
i

i

About the Tutorial

Blockchain is the current buzz that is dominating the software development trends. The

development and designing of Blockchain involves three major components: client, miner

and blockchain.

This tutorial is aimed to give you a crisp understanding of the process of building your own

blockchain.

Audience

Any programming enthusiast who wants to keep in pace with the recent trend of

Blockchain development can gain from this tutorial.

If you are a learner interested to learn the basics of Blockchain Development, this tutorial

aptly suits your needs.

Prerequisites

This tutorial is written assuming that the learner has an idea on programming in Python

and a basic idea on Blockchain. If you are new to any of these concepts, we suggest you

to pick tutorials based on these concepts first before you plunge into this tutorial.

Copyright & Disclaimer

@Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Python Blockchain

`

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents ... ii

1. PYTHON BLOCK CHAIN – INTRODUCTION ... 4

Components Involved in Blockchain Project Development .. 4

2. PYTHON BLOCK CHAIN – DEVELOPING CLIENT ... 6

3. PYTHON BLOCK CHAIN – CLIENT CLASS .. 8

4. PYTHON BLOCK CHAIN – TRANSACTION CLASS... 10

5. PYTHON BLOCK CHAIN – CREATING MULTIPLE TRANSACTIONS 13

Displaying Transaction ... 13

6. PYTHON BLOCK CHAIN – BLOCK CLASS ... 19

7. PYTHON BLOCK CHAIN – CREATING GENESIS BLOCK .. 20

8. PYTHON BLOCKCHAIN – CREATING BLOCKCHAIN ... 21

9. PYTHON BLOCKCHAIN – ADDING GENESIS BLOCK .. 23

10. PYTHON BLOCKCHAIN – CREATING MINERS ... 24

Message Digest Function ... 24

Mining Function ... 24

11. PYTHON BLOCKCHAIN – ADDING BLOCKS ... 27

Adding First Block .. 27

Python Blockchain

`

 iii

12. PYTHON BLOCKCHAIN – SCOPE AND CONCLUSION .. 34

Python Blockchain

`

 4

In the tutorial on Blockchain, we have learnt in detail about the theory behind blockchain.

The blockchain is the fundamental building block behind the world’s most popular digital

currency Bitcoin. The tutorial deeply dealt with the intricacies of Bitcoin explaining fully

the blockchain architecture. The next step is to build our own blockchain.

Satoshi Nakamoto created the first virtual currency in the world called Bitcoin. Looking at

the success of Bitcoin, many others created their own virtual currencies. To name a few -

Litecoin, Zcash, and so on.

Now, you may also like to launch your own currency. Let us call this as TPCoin

(TutorialsPoint Coin). You will write a blockchain to record all transactions that deal with

TPCoin. The TPCoin can be used for buying Pizzas, Burgers, Salads, etc. There may be

other service providers who would join your network and start accepting TPCoin as the

currency for giving out their services. The possibilities are endless.

In this tutorial, let us understand how to construct such a system and launch your own

digital currency in the market.

Components Involved in Blockchain Project Development

The entire blockchain project development consists of three major components:

 Client

 Miners

 Blockchain

Client

The Client is the one who will buy goods from other vendors. The client himself may

become a vendor and will accept money from others against the goods he supplies. We

assume here that the client can both be a supplier and a recipient of TPCoins. Thus, we

will create a client class in our code that has the ability to send and receive money.

Miner

The Miner is the one who picks up the transactions from a transaction pool and assembles

them in a block. The miner has to provide a valid proof-of-work to get the mining reward.

All the money that miner collects as a fee will be for him to keep. He may spend that

money on buying goods or services from other registered vendors on the network, just

the way a Client described above does.

Blockchain

Finally, a Blockchain is a data structure that chains all the mined blocks in a chronological

order. This chain is immutable and thus temper-proof.

1. Python Block chain – Introduction

https://www.tutorialspoint.com/blockchain/index.htm
https://www.tutorialspoint.com/blockchain/index.htm
https://bitcoin.org/en/
https://litecoin.org/
https://z.cash/

Python Blockchain

`

 5

You may follow this tutorial by typing out the code presented in each step in a new Jupyter

notebook. Alternatively, you may download the entire Jupyter notebook from

https://www.anaconda.com/.

In the next chapter, we will develop a client that uses our blockchain system.

Python Blockchain

`

 6

A client is somebody who holds TPCoins and transacts those for goods/services from other

vendors on the network including his own. We should define a Client class for this purpose.

To create a globally unique identification for the client, we use PKI (Public Key

Infrastructure). In this chapter, let us talk about this in detail.

The client should be able to send money from his wallet to another known person.

Similarly, the client should be able to accept money from a third party. For spending

money, the client would create a transaction specifying the sender’s name and the amount

to be paid. For receiving money, the client will provide his identity to the third party -

essentially a sender of the money. We do not store the balance amount of money the client

holds in his wallet. During a transaction, we will compute the actual balance to ensure that

the client has sufficient balance to make the payment.

To develop the Client class and for the rest of the code in the project, we will need to

import many Python libraries. These are listed below:

import libraries

import hashlib

import random

import string

import json

import binascii

import numpy as np

import pandas as pd

import pylab as pl

import logging

import datetime

import collections

2. Python Block chain – Developing Client

https://www.tutorialspoint.com/cryptography/public_key_infrastructure.htm

Python Blockchain

`

 7

In addition to the above standard libraries, we are going to sign our transactions, create

hash of the objects, etc. For this, you will need to import the following libraries:

following imports are required by PKI

import Crypto

import Crypto.Random

from Crypto.Hash import SHA

from Crypto.PublicKey import RSA

from Crypto.Signature import PKCS1_v1_5

In the next chapter, let us talk about client class.

Python Blockchain

`

 8

The Client class generates the private and public keys by using the built-in Python RSA

algorithm. The interested reader may refer to this tutorial for the implementation of RSA.

During the object initialization, we create private and public keys and store their values in

the instance variable.

self._private_key = RSA.generate(1024, random)

self._public_key = self._private_key.publickey()

Note that you should never lose your private key. For record keeping, the generated

private key may be copied on a secured external storage or you may simply write down

the ASCII representation of it on a piece of paper.

The generated public key will be used as the client’s identity. For this, we define a property

called identity that returns the HEX representation of the public key.

@property

 def identity(self):

 return

binascii.hexlify(self._public_key.exportKey(format='DER'))

.decode('ascii')

The identity is unique to each client and can be made publicly available. Anybody would

be able to send virtual currency to you using this identity and it will get added to your

wallet.

The full code for the Client class is shown here:

class Client:

 def __init__(self):

 random = Crypto.Random.new().read

 self._private_key = RSA.generate(1024, random)

 self._public_key = self._private_key.publickey()

 self._signer = PKCS1_v1_5.new(self._private_key)

 @property

 def identity(self):

 return

binascii.hexlify(self._public_key.exportKey(format='DER')).decode('ascii

')

3. Python Block Chain – Client Class

https://www.tutorialspoint.com/cryptography_with_python/cryptography_with_python_understanding_rsa_algorithm.htm

Python Blockchain

`

 9

Testing Client

Now, we will write code that will illustrate how to use the Client class:

Dinesh = Client()

print (Dinesh.identity)

The above code creates an instance of Client and assigns it to the variable Dinesh. We

print the public key of Dinesh by calling its identity method. The output is shown here:

30819f300d06092a864886f70d010101050003818d0030818902818100b547fafceeb131e07

0166a6b23fec473cce22c3f55c35ce535b31d4c74754fecd820aa94c1166643a49ea5f49f72

3181ff943eb3fdc5b2cb2db12d21c06c880ccf493e14dd3e93f3a9e175325790004954c34d3

c7bc2ccc9f0eb5332014937f9e49bca9b7856d351a553d9812367dc8f2ac734992a4e6a6ff6

6f347bd411d07f0203010001

Now, we let us move on to create a transaction in the next chapter.

Python Blockchain

`

 10

In this chapter, let us create a Transaction class so that a client will be able to send

money to somebody. Note that a client can be both a sender or a recipient of the money.

When you want to receive money, some other sender will create a transaction and specify

your public address in it. We define the initialization of a transaction class as follows:

 def __init__(self, sender, recipient, value):

 self.sender = sender

 self.recipient = recipient

 self.value = value

 self.time = datetime.datetime.now()

The init method takes three parameters - the sender’s public key, the recipient’s public

key, and the amount to be sent. These are stored in the instance variables for use by other

methods. Additionally, we create one more variable for storing the time of transaction.

Next, we write a utility method called to_dict that combines all the four above-mentioned

instance variables in a dictionary object. This is just to put the entire transaction

information accessible through a single variable.

As you know from the earlier tutorial that the first block in the blockchain is a Genesis

block. The Genesis block contains the first transaction initiated by the creator of the

blockchain. The identity of this person may be kept a secret like in the case of Bitcoins. So

when this first transaction is created, the creator may just send his identity as Genesis.

Thus, while creating the dictionary, we check if the sender is Genesis and if so we simply

assign some string value to the identity variable; else, we assign the sender’s identity to

the identity variable.

 if self.sender == "Genesis":

 identity = "Genesis"

 else:

 identity = self.sender.identity

We construct the dictionary using following line of code

 return collections.OrderedDict({'sender': identity,

 'recipient': self.recipient,

 'value': self.value,

 'time' : self.time})

4. Python Block Chain – Transaction Class

https://www.tutorialspoint.com/blockchain/index.htm

Python Blockchain

`

 11

The entire code for the to_dict method is shown below:

def to_dict(self):

 if self.sender == "Genesis":

 identity = "Genesis"

 else:

 identity = self.sender.identity

 return collections.OrderedDict({'sender': identity,

 'recipient': self.recipient,

 'value': self.value,

 'time' : self.time})

Finally, we will sign this dictionary object using the private key of the sender. As before,

we use the built-in PKI with SHA algorithm. The generated signature is decoded to get the

ASCII representation for printing and storing it in our blockchain. The sign_transaction

method code is shown here:

def sign_transaction(self):

 private_key = self.sender._private_key

 signer = PKCS1_v1_5.new(private_key)

 h = SHA.new(str(self.to_dict()).encode('utf8'))

 return binascii.hexlify(signer.sign(h)).decode('ascii')

We will now test this Transaction class.

Testing Transaction Class

For this purpose, we will create two users, called Dinesh and Ramesh. Dinesh will send

5 TPCoins to Ramesh. For this first we create the clients called Dinesh and Ramesh.

Dinesh = Client()

Ramesh = Client()

Remember that when you instantiate a Client class, the public and private keys unique

to the client would be created. As Dinesh is sending payment to Ramesh, he will need the

public key of Ramesh which is obtained by using the identity property of the client.

Thus, we will create the transaction instance using following code:

t = Transaction(

 Dinesh,

 Ramesh.identity,

 5.0

)

Python Blockchain

`

 12

Note that the first parameter is the sender, the second parameter is the public key of the

recipient and the third parameter is the amount to be transferred. The sign_transaction

method retrieves the sender’s private key from the first parameter for singing the

transaction.

After the transaction object is created, you will sign it by calling its sign_transaction

method. This method returns the generated signature in the printable format. We generate

and print the signature using following two lines of code:

signature = t.sign_transaction()

print (signature)

When you run the above code, you will see the output similar to this:

7c7e3c97629b218e9ec6e86b01f9abd8e361fd69e7d373c38420790b655b9abe3b575e343c7

13703ca1aee781acd7157a0624db3d57d7c2f1172730ee3f45af943338157f899965856f6b0

0e34db240b62673ad5a08c8e490f880b568efbc36035cae2e748f1d802d5e8e66298be826f5

c6363dc511222fb2416036ac04eb972

Now as our basic infrastructure of creating a client and a transaction is ready, we will now

have multiple clients doing multiple transactions as in a real life situation.

Python Blockchain

`

 13

The transactions made by various clients are queued in the system; the miners pick up

the transactions from this queue and add it to the block. They will then mine the block and

the winning miner would have the privilege of adding the block to the blockchain and

thereby earn some money for himself.

We will describe this mining process later when we discuss the creation of the blockchain.

Before we write the code for multiple transactions, let us add a small utility function to

print the contents of a given transaction.

Displaying Transaction

The display_transaction function accepts a single parameter of transaction type. The

dictionary object within the received transaction is copied to a temporary variable called

dict and using the dictionary keys, the various values are printed on the console.

def display_transaction(transaction):

 #for transaction in transactions:

 dict = transaction.to_dict()

 print ("sender: " + dict['sender'])

 print ('-----')

 print ("recipient: " + dict['recipient'])

 print ('-----')

 print ("value: " + str(dict['value']))

 print ('-----')

 print ("time: " + str(dict['time']))

 print ('-----')

 Next, we define a transaction queue for storing our transaction objects.

Transaction Queue

To create a queue, we declare a global list variable called transactions as follows:

transactions = []

We will simply append each newly created transaction to this queue. Please note that for

brevity, we will not implement the queue management logic in this tutorial.

5. Python Block Chain – Creating Multiple
Transactions

Python Blockchain

`

 14

Creating Multiple Clients

Now, we will start creating transactions. First, we will create four clients who will send

money to each other for obtaining various services or goods from others.

Dinesh = Client()

Ramesh = Client()

Seema = Client()

Vijay = Client()

At this point, we have four clients called Dinesh, Ramesh, Seema, and Vijay. We currently

assume that each of these clients hold some TPCoins in their wallets for transacting. The

identity of each of these clients would be specified by using the identity property of these

objects.

Creating First Transaction

Now, we initiate our first transaction as follows:

t1 = Transaction(

 Dinesh,

 Ramesh.identity,

 15.0

)

In this transaction Dinesh sends 5 TPCoins to Ramesh. For transaction to be successful,

we will have to ensure that Dinesh has sufficient money in his wallet for this payment.

Note that, we will need a genesis transaction to start TPCoin circulation in the system. You

will write the transaction code for this genesis transaction very shortly as you read along.

We will sign this transaction using Dinesh’s private key and add it to the transaction queue

as follows:

t1.sign_transaction()

transactions.append(t1)

After the first transaction made by Dinesh, we will create several more transactions

between different clients that we created above.

Adding More Transactions

We will now create several more transactions, each transaction given out a few TPCoins to

another party. When somebody spends money, it is not necessary that he has to check for

sufficient balances in this wallet. The miner in anyway would be validating each transaction

for the balance that the sender has while initiating the transaction.

In case of insufficient balance, the miner will mark this transaction as invalid and would

not add it to this block.

Python Blockchain

`

 15

The following code creates and adds nine more transactions to our queue.

t2 = Transaction(

 Dinesh,

 Seema.identity,

 6.0

)

t2.sign_transaction()

transactions.append(t2)

t3 = Transaction(

 Ramesh,

 Vijay.identity,

 2.0

)

t3.sign_transaction()

transactions.append(t3)

t4 = Transaction(

 Seema,

 Ramesh.identity,

 4.0

)

t4.sign_transaction()

transactions.append(t4)

t5 = Transaction(

 Vijay,

 Seema.identity,

 7.0

)

t5.sign_transaction()

transactions.append(t5)

Python Blockchain

`

 16

t6 = Transaction(

 Ramesh,

 Seema.identity,

 3.0

)

t6.sign_transaction()

transactions.append(t6)

t7 = Transaction(

 Seema,

 Dinesh.identity,

 8.0

)

t7.sign_transaction()

transactions.append(t7)

t8 = Transaction(

 Seema,

 Ramesh.identity,

 1.0

)

t8.sign_transaction()

transactions.append(t8)

t9 = Transaction(

 Vijay,

 Dinesh.identity,

 5.0

)

t9.sign_transaction()

transactions.append(t9)

t10 = Transaction(

 Vijay,

Python Blockchain

`

 17

 Ramesh.identity,

 3.0

)

t10.sign_transaction()

transactions.append(t10)

When you run the above code, you will have ten transactions in the queue for the miners

to create their blocks.

Dumping Transactions

As a blockchain manager, you may periodically like to review the contents of transaction

queue. For this purpose, you can use the display_transaction function that we developed

earlier. To dump all transactions in the queue, just iterate the transactions list and for each

referenced transaction, call the display_transaction function as shown here:

for transaction in transactions:

 display_transaction (transaction)

 print ('--------------')

The transactions are separated by a dashed line for distinction. If you run the above code,

you would see the transaction list as shown below:

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100bb064c99c49214

4a9f463480273aba93ac1db1f0da3cb9f3c1f9d058cf499fd8e54d244da0a8dd6ddd329e

c86794b04d773eb4841c9f935ea4d9ccc2821c7a1082d23b6c928d59863407f52fa05d8b

47e5157f8fe56c2ce3279c657f9c6a80500073b0be8093f748aef667c03e64f04f84d311

c4d866c12d79d3fc3034563dfb0203010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100be93b516b28c6e

674abe7abdb11ce0fdf5bb728b75216b73f37a6432e4b402b3ad8139b8c0ba541a72c8ad

d126b6e1a1308fb98b727beb63c6060356bb177bb7d54b54dbe87aee7353d0a6baa93977

04de625d1836d3f42c7ee5683f6703259592cc24b09699376807f28fe0e00ff882974484

d805f874260dfc2d1627473b910203010001

value: 15.0

time: 2019-01-14 16:18:01.859915

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100bb064c99c49214

4a9f463480273aba93ac1db1f0da3cb9f3c1f9d058cf499fd8e54d244da0a8dd6ddd329e

c86794b04d773eb4841c9f935ea4d9ccc2821c7a1082d23b6c928d59863407f52fa05d8b

47e5157f8fe56c2ce3279c657f9c6a80500073b0be8093f748aef667c03e64f04f84d311

c4d866c12d79d3fc3034563dfb0203010001

Python Blockchain

`

 18

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100a070c82b34ae14

3cbe59b3a2afde7186e9d5bc274955d8112d87a00256a35369acc4d0edfe65e8f9dc93fb

d9ee74b9e7ea12334da38c8c9900e6ced1c4ce93f86e06611e656521a1eab561892b7db0

961b4f212d1fd5b5e49ae09cf8c603a068f9b723aa8a651032ff6f24e5de00387e4d0623

75799742a359b8f22c5362e5650203010001

value: 6.0

time: 2019-01-14 16:18:01.860966

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100be93b516b28c6e

674abe7abdb11ce0fdf5bb728b75216b73f37a6432e4b402b3ad8139b8c0ba541a72c8ad

d126b6e1a1308fb98b727beb63c6060356bb177bb7d54b54dbe87aee7353d0a6baa93977

04de625d1836d3f42c7ee5683f6703259592cc24b09699376807f28fe0e00ff882974484

d805f874260dfc2d1627473b910203010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100cba097c0854876

f41338c62598c658f545182cfa4acebce147aedf328181f9c4930f14498fd03c0af6b0cc

e25be99452a81df4fa30a53eddbb7bb7b203adf8764a0ccd9db6913a576d68d642d8fd47

452590137869c25d9ff83d68ebe6d616056a8425b85b52e69715b8b85ae807b84638d8f0

0e321b65e4c33acaf6469e18e30203010001

value: 2.0

time: 2019-01-14 16:18:01.861958

For brevity, I have printed only first few transactions in the list. In the above code, we

print all transactions beginning with the very first transaction except for the genesis

transaction which was never added to this list. As the transactions are added to the blocks

periodically, you will generally be interested in viewing only the list of transactions which

are yet to be mined. In that case, you will need to create an appropriate for loop to iterate

through the transactions which are not yet mined.

So far, you have learned how to create clients, allow them to among themselves and

maintain a queue of the pending transactions which are to be mined. Now, comes the most

important part of this tutorial and that is creating a blockchain itself. You will learn this in

the next lesson.

Python Blockchain

`

 19

A block consists of a varying number of transactions. For simplicity, in our case we will

assume that the block consists of a fixed number of transactions, which is three in this

case. As the block needs to store the list of these three transactions, we will declare an

instance variable called verified_transactions as follows:

 self.verified_transactions = []

We have named this variable as verified_transactions to indicate that only the verified

valid transactions will be added to the block. Each block also holds the hash value of the

previous block, so that the chain of blocks becomes immutable.

To store the previous hash, we declare an instance variable as follows:

 self.previous_block_hash = ""

Finally, we declare one more variable called Nonce for storing the nonce created by the

miner during the mining process.

 self.Nonce = ""

The full definition of the Block class is given below:

class Block:

 def __init__(self):

 self.verified_transactions = []

 self.previous_block_hash = ""

 self.Nonce = ""

As each block needs the value of the previous block’s hash we declare a global variable

called last_block_hash as follows:

last_block_hash = ""

Now let us create our first block in the blockchain.

6. Python Block Chain – Block Class

Python Blockchain

`

 20

We assume that the originator of TPCoins initially gives out 500 TPCoins to a known client

Dinesh. For this, he first creates a Dinesh instance:

Dinesh = Client()

We then create a genesis transaction and send 500 TPCoins to Dinesh’s public address.

t0 = Transaction (

 "Genesis",

 Dinesh.identity,

 500.0

)

Now, we create an instance of Block class and call it block0.

block0 = Block()

We initialize the previous_block_hash and Nonce instance variables to None, as this is

the very first transaction to be stored in our blockchain.

block0.previous_block_hash = None

Nonce = None

Next, we will add the above t0 transaction to the verified_transactions list maintained

within the block:

block0.verified_transactions.append (t0)

At this point, the block is completely initialized and is ready to be added to our blockchain.

We will be creating the blockchain for this purpose. Before we add the block to the

blockchain, we will hash the block and store its value in the global variable called

last_block_hash that we declared previously. This value will be used by the next miner

in his block.

We use the following two lines of coding for hashing the block and storing the digest value.

digest = hash (block0)

last_block_hash = digest

Finally, we create a blockchain as we see in the next chapter.

7. Python Block Chain – Creating Genesis Block

Python Blockchain

`

 21

A blockchain contains a list of blocks chained to each other. To store the entire list, we will

create a list variable called TPCoins:

TPCoins = []

We will also write a utility method called dump_blockchain for dumping the contents of

the entire blockchain. We first print the length of the blockchain so that we know how

many blocks are currently present in the blockchain.

def dump_blockchain (self):

 print ("Number of blocks in the chain: " + str(len (self)))

Note that as the time passes, the number of blocks in the blockchain would be

extraordinarily high for printing. Thus, when you print the contents of the blockchain you

may have to decide on the range that you would like to examine. In the code below, we

have printed the entire blockchain as we would not be adding too many blocks in the

current demo.

To iterate through the chain, we set up a for loop as follows:

 for x in range (len(TPCoins)):

 block_temp = TPCoins[x]

Each referenced block is copied to a temporary variable called block_temp.

We print the block number as a heading for each block. Note that the numbers would start

with zero, the first block is a genesis block that is numbered zero.

 print ("block # " + str(x))

Within each block, we have stored a list of three transactions (except for the genesis block)

in a variable called verified_transactions. We iterate this list in a for loop and for each

retrieved item, we call display_transaction function to display the transaction details.

 for transaction in block_temp.verified_transactions:

 display_transaction (transaction)

8. Python Blockchain – Creating Blockchain

Python Blockchain

`

 22

The entire function definition is shown below:

def dump_blockchain (self):

 print ("Number of blocks in the chain: " + str(len (self)))

 for x in range (len(TPCoins)):

 block_temp = TPCoins[x]

 print ("block # " + str(x))

 for transaction in block_temp.verified_transactions:

 display_transaction (transaction)

 print ('--------------')

 print ('=====================================')

Note that here we have inserted the separators at appropriate points in the code to

demarcate the blocks and transactions within it.

As we have now created a blockchain for storing blocks, our next task is to create blocks

and start adding it to the blockchain. For this purpose, we will add a genesis block that

you have already created in the earlier step.

Python Blockchain

`

 23

Adding a block to the blockchain involves appending the created block to our TPCoins list.

TPCoins.append (block0)

Note that unlike the rest of the blocks in the system, the genesis block contains only one

transaction which is initiated by the originator of the TPCoins system. Now, you will dump

the contents of the blockchain by calling our global function dump_blockchain:

dump_blockchain(TPCoins)

When you execute this function, you will see the following output:

Number of blocks in the chain: 1

block # 0

sender: Genesis

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100ed272b52ccb539

e2cd779c6cc10ed1dfadf5d97c6ab6de90ed0372b2655626fb79f62d0e01081c163b0864

cc68d426bbe9438e8566303bb77414d4bfcaa3468ab7febac099294de10273a816f7047d

4087b4bafa11f141544d48e2f10b842cab91faf33153900c7bf6c08c9e47a7df8aa7e60d

c9e0798fb2ba3484bbdad2e4430203010001

value: 500.0

time: 2019-01-14 16:18:02.042739

=====================================

At this point the blockchain system is ready to use. We will now enable the interested

clients to become miners by providing them a mining functionality.

9. Python Blockchain – Adding Genesis Block

Python Blockchain

`

 24

For enabling mining, we need to develop a mining function. The mining functionality needs

to generate a digest on a given message string and provide a proof-of-work. Let us discuss

this in this chapter.

Message Digest Function

We will write a utility function called sha256 for creating a digest on a given message:

def sha256(message):

 return hashlib.sha256(message.encode('ascii')).hexdigest()

The sha256 function takes a message as a parameter, encodes it to ASCII, generates a

hexadecimal digest and returns the value to the caller.

Mining Function

We now develop the mine function that implements our own mining strategy. Our strategy

in this case would be to generate a hash on the given message that is prefixed with a

given number of 1’s. The given number of 1’s is specified as a parameter to mine function

specified as the difficulty level.

For example, if you specify a difficulty level of 2, the generated hash on a given message

should start with two 1’s - like 11xxxxxxxx. If the difficulty level is 3, the generated hash

should start with three 1’s - like 111xxxxxxxx. Given these requirements, we will now

develop the mining function as shown in the steps given below.

Step 1

The mining function takes two parameters - the message and the difficulty level.

def mine(message, difficulty=1):

Step 2

The difficulty level needs to be greater or equal to 1, we ensure this with the following

assert statement:

 assert difficulty >= 1

Step 3

We create a prefix variable using the set difficulty level.

 prefix = '1' * difficulty

10. Python Blockchain – Creating Miners

Python Blockchain

`

 25

Note if the difficulty level is 2 the prefix would be “11” and if the difficulty level is 3, the

prefix would be “111”, and so on. We will check if this prefix exists in the generated digest

of the message. To digest the message itself, we use the following two lines of code:

 for i in range(1000):

 digest = sha256(str(hash(message)) + str(i))

We keep on adding a new number i to the message hash in each iteration and generate a

new digest on the combined message. As the input to the sha256 function changes in

every iteration, the digest value would also change. We check if this digest value has

above-set prefix.

 if digest.startswith(prefix):

If the condition is satisfied, we will terminate the for loop and return the digest value to

the caller.

The entire mine code is shown here:

def mine(message, difficulty=1):

 assert difficulty >= 1

 prefix = '1' * difficulty

 for i in range(1000):

 digest = sha256(str(hash(message)) + str(i))

 if digest.startswith(prefix):

 print ("after " + str(i) + " iterations found nonce: "

+ digest)

 return digest

For your understanding, we have added the print statement that prints the digest value

and the number of iterations it took to meet the condition before returning from the

function.

Testing Mining Function

To test our mining function, simply execute the following statement:

mine ("test message", 2)

When you run the above code, you will see the output similar to the one below:

after 138 iterations found nonce:

11008a740eb2fa6bf8d55baecda42a41993ca65ce66b2d3889477e6bfad1484c

Python Blockchain

`

 26

Note that the generated digest starts with “11”. If you change the difficulty level to 3, the

generated digest will start with “111”, and of course, it will probably require more number

of iterations. As you can see, a miner with more processing power will be able to mine a

given message earlier. That’s how the miners compete with each other for earning their

revenues.

Now, we are ready to add more blocks to our blockchain. Let us learn this in our next

chapter.

Python Blockchain

`

 27

Each miner will pick up the transactions from a previously created transaction pool. To

track the number of messages already mined, we have to create a global variable:

last_transaction_index = 0

We will now have our first miner adding a block to the blockchain.

Adding First Block

To add a new block, we first create an instance of the Block class.

block = Block()

We pick up the top 3 transactions from the queue:

for i in range(3):

 temp_transaction = transactions[last_transaction_index]

 # validate transaction

Before adding the transaction to the block the miner will verify the validity of the

transaction. The transaction validity is verified by testing for equality the hash provided

by the sender against the hash generated by the miner using sender’s public key. Also,

the miner will verify that the sender has sufficient balance to pay for the current

transaction.

For brevity, we have not included this functionality in the tutorial. After the transaction is

validated, we add it to the verified_transactions list in the block instance.

 block.verified_transactions.append (temp_transaction)

We increment the last transaction index so that the next miner will pick up subsequent

transactions in the queue.

 last_transaction_index += 1

We add exactly three transactions to the block. Once this is done, we will initialize the rest

of the instance variables of the Block class. We first add the hash of the last block.

block.previous_block_hash = last_block_hash

Next, we mine the block with a difficulty level of 2.

block.Nonce = mine (block, 2)

11. Python Blockchain – Adding Blocks

Python Blockchain

`

 28

Note that the first parameter to the mine function is a binary object. We now hash the

entire block and create a digest on it.

digest = hash (block)

Finally, we add the created block to the blockchain and re-initialize the global variable

last_block_hash for the use in next block.

The entire code for adding the block is shown below:

block = Block()

for i in range(3):

 temp_transaction = transactions[last_transaction_index]

 # validate transaction

 # if valid

 block.verified_transactions.append (temp_transaction)

 last_transaction_index += 1

block.previous_block_hash = last_block_hash

block.Nonce = mine (block, 2)

digest = hash (block)

TPCoins.append (block)

last_block_hash = digest

Adding More Blocks

We will now add two more blocks to our blockchain. The code for adding the next two

blocks is given below:

Miner 2 adds a block

block = Block()

for i in range(3):

 temp_transaction = transactions[last_transaction_index]

 # validate transaction

 # if valid

 block.verified_transactions.append (temp_transaction)

 last_transaction_index += 1

block.previous_block_hash = last_block_hash

block.Nonce = mine (block, 2)digest = hash (block)

TPCoins.append (block)last_block_hash = digest

Python Blockchain

`

 29

Miner 3 adds a block

block = Block()

for i in range(3):

 temp_transaction = transactions[last_transaction_index]

 #display_transaction (temp_transaction)

 # validate transaction

 # if valid

 block.verified_transactions.append (temp_transaction)

 last_transaction_index += 1

block.previous_block_hash = last_block_hash

block.Nonce = mine (block, 2)

digest = hash (block)

TPCoins.append (block)

last_block_hash = digest

When you add these two blocks, you will also see the number of iterations it took to find

the Nonce. At this point, our blockchain consists of totally 4 blocks including the genesis

block.

Dumping Entire Blockchain

You can verify the contents of the entire blockchain using the following statement:

dump_blockchain(TPCoins)

You would see the output similar to the one shown below:

Number of blocks in the chain: 4

block # 0

sender: Genesis

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100ed272b52ccb539e2cd779

c6cc10ed1dfadf5d97c6ab6de90ed0372b2655626fb79f62d0e01081c163b0864cc68d426bbe943

8e8566303bb77414d4bfcaa3468ab7febac099294de10273a816f7047d4087b4bafa11f141544d4

8e2f10b842cab91faf33153900c7bf6c08c9e47a7df8aa7e60dc9e0798fb2ba3484bbdad2e44302

03010001

value: 500.0

time: 2019-01-14 16:18:02.042739

Python Blockchain

`

 30

=====================================

block # 1

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100bb064c99c492144a9f463

480273aba93ac1db1f0da3cb9f3c1f9d058cf499fd8e54d244da0a8dd6ddd329ec86794b04d773e

b4841c9f935ea4d9ccc2821c7a1082d23b6c928d59863407f52fa05d8b47e5157f8fe56c2ce3279

c657f9c6a80500073b0be8093f748aef667c03e64f04f84d311c4d866c12d79d3fc3034563dfb02

03010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100be93b516b28c6e674abe7

abdb11ce0fdf5bb728b75216b73f37a6432e4b402b3ad8139b8c0ba541a72c8add126b6e1a1308f

b98b727beb63c6060356bb177bb7d54b54dbe87aee7353d0a6baa9397704de625d1836d3f42c7ee

5683f6703259592cc24b09699376807f28fe0e00ff882974484d805f874260dfc2d1627473b9102

03010001

value: 15.0

time: 2019-01-14 16:18:01.859915

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100bb064c99c492144a9f463

480273aba93ac1db1f0da3cb9f3c1f9d058cf499fd8e54d244da0a8dd6ddd329ec86794b04d773e

b4841c9f935ea4d9ccc2821c7a1082d23b6c928d59863407f52fa05d8b47e5157f8fe56c2ce3279

c657f9c6a80500073b0be8093f748aef667c03e64f04f84d311c4d866c12d79d3fc3034563dfb02

03010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100a070c82b34ae143cbe59b

3a2afde7186e9d5bc274955d8112d87a00256a35369acc4d0edfe65e8f9dc93fbd9ee74b9e7ea12

334da38c8c9900e6ced1c4ce93f86e06611e656521a1eab561892b7db0961b4f212d1fd5b5e49ae

09cf8c603a068f9b723aa8a651032ff6f24e5de00387e4d062375799742a359b8f22c5362e56502

03010001

value: 6.0

time: 2019-01-14 16:18:01.860966

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100be93b516b28c6e674abe7

abdb11ce0fdf5bb728b75216b73f37a6432e4b402b3ad8139b8c0ba541a72c8add126b6e1a1308f

b98b727beb63c6060356bb177bb7d54b54dbe87aee7353d0a6baa9397704de625d1836d3f42c7ee

5683f6703259592cc24b09699376807f28fe0e00ff882974484d805f874260dfc2d1627473b9102

03010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100cba097c0854876f41338c

62598c658f545182cfa4acebce147aedf328181f9c4930f14498fd03c0af6b0cce25be99452a81d

f4fa30a53eddbb7bb7b203adf8764a0ccd9db6913a576d68d642d8fd47452590137869c25d9ff83

d68ebe6d616056a8425b85b52e69715b8b85ae807b84638d8f00e321b65e4c33acaf6469e18e302

03010001

Python Blockchain

`

 31

value: 2.0

time: 2019-01-14 16:18:01.861958

=====================================

block # 2

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100a070c82b34ae143cbe59b

3a2afde7186e9d5bc274955d8112d87a00256a35369acc4d0edfe65e8f9dc93fbd9ee74b9e7ea12

334da38c8c9900e6ced1c4ce93f86e06611e656521a1eab561892b7db0961b4f212d1fd5b5e49ae

09cf8c603a068f9b723aa8a651032ff6f24e5de00387e4d062375799742a359b8f22c5362e56502

03010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100be93b516b28c6e674abe7

abdb11ce0fdf5bb728b75216b73f37a6432e4b402b3ad8139b8c0ba541a72c8add126b6e1a1308f

b98b727beb63c6060356bb177bb7d54b54dbe87aee7353d0a6baa9397704de625d1836d3f42c7ee

5683f6703259592cc24b09699376807f28fe0e00ff882974484d805f874260dfc2d1627473b9102

03010001

value: 4.0

time: 2019-01-14 16:18:01.862946

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100cba097c0854876f41338c

62598c658f545182cfa4acebce147aedf328181f9c4930f14498fd03c0af6b0cce25be99452a81d

f4fa30a53eddbb7bb7b203adf8764a0ccd9db6913a576d68d642d8fd47452590137869c25d9ff83

d68ebe6d616056a8425b85b52e69715b8b85ae807b84638d8f00e321b65e4c33acaf6469e18e302

03010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100a070c82b34ae143cbe59b

3a2afde7186e9d5bc274955d8112d87a00256a35369acc4d0edfe65e8f9dc93fbd9ee74b9e7ea12

334da38c8c9900e6ced1c4ce93f86e06611e656521a1eab561892b7db0961b4f212d1fd5b5e49ae

09cf8c603a068f9b723aa8a651032ff6f24e5de00387e4d062375799742a359b8f22c5362e56502

03010001

value: 7.0

time: 2019-01-14 16:18:01.863932

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100be93b516b28c6e674abe7

abdb11ce0fdf5bb728b75216b73f37a6432e4b402b3ad8139b8c0ba541a72c8add126b6e1a1308f

b98b727beb63c6060356bb177bb7d54b54dbe87aee7353d0a6baa9397704de625d1836d3f42c7ee

5683f6703259592cc24b09699376807f28fe0e00ff882974484d805f874260dfc2d1627473b9102

03010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100a070c82b34ae143cbe59b

3a2afde7186e9d5bc274955d8112d87a00256a35369acc4d0edfe65e8f9dc93fbd9ee74b9e7ea12

334da38c8c9900e6ced1c4ce93f86e06611e656521a1eab561892b7db0961b4f212d1fd5b5e49ae

Python Blockchain

`

 32

09cf8c603a068f9b723aa8a651032ff6f24e5de00387e4d062375799742a359b8f22c5362e56502

03010001

value: 3.0

time: 2019-01-14 16:18:01.865099

=====================================

block # 3

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100a070c82b34ae143cbe59b

3a2afde7186e9d5bc274955d8112d87a00256a35369acc4d0edfe65e8f9dc93fbd9ee74b9e7ea12

334da38c8c9900e6ced1c4ce93f86e06611e656521a1eab561892b7db0961b4f212d1fd5b5e49ae

09cf8c603a068f9b723aa8a651032ff6f24e5de00387e4d062375799742a359b8f22c5362e56502

03010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100bb064c99c492144a9f463

480273aba93ac1db1f0da3cb9f3c1f9d058cf499fd8e54d244da0a8dd6ddd329ec86794b04d773e

b4841c9f935ea4d9ccc2821c7a1082d23b6c928d59863407f52fa05d8b47e5157f8fe56c2ce3279

c657f9c6a80500073b0be8093f748aef667c03e64f04f84d311c4d866c12d79d3fc3034563dfb02

03010001

value: 8.0

time: 2019-01-14 16:18:01.866219

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100a070c82b34ae143cbe59b

3a2afde7186e9d5bc274955d8112d87a00256a35369acc4d0edfe65e8f9dc93fbd9ee74b9e7ea12

334da38c8c9900e6ced1c4ce93f86e06611e656521a1eab561892b7db0961b4f212d1fd5b5e49ae

09cf8c603a068f9b723aa8a651032ff6f24e5de00387e4d062375799742a359b8f22c5362e56502

03010001

recipient:

30819f300d06092a864886f70d010101050003818d0030818902818100be93b516b28c6e674abe7

abdb11ce0fdf5bb728b75216b73f37a6432e4b402b3ad8139b8c0ba541a72c8add126b6e1a1308f

b98b727beb63c6060356bb177bb7d54b54dbe87aee7353d0a6baa9397704de625d1836d3f42c7ee

5683f6703259592cc24b09699376807f28fe0e00ff882974484d805f874260dfc2d1627473b9102

03010001

value: 1.0

time: 2019-01-14 16:18:01.867223

sender:

30819f300d06092a864886f70d010101050003818d0030818902818100cba097c0854876f41338c

62598c658f545182cfa4acebce147aedf328181f9c4930f14498fd03c0af6b0cce25be99452a81d

f4fa30a53eddbb7bb7b203adf8764a0ccd9db6913a576d68d642d8fd47452590137869c25d9ff83

d68ebe6d616056a8425b85b52e69715b8b85ae807b84638d8f00e321b65e4c33acaf6469e18e302

03010001

recipient:

Python Blockchain

`

 33

30819f300d06092a864886f70d010101050003818d0030818902818100bb064c99c492144a9f463

480273aba93ac1db1f0da3cb9f3c1f9d058cf499fd8e54d244da0a8dd6ddd329ec86794b04d773e

b4841c9f935ea4d9ccc2821c7a1082d23b6c928d59863407f52fa05d8b47e5157f8fe56c2ce3279

c657f9c6a80500073b0be8093f748aef667c03e64f04f84d311c4d866c12d79d3fc3034563dfb02

03010001

value: 5.0

time: 2019-01-14 16:18:01.868241

=====================================

Python Blockchain

`

 34

In this tutorial, we have learnt how to construct a blockchain project in Python. There are

many areas where you need to add further functionality to this project.

For instance, you will need to write functions for managing the transactions queue. After

the transactions are mined and the mined block is accepted by the system, they need not

be stored any more.

Also, the miners would certainly prefer to pick up the transactions with the highest fee. At

the same time, you will have to ensure that the transactions with low or no fee would not

starve forever.

You will need to develop algorithms for managing the queue. Also, the current tutorial

does not include the client interface code. You will need to develop this for both normal

clients and the miners. The full-fledged blockchain project would run into several more

lines of code and is beyond the scope of this tutorial. The interested reader may download

the bitcoin source for further study.

Conclusions

This crisp tutorial should get you started on creating your own blockchain project.

For full-fledged blockchain project development, you can learn more from the bitcoin
source.

For larger commercial or non-commercial projects, you may consider using Ethereum - a
ready to use blockchain app platform.

12. Python Blockchain – Scope and Conclusion

https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://bitcoin.org/en/download
https://www.ethereum.org/

