
Ethereum

 i

Ethereum

 i

About the Tutorial

Looking at the advantages offered by Bitcoin – a digital currency, people wanted to use

the concept of Blockchain in their own applications. People wanted to move out of their

physical contracts to smart digital contracts where several issues like repudiation,

transparency, security, etc. would be automatically addressed. The outcome of this effort

resulted in the creation of Ethereum – a popular platform for creating distributed

Blockchain applications that support smart contracts.

Audience

This tutorial is designed for those who wish to gain some insight on how Ethereum works.

After completing this tutorial, you will find yourself at a moderate level of expertise from

where you can take yourself to the next level.

Prerequisites

Before proceeding with this course, we assume the reader has basic understanding in Web

Development, JavaScript, Ajax-Requests, AngularJS, Gulp/Grunt and the Node Package

Manager.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Ethereum

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Ethereum — Introduction ... 1

2. Ethereum — Smart Contracts.. 2

Remix for Contract Development ... 2

3. Ethereum — Solidity for Contract Writing ... 4

4. Ethereum — Developing MyContract .. 5

5. Ethereum — Compiling the Contract ... 7

6. Ethereum — Deploying the Contract... 9

7. Ethereum — Interacting with the Contract ... 11

Sending Money.. 11

Examining Contract Value .. 12

Examining Collected Amount ... 12

8. Ethereum — Limitations of Remix... 13

9. Ethereum — Ganache for Blockchain .. 14

Downloading Ganache ... 14

Installing Ganache ... 15

Starting Ganache ... 15

10. Ethereum — Ganache Server Settings .. 18

Account and Keys .. 19

11. Ethereum — A Quick Walkthrough ... 20

12. Ethereum — MyEtherWallet ... 22

13. Ethereum — Creating Wallet .. 23

Ethereum

 iii

14. Ethereum — Attaching Wallet to Ganache Blockchain .. 26

15. Ethereum — Deploying Contract ... 28

16. Ethereum — Interacting with Deployed Contract.. 36

17. Ethereum — Creating Contract Users .. 42

18. Ethereum — Summary .. 49

What is Next? .. 49

Ethereum

 1

A huge success of Bitcoin raised interest in the minds of several to create their own

currencies. Looking at the advantages offered by Bitcoin – a digital currency, people

wanted to use the concept of Blockchain in their own applications. People wanted to move

out of their physical contracts to smart digital contracts where several issues like

repudiation, transparency, security, etc. would be automatically addressed. The outcome

of this effort resulted in the creation of Ethereum – a popular platform for creating

distributed Blockchain applications that support smart contracts.

In this tutorial, you will learn how to create a distributed application (DAPP) on Ethereum

platform. More specifically, you will learn how to write a contract, test it on a local

Blockchain and finally deploy it on an external Blockchain for deep testing and commercial

use. You will use Solidity, an object-oriented language for contract development. You will

also use Remix, an open source IDE for developing and testing contracts. To deploy the

tested contract on an external Blockchain, you will use Ganache. To interact with the

contract you will need a client application. We will use MyEtherWallet to create a wallet

for each such client. The contract creator will publish the contract. Any other client will

look at the contact value by using the interface provided by the contract and send some

money to the creator for executing a part of the contract.

So let us begin by writing the contract.

1. Ethereum — Introduction

Ethereum

 2

There are several tools available to develop and test contracts. One of the simplest tools

is provided on the official Ethereum site itself. The tool is called Remix, we will use this

for our contract development.

Remix for Contract Development

Open the Remix IDE by typing in the following URL in your browser.

http://remix.ethereum.org

The following screen will appear.

In the center window, you will see some default code, which is a sample Solidity code. You

will type your contract code in this code editor. Your code may be auto-compiled. Upon

successful compilation of the code, you will be able to run the code in the same IDE. When

you execute the contract methods, the results will be displayed in the same IDE window.

There are facilities to debug the code and to unit test your project. These can be seen in

the menu bar at the top right hand side as shown in the IDE screenshot below. You will be

using these options shortly.

2. Ethereum — Smart Contracts

http://remix.ethereum.org/

Ethereum

 3

You will now start writing your contract.

Ethereum

 4

Solidity is an object-oriented language especially developed for contract writing. It is a

high-level language, which inherits traits from C++, Python, and JavaScript. The Solidity

compiler compiles your source code into bytecode that runs on Ethereum Virtual Machine

(EVM).

For quick understanding of the Solidity syntax, look at the sample code in the IDE.

pragma solidity >=0.4.22 <0.6.0;

contract Ballot {

The first line is a directive to the compiler. The second line starts the definition of the

contract. Within the contract, you declare variables such as:

 address chairperson;

You can also define structures such as Proposal and create an array of these structure

items. Examine this in the code window.

You may then define a constructor which is invoked at the time of instantiating a contract.

 constructor(uint8 _numProposals) public {

After the constructor, you will define several methods, which are the contract methods. In

the sample contract, giveRightToVote is one such method having the following syntax:

 function giveRightToVote(address toVoter) public {

The public keyword makes this method publicly invokable by any client who has access

to the contract.

Likewise, the sample contract defines three more methods called delegate, vote, and

winningProposal. Examine these for your own understanding of the Solidity syntax.

These are the prerequisites to writing your own contract. Explaining the full syntax of

Solidity is beyond the scope of this tutorial.

3. Ethereum — Solidity for Contract Writing

Ethereum

 5

We will name our contract MyContract as in the following declaration:

contract MyContract {

We will declare two variables as follows:

 uint amount;

 uint value;

The variable amount will hold the accumulated money sent by the contract executors to

the contract creator. The value field will hold the contract value. As the executors execute

the contract, the value field will be modified to reflect the balanced contract value.

In the contract constructor, we set the values of these two variables.

 constructor (uint initialAmount, uint initialValue) public {

 amount = 0;

 value = 1000;

 }

As initially, the amount collected on the contract is zero, we set the amount field to 0.

We set the contract value to some arbitrary number, in this case it is 1000. The contract

creator decides this value.

To examine the collected amount at any given point of time, we provide a public contract

method called getAmount defined as follows:

 function getAmount() public view returns(uint) {

 return amount;

 }

To get the balanced contract value at any given point of time, we define getBalance

method as follows:

 function getBalance() public view returns(uint) {

 return value;

 }

Finally, we write a contract method (Send). It enables the clients to send some money to

the contract creator:

4. Ethereum — Developing MyContract

Ethereum

 6

 function send(uint newDeposit) public {

 value = value - newDeposit;

 amount = amount + newDeposit;

 }

The execution of the send method will modify both value and amount fields of the

contract.

The complete contract code is given below:

contract MyContract {

 uint amount;

 uint value;

 constructor (uint initialAmount, uint initialValue) public {

 amount = 0;

 value = 1000;

 }

 function getBalance() public view returns(uint) {

 return value;

 }

 function getAmount() public view returns(uint) {

 return amount;

 }

 function send(uint newDeposit) public {

 value = value - newDeposit;

 amount = amount + newDeposit;

 }

}

Ethereum

 7

Once you write the complete contract code, compiling it in this IDE is trivial. Simply click

on the Autocompile checkbox in the IDE as shown in the screenshot below:

Alternatively, you may compile the contract by clicking the button with the title

“Start to compile”.

5. Ethereum — Compiling the Contract

Ethereum

 8

If there is any typo, fix it in the code window. Make sure the code is compiled fully without

errors. Now, you are ready to deploy the contract.

Ethereum

 9

In this chapter, we will learn how to deploy contract on Ethereum. Click on the Run menu

option to deploy the contract. The following screen will appear.

The contract name is shown in the highlighted list box. Below this, you will notice the

Deploy button, click on it to deploy the contract. The contract will be deployed on the

Remix built-in Blockchain. You will be able to see the deployed contract at the bottom of

the screen. You can see this in the highlighted portion of the screenshot below.

6. Ethereum — Deploying the Contract

Ethereum

 10

Notice, the presence of three method names in this highlighted region. Next, you will

interact with the contract by executing the contract methods.

Ethereum

 11

When you click the deployed contract, you will see the various public methods provided

by the contract. This is shown in the screenshot below.

The first method send contains an edit box in front of it. Here, you will type the parameters

required by the contract method. The other two methods do not take any parameters.

Sending Money

Now, enter some amount such as 100 in front of the send function seen in the contract

window. Click the send button. This will execute the contract send method, reducing the

value of the contract value field and increasing the value of the amount field.

7. Ethereum — Interacting with the Contract

Ethereum

 12

Examining Contract Value

The previous send money action has reduced the contract value by 100. You can now

examine this by invoking the getBalance method of the contract. You will see the output

when you click on the getBalance button as shown in the screenshot below:

The contract value is now reduced to 900.

Examining Collected Amount

In this section, we will examine the amount of money collected so far on this contract. For

this, click on the getAmount button. The following screen will appear.

The amount field value has changed from 0 to 100.

Try a few send operations and examine the contract value and the amount fields to

conclude that the deployed contract is executing as expected.

Ethereum

 13

The Remix IDE that you have used so far is good enough for development and initial

testing of your contract. For real-life contracts, you need to test your functionality against

various parameters. Remix cannot create real (non-test) user accounts to transfer funds

between them. You have no control over the configuration of the Blockchain created by

Remix. You cannot even monitor the execution of the transactions.

Remix misses out on several advanced operations. Thus, we need to deploy our contract

on a more sophisticated Blockchain that provides all these features. One such Blockchain

is Ganache that you will learn about in our subsequent chapter.

8. Ethereum — Limitations of Remix

Ethereum

 14

Ganache is used for setting up a personal Ethereum Blockchain for testing your Solidity

contracts. It provides more features when compared to Remix. You will learn about the

features when you work out with Ganache. Before you begin using Ganache, you must

first download and install the Blockchain on your local machine.

Downloading Ganache

You may download Ganache from the following URL:

https://truffleframework.com/ganache

Ganache is available on several platforms. We developed and tested this entire tutorial on

Mac. Thus, the screenshots below will show Mac installation. When you open the

installation URL given above, it automatically detects your machine’s OS and directs you

to the appropriate binary installation. The screenshot below shows the Mac installation.

When you click on the DOWNLOAD button, it will begin downloading the DMG file for Mac

installation.

9. Ethereum — Ganache for Blockchain

https://truffleframework.com/ganache

Ethereum

 15

Installing Ganache

Locate the “Ganache-2.0.0.dmg” in your Downloads folder and double-click on it to

install Ganache. Upon successful installation, the following screen will appear:

Drag Ganache icon to the Application folder. Now, Ganache is available as an application

on your Mac.

If you are using some other OS, follow the instructions provided for successful installation.

Starting Ganache

Now locate Ganache in your Application folder and double-click on its icon to start

Ganache.

Ganache Desktop

When Ganache starts, the Ganache screen will appear as shown below:

Ethereum

 16

Click QUICKSTART to start Ganache. You will see Ganache console as shown below:

The console in the above screenshot shows two user accounts with balance of 100 ETH

(Ether - a currency for transaction on Ethereum platform). It also shows a transaction

count of zero for each account. As the user has not performed any transactions so far, this

count is obviously zero.

Ethereum

 17

We will now get an overview of a few important screens of Ganache that are of immediate

relevance to us.

Ethereum

 18

Click on the settings icon at the top right hand side of the screen as shown in the

screenshot below:

The server settings screen will appear as shown below:

10. Ethereum — Ganache Server Settings

Ethereum

 19

Here, you will be able to set the values of server address and the port number for your

Ganache server. For the time being, leave these to their default values. The Network ID is

an internal Blockchain identifier of Ganache server; leave this to its default value. The

Automine button is in the ON state indicating that the transactions would be processed

instantly. If you switched this off, it will ask you to enter the time in seconds after which

the blocks would be mined.

Account and Keys

When you click on the Accounts & Keys menu option, you will see the following screen:

Here you would be able to set the default balance for each account. The default value is

100. This now explains why you saw 100 ETH displayed for each account in the Desktop

screenshot. You can also set the number of accounts on this screen. The value displayed

in this screenshot is 2 and that is why the desktop showed only two accounts.

Now, we will work out with the two settings’ screen; the knowledge of how these two work

would suffice. Restart the server by clicking on the RESTART button in the right hand side

of the screen. You will now return to the Desktop screen. Try inputting different values in

the above two fields, restart the server and see its effect.

Ethereum

 20

We will now briefly understand what is available on the Ganache desktop. On the Desktop,

at the top we have several menu options out of which a few are of immediate relevance

to us. The menu bar is highlighted in the screenshot below:

Clicking on the TRANSACTIONS menu shows all the transactions performed so far. You

will be performing transactions very soon. Now, come back to the above screen and check

the transactions from time to time. A typical transaction screen is as shown below:

Likewise, when you click on the BLOCKS menu, you will see the various mined blocks.

Consider the following screenshot to understand how the BLOCKS menu looks like:

11. Ethereum — A Quick Walkthrough

Ethereum

 21

Click on the LOGS menu. It will open the system log for you. Here, you can examine the

various operations that you have performed on the Ethereum Blockchain.

Now, as you have understood how to use Ganache for setting up a private Ethereum

Blockchain, you will now create a few clients who would use this Blockchain.

Ethereum

 22

For client application, you will use MyEtherWallet.

Download MyEtherWallet software from the following URL:

https://github.com/kvhnuke/etherwallet/releases/tag/v3.21.06

If required, unzip the downloaded file and open index.html. You will see the following

interface for creating a new wallet.

12. Ethereum — MyEtherWallet

https://github.com/kvhnuke/etherwallet/releases/tag/v3.21.06

Ethereum

 23

In this chapter, we will learn how to create Ethereum wallet. To create a new wallet, enter

a password of your choice and then click on the “Create New Wallet” button. When you

do so, a Wallet would be created. A digital wallet is essentially the generation of a

public/private key pair that you need to store in a safe place. The wallet creation results

in the following screen:

Click on the “Download Keystore File (UTC / JSON)” button to save the generated

keys. Now, click on the “I understand. Continue” button. Your private key will appear

on the screen as seen in the screenshot below:

13. Ethereum — Creating Wallet

Ethereum

 24

Click on the “Print Paper Wallet” button to keep a physical record of your wallet’s private

key. You will need this later for unlocking the wallet. You will see the following screen. Do

not lose this output.

Ethereum

 25

To unlock your wallet, click on the “Save Your Address” button. You will see the following

screen.

The wallet can be unlocked using the Private Key option as highlighted in the above screen.

Cut-n-paste the private key from the previous screenshot and click the Unlock button.

Your wallet will be unlocked and you will see a message appear at the bottom of the

screen. As the wallet does not contain anything as of now, unlocking the wallet is not really

useful to us at this point.

Ethereum

 26

You have now created a wallet; this wallet is a client interface to the Blockchain. We will

attach the wallet to the Ganache Blockchain that you have started in the earlier lesson. To

do so, click on the Network dropdown box as shown in the screenshot below:

Go to the bottom of the list. You will see an option for “Add Custom Network / Node”.

Select this item.

14. Ethereum — Attaching Wallet to Ganache
Blockchain

Ethereum

 27

Now, a screen will appear asking for the Ganache server address and the port to which it

is listening.

Type your Ganache server details – http://127.0.0.1 and Port: 8545. These would be

the values set by you in the Ganache server setup. Give a name of your choice to this

node. Click on the “Save & Use Custom Node” button. You will see the connected

message at the bottom of the screen. At this point, your wallet is successfully connected

to the Ganache Blockchain.

You are now ready to deploy the contract on this connected Blockchain.

http://127.0.0.1/

Ethereum

 28

To deploy the contract, select the Contracts menu option as shown in the screenshot

below:

You will need to enter the contract’s bytecode on this screen. Remember, when you

compile your Solidity contract code, it generated a bytecode that runs on EVM. You will

now need to obtain this bytecode from Remix IDE.

15. Ethereum — Deploying Contract

Ethereum

 29

Go to the Remix IDE screen, your earlier typed contract should be there in the code

window. If not, retype the contract in the code window. Click on the Bytecode button as

shown in the following screenshot:

The bytecode for your compiled source is copied to the clipboard along with some other

information. Paste the copied code into your favorite text editor. Following is the

screenshot of the text editor:

Ethereum

 30

The value of the object tag contains the desired bytecode. Copy this carefully making

sure that you do not copy the enclosing quotes. The bytecode is really long, so make sure

that you copy right upto the last byte inclusive of it. Now, paste this bytecode in the

Deploy Contract screen as shown below:

The Gas Limit field is automatically set.

Ethereum

 31

Below the Gas Limit field, you will find the selection for accessing the wallet.

Now, access the wallet using the Private Key of the Ganache account on which this

contract will be deployed. To get this private key, go back to the Ganache window. Click

on the keys icon of the first account as shown below:

Ethereum

 32

You will see the private key of the user account # 1 as seen in the screenshot below:

Copy this private key and paste it in the “Paste Your Private Key” section as shown

below:

Ethereum

 33

You will see the “Unlock” button at the bottom of the screen. After unlocking, a “success”

message will appear at the bottom of the screen. At this point, your wallet is attached to

account #1 of the Ganache Blockchain.

Now, you are ready to sign and deploy the contract. Click on the “Sign Transaction”

button as shown in the screenshot below:

Signing the transaction generates and displays both Raw and Signed transactions. Click

on the “Deploy Contract” button to deploy the contract on the Ganache Blockchain.

Remember the contract is deployed by account # 1 user of the Ganache Blockchain.

Therefore, account # 1 user becomes the contract creator. Before the contract is deployed,

you will be asked to confirm the transaction as it may cost you some real money if you

were to deploy this contract on a public real Ethereum Blockchain. Do not worry, for the

current private Blockchain running on your local machine, there is no real money involved.

Click on the Make transaction button as shown in the screenshot below:

Ethereum

 34

Examine the Ganache console; you will see that the ETH balance in the account # 1 has

reduced as seen in the screenshot below:

Now, click on the TRANSACTIONS menu as shown in the screenshot below:

You will see the transaction details.

Ethereum

 35

On this screen, you will find the contract’s published address. The address is marked in

the above screenshot. You will distribute this address publicly to let others know that your

contract is available at this specified address to which they can connect and execute the

contract methods, such as sending money to you - the contract creator. Copy this contract

address for your own reference as you are going to need it in the next step.

Ethereum

 36

Now, you are ready to interact with the contract that you have deployed. Go back to

MyEtherWallet desktop and click on the “Interact with Contract” tab as shown in the

screenshot below:

Paste the contract address that you previously copied in the “Contract Address” field.

You also need to paste the “ABI / JSON Interface” of the contract on the above screen.

16. Ethereum — Interacting with Deployed
Contract

Ethereum

 37

To get the ABI, go to the Remix window and click on the ABI button as shown in the

screenshot below.

The ABI / JSON interface will be copied to the clipboard. Paste this in your favorite editor

to examine the generated interface, which is shown below:

ABI / JSON Interface

[

 {

 "constant": false,

 "inputs": [

 {

 "name": "newDeposit",

 "type": "uint256"

 }

],

 "name": "send",

 "outputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "function"

 },

 {

 "inputs": [

 {

Ethereum

 38

 "name": "initialAmount",

 "type": "uint256"

 },

 {

 "name": "initialValue",

 "type": "uint256"

 }

],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 },

 {

 "constant": true,

 "inputs": [],

 "name": "getAmount",

 "outputs": [

 {

 "name": "",

 "type": "uint256"

 }

],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

 {

 "constant": true,

 "inputs": [],

 "name": "getBalance",

 "outputs": [

 {

 "name": "",

 "type": "uint256"

 }

],

 "payable": false,

Ethereum

 39

 "stateMutability": "view",

 "type": "function"

 }

]

After you paste this JSON in the MyEtherWallet interface, you will notice that the

ACCESS button below the JSON interface is now activated, as shown below:

Click Access button to access the contract.

Ethereum

 40

Upon clicking the Access button, the contract address and function selection dropdown

will appear on the screen like in the Remix editor. This is shown in the screenshot below:

You may check the various functions of the contract as in the case of Remix deployment.

Note that the contact is now deployed on an external Ganache Blockchain. Check the

getAmount function; you will get the Amount value of zero and the getBalance will show

a balance of 1000.

Now try sending some money. It will present you a textedit control for entering the

amount. When you write the contract, some “gas” would be used and you will be asked to

confirm the transaction before writing it to the Blockchain. The transaction would be

executed in a short while depending on the mining timing set by you on the Ganache

server. After this, you can reexamine the value and the amount fields of the contract to

verify that these are indeed modified.

Ethereum

 41

You may now examine the Ganache desktop to view the transactions that you have

performed so far. A sample output is shown below:

So far, you were both the contract creator and the contract executor. This does not make

much sense, as you expect others to use your contract. For this, we will create another

client for our Ganache Blockchain and send some money from the newly created account

2 to the contract creator at account # 1.

Ethereum

 42

In this chapter, we will learn the creation of contract users on Ethereum. To create a user

for our published contract, we will create another MyEtherWallet client attached to the

same Ganache Blockchain that you have been using in the previous steps. Go to the

MyEtherWallet screen and create a new wallet.

Click on the contracts menu and select the “Interact with Contract” option as in the

earlier case. Note that this new user is going to simply interact with the already published

contract and not deploying his own contract. Specify the contract address and the ABI that

you used in the earlier case.

Now, click Access button and invoke send method. When asked, input some value say

100 ETH to be sent. Submit the transaction. Upon submission, the following screen will

appear.

17. Ethereum — Creating Contract Users

Ethereum

 43

To attach this new client to our Ganache Blockchain, go to Ganache Console. Click on the

keys icon of account # 2 as shown in the following screenshot:

Ethereum

 44

You will get the private key for account # 2.

Ethereum

 45

Copy the key that you receive and use it in your newly created wallet as shown here:

Click on the Unlock button to attach the wallet.

Ethereum

 46

When the wallet is successfully unlocked, write the desired send transaction.

Generate the transaction by clicking on the “Generate Transaction” button.

Ethereum

 47

Make the transaction and wait for some time for it to reflect in the Blockchain. Now,

execute “getAmount”, the amount shown should be 200 now.

Execute “getBalance”. The value field should now be 800.

Ethereum

 48

Examine the transaction log to see the various transactions performed by different users.

Ethereum

 49

You learned how to write your own digital contract in Solidity. You developed and tested

the contract interface in the Remix IDE. For further multi-user testing, you deployed this

contract on Ganache Blockchain. On Ganache, you created two user accounts. The first

account was used for publishing the contract. The second account was used for consuming

the contract.

What is Next?

The Ganache Blockchain that you used in this entire process is private and local to your

machine. Once you are fully satisfied with the functioning of the contract, you may proceed

to publish it on a real-life Ethereum Blockchain. However, doing so would require you to

spend real money. In the demo application, we used 1000 ETH as default for each user

account in Ganache. When you deploy your contract on a real-life Blockchain, you will have

to buy the ETH by converting your own country’s currency to ETH. This currency would be

stored in your wallet and you will be able to spend it the way you want.

18. Ethereum — Summary

