

Computer Logical Organization

i

About the Tutorial

Computer Logical Organization refers to the level of abstraction above the digital logic

level, but below the operating system level. At this level, the major components are

functional units or subsystems that correspond to specific pieces of hardware built from
the lower level building blocks.

This tutorial gives a complete understanding on Computer Logical Organization starting
from basic computer overview till its advanced architecture.

Audience

This reference has been prepared for the students pursing either Bachelors or Masters in

Computer Science to help them understand the basic-to-advanced concepts related to
Computer Logical Organization.

Prerequisites

Before you start proceeding with this tutorial, I'm making an assumption that you are

already aware of basic computer concepts like what is keyboard, mouse, monitor, input,

output, primary memory, secondary memory, etc. If you are not well aware of these
concepts, then I will suggest you to go through our short tutorial on Computer

Fundamentals.

 Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Computer Logical Organization

ii

Table of Contents

About the Tutorial ·· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ··· i

Table of Contents ·· ii

1. COMPUTER LOGICAL ORGANIZATION ─ OVERVIEW ·· 4

Signal ·· 4

Analog Signal··· 4

Digital Signal ··· 5

Comparison of Analog and Digital Signal ··· 7

2. COMPUTER LOGICAL ORGANIZATION ─ DIGITAL NUMBER SYSTEM ···································· 8

Decimal Number System ··· 8

Binary Number System ·· 9

Octal Number System ··· 9

Hexadecimal Number System ··· 10

3. COMPUTER LOGICAL ORGANIZATION ─ NUMBER SYSTEM CONVERSION ·························· 12

Decimal to Other Base System ·· 12

Other Base System to Decimal System ·· 13

Other Base System to Non-Decimal System ·· 14

Shortcut method - Binary to Octal ··· 15

Shortcut method - Octal to Binary ··· 15

Shortcut method - Binary to Hexadecimal ··· 16

Shortcut method - Hexadecimal to Binary ··· 16

4. COMPUTER LOGICAL ORGANIZATION ─ BINARY CODES ·· 18

Computer Logical Organization

iii

Advantages of Binary Code ··· 18

Classification of binary codes ·· 18

Weighted Codes ·· 18

Non-Weighted Codes ·· 19

Binary Coded Decimal (BCD) code ··· 20

Alphanumeric codes ·· 21

Error Codes ··· 21

5. COMPUTER LOGICAL ORGANIZATION ─ ERROR DETECTION AND CORRECTION ················ 22

What is Error? ··· 22

Error-Detecting Codes ··· 22

Error-Correcting Codes ·· 22

How to Detect and Correct Errors? ·· 22

Parity Checking of Error Detection ·· 23

Use of Parity Bit ·· 23

How Does Error Detection Take Place? ··· 24

6. COMPUTER LOGICAL ORGANIZATION ─ CODES CONVERSION ·· 25

Binary to BCD Conversion·· 25

BCD to Binary Conversion·· 26

BCD to Excess-3 ··· 27

Excess-3 to BCD Conversion ·· 28

7. COMPUTER LOGICAL ORGANIZATION ─ COMPLEMENT ARITHMETIC ································ 29

Binary System Complements ··· 29

Computer Logical Organization

4

In the modern world of electronics, the term Digital is generally associated with a computer

because the term Digital is derived from the way computers perform operation, by counting

digits. For many years, the application of digital electronics was only in the computer system.

But now-a-days, digital electronics is used in many other applications. Following are some of
the examples in which Digital electronics is heavily used.

 Industrial process control

 Military system

 Television

 Communication system

 Medical equipment

 Radar

 Navigation

Signal

Signal can be defined as a physical quantity, which contains some information. It is a function

of one or more than one independent variables. Signals are of two types.

 Analog Signal

 Digital Signal

Analog Signal

An analog signal is defined as the signal having continuous values. Analog signal can have

infinite number of different values. In real world scenario, most of the things observed in
nature are analog. Examples of the analog signals are following.

 Temperature

 Pressure

 Distance

 Sound

 Voltage

 Current

 Power

1. Computer Logical Organization ─ Overview

Computer Logical Organization

5

Graphical Representation of Analog Signal (Temperature)

The circuits that process the analog signals are called as analog circuits or system. Examples
of the analog system are following.

 Filter

 Amplifiers

 Television receiver

 Motor speed controller

Disadvantage of Analog Systems

 Less accuracy

 Less versatility

 More noise effect

 More distortion

 More effect of weather

Digital Signal

A digital signal is defined as the signal which has only a finite number of distinct values.

Digital signals are not continuous signals. In the digital electronic calculator, the input is given

with the help of switches. This input is converted into electrical signal which have two discrete

Computer Logical Organization

6

values or levels. One of these may be called low level and another is called high level. The

signal will always be one of the two levels. This type of signal is called digital signal. Examples

of the digital signal are following.

 Binary Signal

 Octal Signal

 Hexadecimal Signal

Graphical Representation of Digital Signal (Binary)

The circuits that process the digital signals are called digital systems or digital circuits.
Examples of the digital systems are following.

 Registers

 Flip-flop

 Counters

 Microprocessors

Advantage of Digital Systems

 More accuracy

 More versatility

 Less distortion

 Easy communicate

 Possible storage of information

Computer Logical Organization

7

Comparison of Analog and Digital Signal

S.N. Analog Signal Digital Signal

1 Analog signal has infinite values. Digital signal has a finite number of values.

2 Analog signal has a continuous nature. Digital signal has a discrete nature.

3
Analog signal is generated by

transducers and signal generators.

Digital signal is generated by A to D

converter.

4
Example of analog signal: sine wave,
triangular waves.

Example of digital signal: binary signal.

Computer Logical Organization

8

A digital system can understand positional number system only where there are a few symbols

called digits and these symbols represent different values depending on the position they

occupy in the number.

A value of each digit in a number can be determined using

 The digit

 The position of the digit in the number

 The base of the number system (where base is defined as the total number of digits

available in the number system).

Decimal Number System

The number system that we use in our day-to-day life is the decimal number system. Decimal

number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the

successive positions to the left of the decimal point represents units, tens, hundreds,

thousands and so on.

Each position represents a specific power of the base (10). For example, the decimal number

1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds
position, and 1 in the thousands position, and its value can be written as

(1x1000)+ (2x100)+ (3x10)+ (4xl)

(1x103)+ (2x102)+ (3x101)+ (4xl00)

1000 + 200 + 30 + 1

1234

As a computer programmer or an IT professional, you should understand the following number
systems which are frequently used in computers.

S.N. Number System & Description

1
Binary Number System

Base 2. Digits used: 0, 1

2
Octal Number System

Base 8. Digits used: 0 to 7

2. Computer Logical Organization ─ Digital Number System

Computer Logical Organization

9

3
Hexa Decimal Number System

Base 16. Digits used: 0 to 9, Letters used: A- F

Binary Number System

Characteristics

 Uses two digits, 0 and 1.

 Also called base 2 number system

 Each position in a binary number represents a 0 power of the base (2). Example: 20

 Last position in a binary number represents an x power of the base (2). Example: 2x

where x represents the last position - 1.

Example

Binary Number: 101012

Calculating Decimal Equivalent:

Step Binary

Number

Decimal Number

Step 1 101012 ((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10

Step 2 101012 (16 + 0 + 4 + 0 + 1)10

Step 3 101012 2110

Note: 101012 is normally written as 10101.

Octal Number System

Characteristics

 Uses eight digits, 0,1,2,3,4,5,6,7.

 Also called base 8 number system

 Each position in an octal number represents a 0 power of the base (8). Example: 80

 Last position in an octal number represents an x power of the base (8). Example: 8x

where x represents the last position - 1.

Example

Computer Logical Organization

10

Octal Number: 125708

Calculating Decimal Equivalent:

Step
Octal

Number
Decimal Number

Step 1 125708 ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80))10

Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10

Step 3 125708 549610

Note: 125708 is normally written as 12570.

Hexadecimal Number System

Characteristics

 Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

 Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14,
F = 15.

 Also called base 16 number system.

 Each position in a hexadecimal number represents a 0 power of the base (16). Example

160.

 Last position in a hexadecimal number represents an x power of the base (16).
Example 16x where x represents the last position - 1.

Example:

Hexadecimal Number: 19FDE16

Calculating Decimal Equivalent:

Step
Hexadecimal

Number
Decimal Number

Step 1 19FDE16 ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10

Step 2 19FDE16 ((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10

Computer Logical Organization

11

Step 3 19FDE16 (65536+ 36864 + 3840 + 208 + 14)10

Step 4 19FDE16 10646210

Note: 19FDE16 is normally written as 19FDE.

Computer Logical Organization

12

There are many methods or techniques which can be used to convert numbers from one base
to another. We'll demonstrate here the following:

 Decimal to Other Base System

 Other Base System to Decimal

 Other Base System to Non-Decimal

 Shortcut method - Binary to Octal

 Shortcut method - Octal to Binary

 Shortcut method - Binary to Hexadecimal

 Shortcut method - Hexadecimal to Binary

Decimal to Other Base System

Steps

 Step 1 - Divide the decimal number to be converted by the value of the new base.

 Step 2 - Get the remainder from Step 1 as the rightmost digit (least significant digit)

of new base number.

 Step 3 - Divide the quotient of the previous divide by the new base.

 Step 4 - Record the remainder from Step 3 as the next digit (to the left) of the new

base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero

in Step 3.

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base
number.

Example:

Decimal Number: 2910

Calculating Binary Equivalent:

Step Operation Result Remainder

Step 1 29 / 2 14 1

3. Computer Logical Organization ─ Number System Conversion

Computer Logical Organization

13

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so

that the first remainder becomes the Least Significant Digit (LSD) and the last remainder

becomes the Most Significant Digit (MSD).

Decimal Number: 2910 = Binary Number: 111012.

Other Base System to Decimal System

Steps

 Step 1 - Determine the column (positional) value of each digit (this depends on the

position of the digit and the base of the number system).

 Step 2 - Multiply the obtained column values (in Step 1) by the digits in the

corresponding columns.

 Step 3 - Sum the products calculated in Step 2. The total is the equivalent value in

decimal.

Example

Binary Number: 111012

Calculating Decimal Equivalent:

Step
Binary

Number
Decimal Number

Step 1 111012 ((1 x 24) + (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Binary Number: 111012 = Decimal Number: 2910

Computer Logical Organization

14

Other Base System to Non-Decimal System

Steps

 Step 1 - Convert the original number to a decimal number (base 10).

 Step 2 - Convert the decimal number so obtained to the new base number.

Example

Octal Number: 258

Calculating Binary Equivalent:

Step 1: Convert to Decimal

Step Octal Number Decimal Number

Step 1 258 ((2 x 81) + (5 x 80))10

Step 2 258 (16 + 5)10

Step 3 258 2110

Octal Number: 258 = Decimal Number: 2110

Step 2: Convert Decimal to Binary

Step Operation Result Remainder

Step 1 21 / 2 10 1

Step 2 10 / 2 5 0

Step 3 5 / 2 2 1

Step 4 2 / 2 1 0

Step 5 1 / 2 0 1

Computer Logical Organization

15

Decimal Number: 2110 = Binary Number: 101012

Octal Number: 258 = Binary Number: 101012

Shortcut method - Binary to Octal

Steps

 Step 1 - Divide the binary digits into groups of three (starting from the right).

 Step 2 - Convert each group of three binary digits to one octal digit.

Example

Binary Number: 101012

Calculating Octal Equivalent:

Step Binary Number Octal Number

Step 1 101012 010 101

Step 2 101012 28 58

Step 3 101012 258

Binary Number: 101012 = Octal Number: 258

Shortcut method - Octal to Binary

Steps

 Step 1 - Convert each octal digit to a 3 digit binary number (the octal digits may be

treated as decimal for this conversion).

 Step 2 - Combine all the resulting binary groups (of 3 digits each) into a single binary

number.

Example

Octal Number: 258

Calculating Binary Equivalent:

Computer Logical Organization

16

Step Octal Number Binary Number

Step 1 258 210 510

Step 2 258 0102 1012

Step 3 258 0101012

Octal Number: 258 = Binary Number: 101012

Shortcut method - Binary to Hexadecimal

Steps

 Step 1 - Divide the binary digits into groups of four (starting from the right).

 Step 2 - Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number: 101012

Calculating hexadecimal Equivalent:

Step Binary Number Hexadecimal Number

Step 1 101012 0001 0101

Step 2 101012 110 510

Step 3 101012 1516

Binary Number: 101012 = Hexadecimal Number: 1516

Shortcut method - Hexadecimal to Binary

Steps

Computer Logical Organization

17

 Step 1 - Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal

digits may be treated as decimal for this conversion).

 Step 2 - Combine all the resulting binary groups (of 4 digits each) into a single binary

number.

Example

Hexadecimal Number: 1516

Calculating Binary Equivalent:

Step Hexadecimal Number Binary Number

Step 1 1516 110 510

Step 2 1516 00012 01012

Step 3 1516 000101012

Hexadecimal Number: 1516 = Binary Number: 101012

Computer Logical Organization

18

In the coding, when numbers, letters or words are represented by a specific group of symbols,

it is said that the number, letter or word is being encoded. The group of symbols is called as

a code. The digital data is represented, stored and transmitted as group of binary bits. This
group is also called as binary code. The binary code is represented by the number as well as

alphanumeric letter.

Advantages of Binary Code

Following is the list of advantages that binary code offers.

 Binary codes are suitable for the computer applications.

 Binary codes are suitable for the digital communications.

 Binary codes make the analysis and designing of digital circuits if we use the binary
codes.

 Since only 0 & 1 are being used, implementation becomes easy.

Classification of binary codes

The codes are broadly categorized into following four categories.

 Weighted Codes

 Non-Weighted Codes

 Binary Coded Decimal Code

 Alphanumeric Codes

 Error Detecting Codes

 Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight principle.

Each position of the number represents a specific weight. Several systems of the codes are

used to express the decimal digits 0 through 9. In these codes each decimal digit is
represented by a group of four bits.

4. Computer Logical Organization ─ Binary Codes

Computer Logical Organization

19

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of non-
weighted codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express

decimal numbers. The Excess-3 code words are derived from the 8421 BCD code words adding
(0011)2 or (3)10 to each code word in 8421. The excess-3 codes are obtained as follows:

Example

Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no specific

weights assigned to the bit position. It has a very special feature that, only one bit will change

Computer Logical Organization

20

each time the decimal number is incremented as shown in fig. As only one bit changes at a

time, the gray code is called as a unit distance code. The gray code is a cyclic code. Gray code

cannot be used for arithmetic operation.

Application of Gray code

 Gray code is popularly used in the shaft position encoders.

 A shaft position encoder produces a code word which represents the angular position
of the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to

express each of the decimal digits with a binary code. In the BCD, with four bits we can

represent sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used
(0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD.

Advantages of BCD Codes

 It is very similar to decimal system.

 We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes

Computer Logical Organization

21

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

 BCD needs more number of bits than binary to represent the decimal number. So BCD
is less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But

this is not enough for communication between two computers because there we need many

more symbols for communication. These symbols are required to represent 26 alphabets with
capital and small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic characters.

Mostly such codes also represent other characters such as symbol and various instructions

necessary for conveying information. An alphanumeric code should at least represent 10 digits

and 26 letters of alphabet i.e. total 36 items. The following three alphanumeric codes are very
commonly used for the data representation.

 American Standard Code for Information Interchange (ASCII).

 Extended Binary Coded Decimal Interchange Code (EBCDIC).

 Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly
used worldwide while EBCDIC is used primarily in large IBM computers.

Error Codes

There are binary code techniques available to detect and correct data during data

transmission.

Error Code Description

Error Detection and
Correction

Error detection and correction code techniques

Computer Logical Organization

22

What is Error?

Error is a condition when the output information does not match with the input information.

During transmission, digital signals suffer from noise that can introduce errors in the binary

bits travelling from one system to other. That means a 0 bit may change to 1 or a 1 bit may
change to 0.

Error-Detecting Codes

Whenever a message is transmitted, it may get scrambled by noise or data may get corrupted.

To avoid this, we use error-detecting codes which are additional data added to a given digital

message to help us detect if an error occurred during transmission of the message. A simple

example of error-detecting code is parity check.

Error-Correcting Codes

Along with error-detecting code, we can also pass some data to figure out the original

message from the corrupt message that we received. This type of code is called an error-

correcting code. Error-correcting codes also deploy the same strategy as error-detecting

codes but additionally, such codes also detect the exact location of the corrupt bit.

In error-correcting codes, parity check has a simple way to detect errors along with a

sophisticated mechanism to determine the corrupt bit location. Once the corrupt bit is located,
its value is reverted (from 0 to 1 or 1 to 0) to get the original message.

How to Detect and Correct Errors?

To detect and correct the errors, additional bits are added to the data bits at the time of
transmission.

5. Computer Logical Organization ─ Error Detection and Correction

Computer Logical Organization

23

 The additional bits are called parity bits. They allow detection or correction of the
errors.

 The data bits along with the parity bits form a code word.

Parity Checking of Error Detection

It is the simplest technique for detecting and correcting errors. The MSB of an 8-bits word is

used as the parity bit and the remaining 7 bits are used as data or message bits. The parity
of 8-bits transmitted word can be either even parity or odd parity.

Even parity -- Even parity means the number of 1's in the given word including the parity

bit should be even (2, 4, 6,....).

Odd parity -- Odd parity means the number of 1's in the given word including the parity bit
should be odd (1, 3, 5,....).

Use of Parity Bit

The parity bit can be set to 0 and 1 depending on the type of the parity required.

 For even parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word
is even. Shown in fig. (a).

 For odd parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word

is odd. Shown in fig. (b).

Computer Logical Organization

24

How Does Error Detection Take Place?

Parity checking at the receiver can detect the presence of an error if the parity of the receiver

signal is different from the expected parity. That means, if it is known that the parity of the

transmitted signal is always going to be "even" and if the received signal has an odd parity,

then the receiver can conclude that the received signal is not correct.

If an error is detected, then the receiver will ignore the received byte and request for
retransmission of the same byte to the transmitter.

Computer Logical Organization

25

There are many methods or techniques which can be used to convert code from one format
to another. We'll demonstrate here the following

 Binary to BCD Conversion

 BCD to Binary Conversion

 BCD to Excess-3

 Excess-3 to BCD

Binary to BCD Conversion

Steps

 Step 1 -- Convert the binary number to decimal.

 Step 2 -- Convert decimal number to BCD.

Example: convert (11101)2 to BCD.

Step 1 - Convert to Decimal

Binary Number: 111012

Calculating Decimal Equivalent:

Step Binary
Number

Decimal Number

Step 1 111012 ((1 x 24) + (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Binary Number: 111012 = Decimal Number: 2910

Step 2 - Convert to BCD

Decimal Number: 2910

Calculating BCD Equivalent. Convert each digit into groups of four binary digits equivalent.

6. Computer Logical Organization ─ Codes Conversion

Computer Logical Organization

26

Step Decimal Number Conversion

Step 1 2910 00102 10012

Step 2 2910 00101001BCD

Result

(11101)2 = (00101001)BCD

BCD to Binary Conversion

Steps

 Step 1 -- Convert the BCD number to decimal.

 Step 2 -- Convert decimal to binary.

Example: convert (00101001)BCD to Binary.

Step 1 - Convert to BCD

BCD Number: (00101001)BCD

Calculating Decimal Equivalent. Convert each four digit into a group and get decimal
equivalent for each group.

Step BCD Number Conversion

Step 1 (00101001)BCD 00102 10012

Step 2 (00101001)BCD 210 910

Step 3 (00101001)BCD 2910

BCD Number: (00101001)BCD = Decimal Number: 2910

Step 2 - Convert to Binary

Used long division method for decimal to binary conversion.

Decimal Number: 2910

Calculating Binary Equivalent:

Computer Logical Organization

27

Step Operation Result Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so

that the first remainder becomes the least significant digit (LSD) and the last remainder
becomes the most significant digit (MSD).

Decimal Number: 2910 = Binary Number: 111012

Result

(00101001)BCD = (11101)2

BCD to Excess-3

Steps

 Step 1 -- Convert BCD to decimal.

 Step 2 -- Add (3)10 to this decimal number.

 Step 3 -- Convert into binary to get excess-3 code.

Example: convert (1001)BCD to Excess-3.

Step 1 - Convert to decimal
(1001)BCD = 910

Step 2 - Add 3 to decimal
(9)10 + (3)10 = (12)10

Step 3 - Convert to Excess-3
(12)10 = (1100)2

Result

Computer Logical Organization

28

(1001)BCD = (1100)XS-3

Excess-3 to BCD Conversion

Steps

 Step 1 -- Subtract (0011)2 from each 4 bit of excess-3 digit to obtain the

corresponding BCD code.

Example: convert (10011010)XS-3 to BCD.

Given XS-3 number = 1 0 0 1 1 0 1 0

Subtract (0011)2 = 0 0 1 1 0 0 1 1

 BCD = 0 1 1 0 0 1 1 1

Result

(10011010)XS-3 = (01100111)BCD

Computer Logical Organization

29

Complements are used in the digital computers in order to simplify the subtraction operation

and for the logical manipulations. For each radix-r system (radix r represents base of number

system) there are two types of complements.

S.N. Complement Description

1 Radix Complement The radix complement is referred to as the r's complement

2 Diminished Radix
Complement

The diminished radix complement is referred to as the (r-
1)'s complement

Binary System Complements

As the binary system has base r = 2. So the two types of complements for the binary system

are 2's complement and 1's complement.

1's complement

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. This is
called as taking complement or 1's complement. Example of 1's Complement is as follows.

2's complement

The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit
(LSB) of 1's complement of the number.

2's complement = 1's complement + 1

7. Computer Logical Organization ─ Complement Arithmetic

Computer Logical Organization

30

End of ebook preview

If you liked what you saw…
Buy it from our store @ https://store.tutorialspoint.com

