheelQuery, TypePath and RunMRU key for each

NTUSER.DAT file.

 At last we will write these artifacts, already processed, to an HTML report by using

Jinja2 module.

Python Code

Let us see how to use Python code for this purpose:

First of all, we need to import the following Python modules:

from __future__ import print_function

from argparse import ArgumentParser

import os

import StringIO

import struct

from utility.pytskutil import TSKUtil

from Registry import Registry

import jinja2

10. Python Digital Forensics – Important Artifacts in
Windows-II

 Python Digital Forensics

80

Now, provide argument for command-line handler. Here it will accept three arguments - first

is the path to evidence file, second is the type of evidence file and third is the desired output

path to the HTML report, as shown below:

if __name__ == '__main__':

 parser = argparse.ArgumentParser('Information from user activities')

 parser.add_argument('EVIDENCE_FILE',help="Path to evidence file")

 parser.add_argument('IMAGE_TYPE',help="Evidence file format",choices=('ewf',

'raw'))

 parser.add_argument('REPORT',help="Path to report file")

 args = parser.parse_args()

 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.REPORT)

Now, let us define main() function for searching all NTUSER.DAT files, as shown:

def main(evidence, image_type, report):

 tsk_util = TSKUtil(evidence, image_type)

 tsk_ntuser_hives = tsk_util.recurse_files('ntuser.dat','/Users', 'equals')

 nt_rec = {

 'wordwheel': {'data': [], 'title': 'WordWheel Query'},

 'typed_path': {'data': [], 'title': 'Typed Paths'},

 'run_mru': {'data': [], 'title': 'Run MRU'}

 }

Now, we will try to find the key in NTUSER.DAT file and once you find it, define the user

processing functions as shown below:

 for ntuser in tsk_ntuser_hives:

 uname = ntuser[1].split("/")

 open_ntuser = open_file_as_reg(ntuser[2])

 try:

 explorer_key =

open_ntuser.root().find_key("Software").find_key("Microsoft").find_key("Windows").

find_key("CurrentVersion").find_key("Explorer")

 except Registry.RegistryKeyNotFoundException:

 continue

 nt_rec['wordwheel']['data'] += parse_wordwheel(explorer_key, uname)

 nt_rec['typed_path']['data'] += parse_typed_paths(explorer_key, uname)

 Python Digital Forensics

81

 nt_rec['run_mru']['data'] += parse_run_mru(explorer_key, uname)

 nt_rec['wordwheel']['headers'] = \

 nt_rec['wordwheel']['data'][0].keys()

 nt_rec['typed_path']['headers'] = \

 nt_rec['typed_path']['data'][0].keys()

 nt_rec['run_mru']['headers'] = \

 nt_rec['run_mru']['data'][0].keys()

Now, pass the dictionary object and its path to write_html() method as follows:

 write_html(report, nt_rec)

Now, define a method, that takes pytsk file handle and read it into the Registry class via the

StringIO class.

def open_file_as_reg(reg_file):

 file_size = reg_file.info.meta.size

 file_content = reg_file.read_random(0, file_size)

 file_like_obj = StringIO.StringIO(file_content)

 return Registry.Registry(file_like_obj)

Now, we will define the function that will parse and handles WordWheelQuery key from

NTUSER.DAT file as follows:

def parse_wordwheel(explorer_key, username):

 try:

 wwq = explorer_key.find_key("WordWheelQuery")

 except Registry.RegistryKeyNotFoundException:

 return []

 mru_list = wwq.value("MRUListEx").value()

 mru_order = []

 for i in xrange(0, len(mru_list), 2):

 order_val = struct.unpack('h', mru_list[i:i + 2])[0]

 if order_val in mru_order and order_val in (0, -1):

 break

 else:

 mru_order.append(order_val)

 Python Digital Forensics

82

 search_list = []

 for count, val in enumerate(mru_order):

 ts = "N/A"

 if count == 0:

 ts = wwq.timestamp()

 search_list.append({

 'timestamp': ts,

 'username': username,

 'order': count,

 'value_name': str(val),

 'search': wwq.value(str(val)).value().decode("UTF-

16").strip("\x00")

 })

 return search_list

Now, we will define the function that will parse and handles TypedPaths key from

NTUSER.DAT file as follows:

def parse_typed_paths(explorer_key, username):

 try:

 typed_paths = explorer_key.find_key("TypedPaths")

 except Registry.RegistryKeyNotFoundException:

 return []

 typed_path_details = []

 for val in typed_paths.values():

 typed_path_details.append({

 "username": username,

 "value_name": val.name(),

 "path": val.value()

 })

 return typed_path_details

 Python Digital Forensics

83

Now, we will define the function that will parse and handles RunMRU key from NTUSER.DAT

file as follows:

def parse_run_mru(explorer_key, username):

 try:

 run_mru = explorer_key.find_key("RunMRU")

 except Registry.RegistryKeyNotFoundException:

 return []

 if len(run_mru.values()) == 0:

 return []

 mru_list = run_mru.value("MRUList").value()

 mru_order = []

 for i in mru_list:

 mru_order.append(i)

 mru_details = []

 for count, val in enumerate(mru_order):

 ts = "N/A"

 if count == 0:

 ts = run_mru.timestamp()

 mru_details.append({

 "username": username,

 "timestamp": ts,

 "order": count,

 "value_name": val,

 "run_statement": run_mru.value(val).value()

 })

 return mru_details

Now, the following function will handle the creation of HTML report:

def write_html(outfile, data_dict):

 cwd = os.path.dirname(os.path.abspath(__file__))

 env = jinja2.Environment(loader=jinja2.FileSystemLoader(cwd))

 template = env.get_template("user_activity.html")

 rendering = template.render(nt_data=data_dict)

 Python Digital Forensics

84

 with open(outfile, 'w') as open_outfile:

 open_outfile.write(rendering)

At last we can write HTML document for report. After running the above script, we will get the

information from NTUSER.DAT file in HTML document format.

LINK files

Shortcuts files are created when a user or the operating system creates shortcut files for the

files which are frequently used, double clicked or accessed from system drives such as

attached storage. Such kinds of shortcut files are called link files. By accessing these link files,

an investigator can find the activity of window such as the time and location from where these

files have been accessed.

Let us discuss the Python script that we can use to get the information from these Windows

LINK files.

For Python script, install third party modules namely pylnk, pytsk3, pyewf. We can follow

the following steps to extract information from lnk files:

 First, search for lnk files within the system.

 Then, extract the information from that file by iterating through them.

 Now, at last we need to this information to a CSV report.

Python Code

Let us see how to use Python code for this purpose:

First, import the following Python libraries:

from __future__ import print_function

from argparse import ArgumentParser

import csv

import StringIO

from utility.pytskutil import TSKUtil

import pylnk

Now, provide the argument for command-line handler. Here it will accept three arguments –

first is the path to evidence file, second is the type of evidence file and third is the desired

output path to the CSV report, as shown below:

if __name__ == '__main__':

 parser = argparse.ArgumentParser('Parsing LNK files')

 parser.add_argument('EVIDENCE_FILE', help="Path to evidence file")

 Python Digital Forensics

85

 parser.add_argument('IMAGE_TYPE', help="Evidence file format",choices=('ewf',

'raw'))

 parser.add_argument('CSV_REPORT', help="Path to CSV report")

 args = parser.parse_args()

 main(args.EVIDENCE_FILE, args.IMAGE_TYPE, args.CSV_REPORT)

Now, interpret the evidence file by creating an object of TSKUtil and iterate through the file

system to find files ending with lnk. It can be done by defining main() function as follows:

def main(evidence, image_type, report):

 tsk_util = TSKUtil(evidence, image_type)

 lnk_files = tsk_util.recurse_files("lnk", path="/", logic="endswith")

 if lnk_files is None:

 print("No lnk files found")

 exit(0)

 columns = [

 'command_line_arguments', 'description', 'drive_serial_number',

 'drive_type', 'file_access_time', 'file_attribute_flags',

 'file_creation_time', 'file_modification_time', 'file_size',

 'environmental_variables_location', 'volume_label',

 'machine_identifier', 'local_path', 'network_path',

 'relative_path', 'working_directory'

]

Now with the help of following code, we will iterate through lnk files by creating a function as

follows:

 parsed_lnks = []

 for entry in lnk_files:

 lnk = open_file_as_lnk(entry[2])

 lnk_data = {'lnk_path': entry[1], 'lnk_name': entry[0]}

 for col in columns:

 lnk_data[col] = getattr(lnk, col, "N/A")

 lnk.close()

 parsed_lnks.append(lnk_data)

 write_csv(report, columns + ['lnk_path', 'lnk_name'], parsed_lnks)

 Python Digital Forensics

86

Now we need to define two functions, one will open the pytsk file object and other will be

used for writing CSV report as shown below:

def open_file_as_lnk(lnk_file):

 file_size = lnk_file.info.meta.size

 file_content = lnk_file.read_random(0, file_size)

 file_like_obj = StringIO.StringIO(file_content)

 lnk = pylnk.file()

 lnk.open_file_object(file_like_obj)

 return lnk

def write_csv(outfile, fieldnames, data):

 with open(outfile, 'wb') as open_outfile:

 csvfile = csv.DictWriter(open_outfile, fieldnames)

 csvfile.writeheader()

 csvfile.writerows(data)

After running the above script, we will get the information from the discovered lnk files in a

CSV report.

Prefetch Files

Whenever an application is running for the first time from a specific location, Windows creates

prefetch files. These are used to speed up the application startup process. The extension for

these files is .PF and these are stored in the ”\Root\Windows\Prefetch” folder.

Digital forensic experts can reveal the evidence of program execution from a specified location

along with the details of the user. Prefetch files are useful artifacts for the examiner because

their entry remains even after the program has been deleted or un-installed.

Let us discuss the Python script that will fetch information from Windows prefetch files as

given below:

For Python script, install third party modules namely pylnk, pytsk3 and unicodecsv. Recall

that we have already worked with these libraries in the Python scripts that we have discussed

in the previous chapters.

We have to follow steps given below to extract information from prefetch files:

 First, scan for .pf extension files or the prefetch files.

 Now, perform the signature verification to eliminate false positives.

 Next, parse the Windows prefetch file format. This differs with the Windows version.

For example, for Windows XP it is 17, for Windows Vista and Windows 7 it is 23, 26

for Windows 8.1 and 30 for Windows 10.

 Lastly, we will write the parsed result in a CSV file.

 Python Digital Forensics

87

Python Code

Let us see how to use Python code for this purpose:

First, import the following Python libraries:

from __future__ import print_function

import argparse

from datetime import datetime, timedelta

import os

import pytsk3

import pyewf

import struct

import sys

import unicodecsv as csv

from utility.pytskutil import TSKUtil

Now, provide an argument for command-line handler. Here it will accept two arguments, first

would be the path to evidence file and second would be the type of evidence file. It also

accepts an optional argument for specifying the path to scan for prefetch files:

if __name__ == "__main__":

 parser = argparse.ArgumentParser('Parsing Prefetch files')

 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")

 parser.add_argument("TYPE", help="Type of Evidence",choices=("raw", "ewf"))

 parser.add_argument("OUTPUT_CSV", help="Path to write output csv")

 parser.add_argument("-d", help="Prefetch directory to

scan",default="/WINDOWS/PREFETCH")

 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and \

 os.path.isfile(args.EVIDENCE_FILE):

 main(args.EVIDENCE_FILE, args.TYPE, args.OUTPUT_CSV, args.d)

 else:

 print("[-] Supplied input file {} does not exist or is not a

""file".format(args.EVIDENCE_FILE))

 sys.exit(1)

Now, interpret the evidence file by creating an object of TSKUtil and iterate through the file

system to find files ending with .pf. It can be done by defining main() function as follows:

 Python Digital Forensics

88

def main(evidence, image_type, output_csv, path):

 tsk_util = TSKUtil(evidence, image_type)

 prefetch_dir = tsk_util.query_directory(path)

 prefetch_files = None

 if prefetch_dir is not None:

 prefetch_files = tsk_util.recurse_files(".pf", path=path,

logic="endswith")

 if prefetch_files is None:

 print("[-] No .pf files found")

 sys.exit(2)

 print("[+] Identified {} potential prefetch

files".format(len(prefetch_files)))

 prefetch_data = []

 for hit in prefetch_files:

 prefetch_file = hit[2]

 pf_version = check_signature(prefetch_file)

Now, define a method that will do the validation of signatures as shown below:

def check_signature(prefetch_file):

 version, signature = struct.unpack("<2i", prefetch_file.read_random(0, 8))

 if signature == 1094927187:

 return version

 else:

 return None

 if pf_version is None:

 continue

 pf_name = hit[0]

 if pf_version == 17:

 parsed_data = parse_pf_17(prefetch_file, pf_name)

 parsed_data.append(os.path.join(path, hit[1].lstrip("//")))

 prefetch_data.append(parsed_data)

Now, start processing Windows prefetch files. Here we are taking the example of Windows XP

prefetch files:

 Python Digital Forensics

89

def parse_pf_17(prefetch_file, pf_name):

 create = convert_unix(prefetch_file.info.meta.crtime)

 modify = convert_unix(prefetch_file.info.meta.mtime)

def convert_unix(ts):

 if int(ts) == 0:

 return ""

 return datetime.utcfromtimestamp(ts)

def convert_filetime(ts):

 if int(ts) == 0:

 return ""

 return datetime(1601, 1, 1) + timedelta(microseconds=ts / 10)

Now, extract the data embedded within the prefetched files by using struct as follows:

 pf_size, name, vol_info, vol_entries, vol_size, filetime, \

 count = struct.unpack("<i60s32x3iq16xi",prefetch_file.read_random(12,

136))

 name = name.decode("utf-16", "ignore").strip("/x00").split("/x00")[0]

 vol_name_offset, vol_name_length, vol_create, \

 vol_serial = struct.unpack("<2iqi",prefetch_file.read_random(vol_info,

20))

 vol_serial = hex(vol_serial).lstrip("0x")

 vol_serial = vol_serial[:4] + "-" + vol_serial[4:]

 vol_name = struct.unpack(

 "<{}s".format(2 * vol_name_length),

 prefetch_file.read_random(vol_info + vol_name_offset,vol_name_length *

2))[0]

 vol_name = vol_name.decode("utf-16", "ignore").strip("/x00").split("/x00")[0]

 return [

 pf_name, name, pf_size, create,

 modify, convert_filetime(filetime), count, vol_name,

 convert_filetime(vol_create), vol_serial]

As we have provided the prefetch version for Windows XP but what if it will encounter prefetch

versions for other Windows. Then it must have to display an error message as follows:

 elif pf_version == 23:

 Python Digital Forensics

90

 print("[-] Windows Vista / 7 PF file {} -- unsupported".format(

 pf_name))

 continue

 elif pf_version == 26:

 print("[-] Windows 8 PF file {} -- unsupported".format(

 pf_name))

 continue

 elif pf_version == 30:

 print("[-] Windows 10 PF file {} -- unsupported".format(

 pf_name))

 continue

 else:

 print("[-] Signature mismatch - Name: {}\nPath: {}".format(hit[0],

hit[1]))

 continue

write_output(prefetch_data, output_csv)

Now, define the method for writing result into CSV report as follows:

def write_output(data, output_csv):

 print("[+] Writing csv report")

 with open(output_csv, "wb") as outfile:

 writer = csv.writer(outfile)

 writer.writerow([

 "File Name", "Prefetch Name", "File Size (bytes)",

 "File Create Date (UTC)", "File Modify Date (UTC)",

 "Prefetch Last Execution Date (UTC)",

 "Prefetch Execution Count", "Volume", "Volume Create Date",

 "Volume Serial", "File Path"])

 writer.writerows(data)

After running the above script, we will get the information from prefetch files of Windows XP

version into a spreadsheet.

 Python Digital Forensics

91

 This chapter will explain about further artifacts that an investigator can obtain during forensic

analysis on Windows.

Event Logs

Windows event log files, as name –suggests, are special files that stores significant events

like when user logs on the computer, when program encounter an error, about system

changes, RDP access, application specific events etc. Cyber investigators are always

interested in event log information because it provides lots of useful historical information

about the access of system. In the following Python script we are going to process both legacy

and current Windows event log formats.

For Python script, we need to install third party modules namely pytsk3, pyewf,

unicodecsv, pyevt and pyevtx. We can follow the steps given below to extract information

from event logs:

 First, search for all the event logs that match the input argument.

 Then, perform file signature verification.

 Now, process each event log found with the appropriate library.

 Lastly, write the output to spreadsheet.

Python Code

Let us see how to use Python code for this purpose:

First, import the following Python libraries:

from __future__ import print_function

import argparse

import unicodecsv as csv

import os

import pytsk3

import pyewf

import pyevt

import pyevtx

import sys

from utility.pytskutil import TSKUtil

11. Python Digital Forensics – Important Artifacts in
Windows-III

 Python Digital Forensics

92

Now, provide the arguments for command-line handler. Note that here it will accept three

arguments – first is the path to evidence file, second is the type of evidence file and third is

the name of the event log to process.

if __name__ == "__main__":

 parser = argparse.ArgumentParser('Information from Event Logs')

 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")

 parser.add_argument("TYPE", help="Type of Evidence",choices=("raw", "ewf"))

 parser.add_argument("LOG_NAME",help="Event Log Name (SecEvent.Evt,

SysEvent.Evt, ""etc.)")

 parser.add_argument("-d", help="Event log directory to

scan",default="/WINDOWS/SYSTEM32/WINEVT")

 parser.add_argument("-f", help="Enable fuzzy search for either evt or"" evtx

extension", action="store_true")

 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and \

 os.path.isfile(args.EVIDENCE_FILE):

 main(args.EVIDENCE_FILE, args.TYPE, args.LOG_NAME, args.d, args.f)

 else:

 print("[-] Supplied input file {} does not exist or is not a

""file".format(args.EVIDENCE_FILE))

 sys.exit(1)

Now, interact with event logs toquery the existence of the user supplied path by creating our

TSKUtil object. It can be done with the help of main() method as follows:

def main(evidence, image_type, log, win_event, fuzzy):

 tsk_util = TSKUtil(evidence, image_type)

 event_dir = tsk_util.query_directory(win_event)

 if event_dir is not None:

 if fuzzy is True:

 event_log = tsk_util.recurse_files(log, path=win_event)

 else:

 event_log = tsk_util.recurse_files(log, path=win_event,

logic="equal")

 if event_log is not None:

 event_data = []

 for hit in event_log:

 Python Digital Forensics

93

 event_file = hit[2]

 temp_evt = write_file(event_file)

Now, we need to perform signature verification followed by defining a method that will write

the entire content to the current directory:

def write_file(event_file):

 with open(event_file.info.name.name, "w") as outfile:

 outfile.write(event_file.read_random(0, event_file.info.meta.size))

 return event_file.info.name.name

 if pyevt.check_file_signature(temp_evt):

 evt_log = pyevt.open(temp_evt)

 print("[+] Identified {} records in

{}".format(evt_log.number_of_records, temp_evt))

 for i, record in enumerate(evt_log.records):

 strings = ""

 for s in record.strings:

 if s is not None:

 strings += s + "\n"

 event_data.append([

 i, hit[0], record.computer_name,

 record.user_security_identifier,

 record.creation_time, record.written_time,

 record.event_category, record.source_name,

 record.event_identifier, record.event_type,

 strings, "",

 os.path.join(win_event, hit[1].lstrip("//"))

])

 elif pyevtx.check_file_signature(temp_evt):

 evtx_log = pyevtx.open(temp_evt)

 print("[+] Identified {} records in {}".format(

 evtx_log.number_of_records, temp_evt))

 for i, record in enumerate(evtx_log.records):

 strings = ""

 for s in record.strings:

 Python Digital Forensics

94

 if s is not None:

 strings += s + "\n"

 event_data.append([

 i, hit[0], record.computer_name,

 record.user_security_identifier, "",

 record.written_time, record.event_level,

 record.source_name, record.event_identifier,

 "", strings, record.xml_string,

 os.path.join(win_event, hit[1].lstrip("//"))

])

 else:

 print("[-] {} not a valid event log. Removing temp

"

 "file...".format(temp_evt))

 os.remove(temp_evt)

 continue

 write_output(event_data)

 else:

 print("[-] {} Event log not found in {} directory".format(log,

win_event))

 sys.exit(3)

 else:

 print("[-] Win XP Event Log Directory {} not found".format(win_event))

 sys.exit(2)

Lastly, define a method for writing the output to spreadsheet as follows:

def write_output(data):

 output_name = "parsed_event_logs.csv"

 print("[+] Writing {} to current working directory: {}".format(

 output_name, os.getcwd()))

 with open(output_name, "wb") as outfile:

 writer = csv.writer(outfile)

 writer.writerow([

 "Index", "File name", "Computer Name", "SID",

 "Event Create Date", "Event Written Date",

 Python Digital Forensics

95

 "Event Category/Level", "Event Source", "Event ID",

 "Event Type", "Data", "XML Data", "File Path"

])

 writer.writerows(data)

 Once you successfully run the above script, we will get the information of events log in

spreadsheet.

 Internet History

Internet history is very much useful for forensic analysts; as most cyber-crimes happen over

the internet only. Let us see how to extract internet history from the Internet Explorer, as we

discussing about Windows forensics, and Internet Explorer comes by default with Windows.

On Internet Explorer, the internet history is saved in index.dat file. Let us look into a Python

script, which will extract the information from index.dat file.

For Python script we need to install third party modules namely pylnk, pytsk3, pymsiecf

and unicodecsv.

We can follow the steps given below to extract information from index.dat files:

 First, search for index.dat files within the system.

 Then, extract the information from that file by iterating through them.

 Now, write all this information to a CSV report.

Python Code

Let us see how to use Python code for this purpose:

First, import the following Python libraries:

from __future__ import print_function

import argparse

from datetime import datetime, timedelta

import os

import pytsk3

import pyewf

import pymsiecf

import sys

import unicodecsv as csv

from utility.pytskutil import TSKUtil

 Python Digital Forensics

96

Now, provide arguments for command-line handler. Note that here it will accept two

arguments – first would be the path to evidence file and second would be the type of evidence

file.

if __name__ == "__main__":

parser = argparse.ArgumentParser('getting information from internet history')

 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")

 parser.add_argument("TYPE", help="Type of Evidence",choices=("raw", "ewf"))

 parser.add_argument("-d", help="Index.dat directory to

scan",default="/USERS")

 args = parser.parse_args()

 if os.path.exists(args.EVIDENCE_FILE) and os.path.isfile(args.EVIDENCE_FILE):

 main(args.EVIDENCE_FILE, args.TYPE, args.d)

 else:

 print("[-] Supplied input file {} does not exist or is not a

""file".format(args.EVIDENCE_FILE))

 sys.exit(1)

Now, interpret the evidence file by creating an object of TSKUtil and iterate through the file

system to find index.dat files. It can be done by defining the main() function as follows:

def main(evidence, image_type, path):

 tsk_util = TSKUtil(evidence, image_type)

 index_dir = tsk_util.query_directory(path)

 if index_dir is not None:

 index_files = tsk_util.recurse_files("index.dat",

path=path,logic="equal")

 if index_files is not None:

 print("[+] Identified {} potential index.dat

files".format(len(index_files)))

 index_data = []

 for hit in index_files:

 index_file = hit[2]

 temp_index = write_file(index_file)

Now, define a function with the help of which we can copy the information of index.dat file to

the current working directory and later on they can be processed by a third party module:

 def write_file(index_file):

 with open(index_file.info.name.name, "w") as outfile:

 Python Digital Forensics

97

 outfile.write(index_file.read_random(0, index_file.info.meta.size))

 return index_file.info.name.name

Now, use the following code to perform the signature validation with the help of the built-in

function namely check_file_signature():

 if pymsiecf.check_file_signature(temp_index):

 index_dat = pymsiecf.open(temp_index)

 print("[+] Identified {} records in {}".format(

 index_dat.number_of_items, temp_index))

 for i, record in enumerate(index_dat.items):

 try:

 data = record.data

 if data is not None:

 data = data.rstrip("\x00")

 except AttributeError:

 if isinstance(record,

pymsiecf.redirected):

 index_data.append([i, temp_index, "",

"", "", "", "",record.location, "", "", record.offset,os.path.join(path,

hit[1].lstrip("//"))])

 elif isinstance(record,

pymsiecf.leak):

 index_data.append([i, temp_index,

record.filename, "","", "", "", "", "", "", record.offset,os.path.join(path,

hit[1].lstrip("//"))])

 continue

 index_data.append([

 i, temp_index, record.filename,

 record.type, record.primary_time,

 record.secondary_time,

 record.last_checked_time,

record.location,

 record.number_of_hits, data, record.offset,

 os.path.join(path,

hit[1].lstrip("//"))

])

 Python Digital Forensics

98

 else:

 print("[-] {} not a valid index.dat file. Removing

"

 "temp file..".format(temp_index))

 os.remove("index.dat")

 continue

 os.remove("index.dat")

 write_output(index_data)

 else:

 print("[-] Index.dat files not found in {}

directory".format(path))

 sys.exit(3)

 else:

 print("[-] Directory {} not found".format(win_event))

 sys.exit(2)

Now, define a method that will print the output in CSV file, as shown below:

 def write_output(data):

 output_name = "Internet_Indexdat_Summary_Report.csv"

 print("[+] Writing {} with {} parsed index.dat files to current "

 "working directory: {}".format(output_name,

len(data),os.getcwd()))

 with open(output_name, "wb") as outfile:

 writer = csv.writer(outfile)

 writer.writerow(["Index", "File Name", "Record Name",

 "Record Type", "Primary Date", "Secondary

Date",

 "Last Checked Date", "Location", "No. of

Hits",

 "Record Data", "Record Offset", "File

Path"])

 writer.writerows(data)

After running above script we will get the information from index.dat file in CSV file.

 Python Digital Forensics

99

Volume Shadow Copies

A shadow copy is the technology included in Windows for taking backup copies or snapshots

of computer files manually or automatically. It is also called volume snapshot service or

volume shadow service(VSS).

With the help of these VSS files, forensic experts can have some historical information about

how the system changed over time and what files existed on the computer. Shadow copy

technology requires the file system to be NTFS for creating and storing shadow copies.

In this section, we are going to see a Python script, which helps in accessing any volume of

shadow copies present in the forensic image.

For Python script we need to install third party modules namely pytsk3, pyewf, unicodecsv,

pyvshadow and vss. We can follow the steps given below to extract information from VSS

files:

 First, access the volume of raw image and identify all the NTFS partitions.

 Then, extract the information from that shadow copies by iterating through them.

 Now, at last we need to create a file listing of data within the snapshots.

Python Code

Let us see how to use Python code for this purpose:

First, import the following Python libraries:

from __future__ import print_function

import argparse

from datetime import datetime, timedelta

import os

import pytsk3

import pyewf

import pyvshadow

import sys

import unicodecsv as csv

from utility import vss

from utility.pytskutil import TSKUtil

from utility import pytskutil

Now, provide arguments for command-line handler. Here it will accept two arguments – first

is the path to evidence file and second is the output file.

 Python Digital Forensics

100

if __name__ == "__main__":

 parser = argparse.ArgumentParser('Parsing Shadow Copies')

 parser.add_argument("EVIDENCE_FILE", help="Evidence file path")

 parser.add_argument("OUTPUT_CSV",

 help="Output CSV with VSS file listing")

 args = parser.parse_args()

Now, validate the input file path’s existence and also separate the directory from output file.

 directory = os.path.dirname(args.OUTPUT_CSV)

 if not os.path.exists(directory) and directory != "":

 os.makedirs(directory)

 if os.path.exists(args.EVIDENCE_FILE) and \

 os.path.isfile(args.EVIDENCE_FILE):

 main(args.EVIDENCE_FILE, args.OUTPUT_CSV)

 else:

 print("[-] Supplied input file {} does not exist or is not a "

 "file".format(args.EVIDENCE_FILE))

 sys.exit(1)

Now, interact with evidence file’s volume by creating the TSKUtil object. It can be done with

the help of main() method as follows:

 def main(evidence, output):

 tsk_util = TSKUtil(evidence, "raw")

 img_vol = tsk_util.return_vol()

 if img_vol is not None:

 for part in img_vol:

 if tsk_util.detect_ntfs(img_vol, part):

 print("Exploring NTFS Partition for VSS")

 explore_vss(evidence, part.start *

img_vol.info.block_size,output)

 else:

 print("[-] Must be a physical preservation to be compatible ""with

this script")

 sys.exit(2)

 Python Digital Forensics

101

Now, define a method for exploring the parsed volume shadow file as follows:

def explore_vss(evidence, part_offset, output):

 vss_volume = pyvshadow.volume()

 vss_handle = vss.VShadowVolume(evidence, part_offset)

 vss_count = vss.GetVssStoreCount(evidence, part_offset)

 if vss_count > 0:

 vss_volume.open_file_object(vss_handle)

 vss_data = []

 for x in range(vss_count):

 print("Gathering data for VSC {} of {}".format(x, vss_count))

 vss_store = vss_volume.get_store(x)

 image = vss.VShadowImgInfo(vss_store)

 vss_data.append(pytskutil.openVSSFS(image, x))

 write_csv(vss_data, output)

Lastly, define the method for writing the result in spreadsheet as follows:

def write_csv(data, output):

 if data == []:

 print("[-] No output results to write")

 sys.exit(3)

 print("[+] Writing output to {}".format(output))

 if os.path.exists(output):

 append = True

 with open(output, "ab") as csvfile:

 csv_writer = csv.writer(csvfile)

 headers = ["VSS", "File", "File Ext", "File Type", "Create Date",

 "Modify Date", "Change Date", "Size", "File Path"]

 if not append:

 csv_writer.writerow(headers)

 for result_list in data:

 csv_writer.writerows(result_list)

Once you successfully run this Python script, we will get the information residing in VSS into

a spreadsheet.

 Python Digital Forensics

102

 Python Digital Forensics

103

Till now, we have seen how to obtain artifacts in Windows using Python. In this chapter, let

us learn about investigation of log based artifacts using Python.

Introduction

Log-based artifacts are the treasure trove of information that can be very useful for a digital

forensic expert. Though we have various monitoring software for collecting the information,

the main issue for parsing useful information from them is that we need lot of data.

Various Log-based Artifacts and Investigating in Python

In this section, let us discuss various log based artifacts and their investigation in Python:

Timestamps

Timestamp conveys the data and time of the activity in the log. It is one of the important

elements of any log file. Note that these data and time values can come in various formats.

The Python script shown below will take the raw date-time as input and provides a formatted

timestamp as its output.

For this script, we need to follow the following steps:

 First, set up the arguments that will take the raw data value along with source of data

and the data type.

 Now, provide a class for providing common interface for data across different date

formats.

Python Code

Let us see how to use Python code for this purpose:

First, import the following Python modules:

from __future__ import print_function

from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter

from datetime import datetime as dt

from datetime import timedelta

12. Python Digital Forensics – Investigation of Log
Based Artifacts

 Python Digital Forensics

104

Now as usual we need to provide argument for command-line handler. Here it will accept

three arguments, first would be the date value to be processed, second would be the source

of that date value and third would be its type.

if __name__ == '__main__':

 parser = ArgumentParser('Timestamp Log-based artifact')

 parser.add_argument("date_value", help="Raw date value to parse")

 parser.add_argument("source", help="Source format of

date",choices=ParseDate.get_supported_formats())

 parser.add_argument("type", help="Data type of input

value",choices=('number', 'hex'), default='int')

 args = parser.parse_args()

 date_parser = ParseDate(args.date_value, args.source, args.type)

 date_parser.run()

 print(date_parser.timestamp)

Now, we need to define a class which will accept the arguments for date value, date source,

and the value type.

 class ParseDate(object):

 def __init__(self, date_value, source, data_type):

 self.date_value = date_value

 self.source = source

 self.data_type = data_type

 self.timestamp = None

 Now we will define a method that will act like a controller just like the main() method:

 def run(self):

 if self.source == 'unix-epoch':

 self.parse_unix_epoch()

 elif self.source == 'unix-epoch-ms':

 self.parse_unix_epoch(True)

 elif self.source == 'windows-filetime':

 self.parse_windows_filetime()

 @classmethod

 def get_supported_formats(cls):

 return ['unix-epoch', 'unix-epoch-ms', 'windows-filetime']

 Python Digital Forensics

105

Now, we need to define two methods which will process Unix epoch time and FILETIME

respectively:

 def parse_unix_epoch(self, milliseconds=False):

 if self.data_type == 'hex':

 conv_value = int(self.date_value)

 if milliseconds:

 conv_value = conv_value / 1000.0

 elif self.data_type == 'number':

 conv_value = float(self.date_value)

 if milliseconds:

 conv_value = conv_value / 1000.0

 else:

 print("Unsupported data type '{}'

provided".format(self.data_type))

 sys.exit('1')

 ts = dt.fromtimestamp(conv_value)

 self.timestamp = ts.strftime('%Y-%m-%d %H:%M:%S.%f')

 def parse_windows_filetime(self):

 if self.data_type == 'hex':

 microseconds = int(self.date_value, 16) / 10.0

 elif self.data_type == 'number':

 microseconds = float(self.date_value) / 10

 else:

 print("Unsupported data type '{}'

provided".format(self.data_type))

 sys.exit('1')

 ts = dt(1601, 1, 1) + timedelta(microseconds=microseconds)

 self.timestamp = ts.strftime('%Y-%m-%d %H:%M:%S.%f')

After running the above script, by providing a timestamp we can get the converted value in

easy-to-read format.

 Python Digital Forensics

106

Web Server Logs

From the point of view of digital forensic expert, web server logs are another important artifact

because they can get useful user statistics along with information about the user and

geographical locations. Following is the Python script that will create a spreadsheet, after

processing the web server logs, for easy analysis of the information.

 First of all we need to import the following Python modules:

from __future__ import print_function

from argparse import ArgumentParser, FileType

import re

import shlex

import logging

import sys

import csv

logger = logging.getLogger(__file__)

Now, we need to define the patterns that will be parsed from the logs:

iis_log_format = [

 ("date", re.compile(r"\d{4}-\d{2}-\d{2}")),

 ("time", re.compile(r"\d\d:\d\d:\d\d")),

 ("s-ip", re.compile(

 r"((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\.|$)){4}")),

 ("cs-method", re.compile(

 r"(GET)|(POST)|(PUT)|(DELETE)|(OPTIONS)|(HEAD)|(CONNECT)")),

 ("cs-uri-stem", re.compile(r"([A-Za-z0-1/\.-]*)")),

 ("cs-uri-query", re.compile(r"([A-Za-z0-1/\.-]*)")),

 ("s-port", re.compile(r"\d*")),

 ("cs-username", re.compile(r"([A-Za-z0-1/\.-]*)")),

 ("c-ip", re.compile(

 r"((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\.|$)){4}")),

 ("cs(User-Agent)", re.compile(r".*")),

 ("sc-status", re.compile(r"\d*")),

 ("sc-substatus", re.compile(r"\d*")),

 ("sc-win32-status", re.compile(r"\d*")),

 ("time-taken", re.compile(r"\d*"))]

 Python Digital Forensics

107

Now, provide an argument for command-line handler. Here it will accept two arguments, first

would be the IIS log to be processed, second would be the desired CSV file path.

if __name__ == '__main__':

 parser = ArgumentParser('Parsing Server Based Logs')

 parser.add_argument('iis_log', help="Path to IIS Log",type=FileType('r'))

 parser.add_argument('csv_report', help="Path to CSV report")

 parser.add_argument('-l', help="Path to processing log",default=__name__ +

'.log')

 args = parser.parse_args()

 logger.setLevel(logging.DEBUG)

 msg_fmt = logging.Formatter("%(asctime)-15s %(funcName)-10s ""%(levelname)-8s

%(message)s")

 strhndl = logging.StreamHandler(sys.stdout)

 strhndl.setFormatter(fmt=msg_fmt)

 fhndl = logging.FileHandler(args.log, mode='a')

 fhndl.setFormatter(fmt=msg_fmt)

 logger.addHandler(strhndl)

 logger.addHandler(fhndl)

 logger.info("Starting IIS Parsing ")

 logger.debug("Supplied arguments: {}".format(", ".join(sys.argv[1:])))

 logger.debug("System " + sys.platform)

 logger.debug("Version " + sys.version)

 main(args.iis_log, args.csv_report, logger)

 iologger.info("IIS Parsing Complete")

Now we need to define main() method that will handle the script for bulk log information:

def main(iis_log, report_file, logger):

 parsed_logs = []

 for raw_line in iis_log:

 line = raw_line.strip()

 log_entry = {}

 if line.startswith("#") or len(line) == 0:

 continue

 if '\"' in line:

 line_iter = shlex.shlex(line_iter)

 Python Digital Forensics

108

 else:

 line_iter = line.split(" ")

 for count, split_entry in enumerate(line_iter):

 col_name, col_pattern = iis_log_format[count]

 if col_pattern.match(split_entry):

 log_entry[col_name] = split_entry

 else:

 logger.error("Unknown column pattern discovered. "

 "Line preserved in full below")

 logger.error("Unparsed Line: {}".format(line))

 parsed_logs.append(log_entry)

 logger.info("Parsed {} lines".format(len(parsed_logs)))

 cols = [x[0] for x in iis_log_format]

 logger.info("Creating report file: {}".format(report_file))

 write_csv(report_file, cols, parsed_logs)

 logger.info("Report created")

Lastly, we need to define a method that will write the output to spreadsheet:

def write_csv(outfile, fieldnames, data):

 with open(outfile, 'w', newline="") as open_outfile:

 csvfile = csv.DictWriter(open_outfile, fieldnames)

 csvfile.writeheader()

 csvfile.writerows(data)

After running the above script we will get the web server based logs in a spreadsheet.

 Python Digital Forensics

109

Scanning Important Files using YARA

YARA(Yet Another Recursive Algorithm) is a pattern matching utility designed for malware

identification and incident response. We will use YARA for scanning the files. In the following

Python script, we will use YARA.

We can install YARA with the help of following command:

pip install YARA

We can follow the steps given below for using YARA rules to scan files:

 First, set up and compile YARA rules

 Then, scan a single file and then iterate through the directories to process individual

files.
 Lastly, we will export the result to CSV.

 Python Code

Let us see how to use Python code for this purpose:

First, we need to import the following Python modules:

from __future__ import print_function

from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter

import os

import csv

import yara

Next, provide argument for command-line handler. Note that here it will accept two

arguments – first is the path to YARA rules, second is the file to be scanned.

if __name__ == '__main__':

 parser = ArgumentParser('Scanning files by YARA')

 parser.add_argument('yara_rules',help="Path to Yara rule to scan with. May be

file or folder path.")

 parser.add_argument('path_to_scan',help="Path to file or folder to scan")

 parser.add_argument('--output',help="Path to output a CSV report of scan

results")

 args = parser.parse_args()

 main(args.yara_rules, args.path_to_scan, args.output)

Now we will define the main() function that will accept the path to the yara rules and file to

be scanned:

 Python Digital Forensics

110

 def main(yara_rules, path_to_scan, output):

 if os.path.isdir(yara_rules):

 yrules = yara.compile(yara_rules)

 else:

 yrules = yara.compile(filepath=yara_rules)

 if os.path.isdir(path_to_scan):

 match_info = process_directory(yrules, path_to_scan)

 else:

 match_info = process_file(yrules, path_to_scan)

 columns = ['rule_name', 'hit_value', 'hit_offset', 'file_name',

 'rule_string', 'rule_tag']

 if output is None:

 write_stdout(columns, match_info)

 else:

 write_csv(output, columns, match_info)

Now, define a method that will iterate through the directory and passes the result to another

method for further processing:

def process_directory(yrules, folder_path):

 match_info = []

 for root, _, files in os.walk(folder_path):

 for entry in files:

 file_entry = os.path.join(root, entry)

 match_info += process_file(yrules, file_entry)

 return match_info

Next, define two functions. Note that first we will use match() method to yrules object and

another will report that match information to the console if the user does not specify any

output file. Observe the code shown below:

 def process_file(yrules, file_path):

 match = yrules.match(file_path)

 match_info = []

 for rule_set in match:

 for hit in rule_set.strings:

 match_info.append({

 Python Digital Forensics

111

 'file_name': file_path,

 'rule_name': rule_set.rule,

 'rule_tag': ",".join(rule_set.tags),

 'hit_offset': hit[0],

 'rule_string': hit[1],

 'hit_value': hit[2]

 })

 return match_info

def write_stdout(columns, match_info):

 for entry in match_info:

 for col in columns:

 print("{}: {}".format(col, entry[col]))

 print("=" * 30)

Lastly, we will define a method that will write the output to CSV file, as shown below:

def write_csv(outfile, fieldnames, data):

 with open(outfile, 'w', newline="") as open_outfile:

 csvfile = csv.DictWriter(open_outfile, fieldnames)

 csvfile.writeheader()

 csvfile.writerows(data)

Once you run the above script successfully, we can provide appropriate arguments at the

command-line and can generate a CSV report.

